Higher blood–brain barrier permeability is associated with higher white matter hyperintensities burden View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-06-26

AUTHORS

Yue Li, Man Li, Xiaoyu Zhang, Qinglei Shi, Shuna Yang, Huimin Fan, Wei Qin, Lei Yang, Junliang Yuan, Tao Jiang, Wenli Hu

ABSTRACT

The pathogenesis of white matter hyperintensities (WMH) is incompletely understood but blood–brain barrier (BBB) dysfunction may play a key role. This study aimed to investigate the relationship between BBB permeability and the severity of WMH burden. Consecutive participants without symptomatic stroke history presented for physical examination were recruited in this cross-sectional study and divided into three WMH burden groups according to total Fazekas scores. They received dynamic contrast-enhanced-magnetic resonance imaging to measure BBB permeability, and received Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA). A total of 102 participants aged 49–90 years (mean age of 69.82 years) were enrolled (36 with low WMH burden, 35 with medium WMH burden, and 31 with high WMH burden). Multivariable linear regression analyses revealed that participants with higher WMH burden had significantly higher BBB leakage rate and area under the leakage curve in normal-appearing white matter, WMH, cortical gray matter, and deep gray matter (DGM) after adjustment for age, sex, and vascular risk factors. Scores on MMSE and MoCA decreased with increasing leakage rate in WMH and DGM after adjustment for age, sex, WMH burden, and education years. We found that higher BBB permeability is associated with higher WMH burden and cognitive decline. The compromised BBB integrity may be a critical contributor to the pathogenesis of WMH and part of a series of pathological processes that finally lead to cognitive impairment. More... »

PAGES

1474-1481

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00415-017-8550-8

DOI

http://dx.doi.org/10.1007/s00415-017-8550-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1086341352

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28653212


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Blood-Brain Barrier", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Capillary Permeability", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cognition", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Contrast Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cost of Illness", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cross-Sectional Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gray Matter", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linear Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mental Status and Dementia Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multivariate Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Severity of Illness Index", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "White Matter", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, South Gongti Road, 100020, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, South Gongti Road, 100020, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Yue", 
        "id": "sg:person.01161465075.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161465075.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Man", 
        "id": "sg:person.07524540203.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07524540203.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurology, Qianfoshan Hospital, Shandong University, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.27255.37", 
          "name": [
            "Department of Neurology, Qianfoshan Hospital, Shandong University, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Xiaoyu", 
        "id": "sg:person.010322120603.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010322120603.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Diagnosis Imaging, Siemens Healthcare Ltd., Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Diagnosis Imaging, Siemens Healthcare Ltd., Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Qinglei", 
        "id": "sg:person.011117501203.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011117501203.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, South Gongti Road, 100020, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, South Gongti Road, 100020, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Shuna", 
        "id": "sg:person.013701141421.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013701141421.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, South Gongti Road, 100020, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, South Gongti Road, 100020, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Huimin", 
        "id": "sg:person.012512442203.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012512442203.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, South Gongti Road, 100020, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, South Gongti Road, 100020, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qin", 
        "givenName": "Wei", 
        "id": "sg:person.01356625732.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356625732.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, South Gongti Road, 100020, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, South Gongti Road, 100020, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Lei", 
        "id": "sg:person.01003440065.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003440065.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, South Gongti Road, 100020, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, South Gongti Road, 100020, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yuan", 
        "givenName": "Junliang", 
        "id": "sg:person.01201073331.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201073331.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "Tao", 
        "id": "sg:person.0766756324.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766756324.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, South Gongti Road, 100020, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, South Gongti Road, 100020, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Wenli", 
        "id": "sg:person.01120042502.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120042502.89"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-06-26", 
    "datePublishedReg": "2017-06-26", 
    "description": "The pathogenesis of white matter hyperintensities (WMH) is incompletely understood but blood\u2013brain barrier (BBB) dysfunction may play a key role. This study aimed to investigate the relationship between BBB permeability and the severity of WMH burden. Consecutive participants without symptomatic stroke history presented for physical examination were recruited in this cross-sectional study and divided into three WMH burden groups according to total Fazekas scores. They received dynamic contrast-enhanced-magnetic resonance imaging to measure BBB permeability, and received Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA). A total of 102 participants aged 49\u201390\u00a0years (mean age of 69.82\u00a0years) were enrolled (36 with low WMH burden, 35 with medium WMH burden, and 31 with high WMH burden). Multivariable linear regression analyses revealed that participants with higher WMH burden had significantly higher BBB leakage rate and area under the leakage curve in normal-appearing white matter, WMH, cortical gray matter, and deep gray matter (DGM) after adjustment for age, sex, and vascular risk factors. Scores on MMSE and MoCA decreased with increasing leakage rate in WMH and DGM after adjustment for age, sex, WMH burden, and education years. We found that higher BBB permeability is associated with higher WMH burden and cognitive decline. The compromised BBB integrity may be a critical contributor to the pathogenesis of WMH and part of a series of pathological processes that finally lead to cognitive impairment.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00415-017-8550-8", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7203814", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7186584", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1014525", 
        "issn": [
          "0340-5354", 
          "1432-1459"
        ], 
        "name": "Journal of Neurology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "264"
      }
    ], 
    "keywords": [
      "white matter hyperintensities", 
      "Mini-Mental State Examination", 
      "deep gray matter", 
      "higher WMH burden", 
      "BBB permeability", 
      "WMH burden", 
      "matter hyperintensities", 
      "pathogenesis of WMH", 
      "gray matter", 
      "blood-brain barrier dysfunction", 
      "high blood-brain barrier permeability", 
      "blood-brain barrier permeability", 
      "higher white matter hyperintensities", 
      "multivariable linear regression analysis", 
      "vascular risk factors", 
      "normal-appearing white matter", 
      "cross-sectional study", 
      "cortical gray matter", 
      "Montreal Cognitive Assessment", 
      "high BBB permeability", 
      "total Fazekas score", 
      "BBB integrity", 
      "stroke history", 
      "physical examination", 
      "burden group", 
      "barrier dysfunction", 
      "consecutive participants", 
      "risk factors", 
      "Fazekas score", 
      "barrier permeability", 
      "State Examination", 
      "linear regression analysis", 
      "white matter", 
      "cognitive decline", 
      "cognitive impairment", 
      "Cognitive Assessment", 
      "pathological processes", 
      "hyperintensity", 
      "regression analysis", 
      "burden", 
      "pathogenesis", 
      "critical contributor", 
      "age", 
      "sex", 
      "education years", 
      "magnetic resonance", 
      "scores", 
      "participants", 
      "examination", 
      "leakage rate", 
      "dysfunction", 
      "years", 
      "impairment", 
      "severity", 
      "MoCA", 
      "key role", 
      "adjustment", 
      "total", 
      "study", 
      "rate", 
      "group", 
      "permeability", 
      "assessment", 
      "factors", 
      "decline", 
      "history", 
      "role", 
      "contributor", 
      "relationship", 
      "integrity", 
      "leakage curves", 
      "curves", 
      "analysis", 
      "area", 
      "series", 
      "matter", 
      "part", 
      "resonance", 
      "process"
    ], 
    "name": "Higher blood\u2013brain barrier permeability is associated with higher white matter hyperintensities burden", 
    "pagination": "1474-1481", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1086341352"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00415-017-8550-8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28653212"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00415-017-8550-8", 
      "https://app.dimensions.ai/details/publication/pub.1086341352"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_733.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00415-017-8550-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00415-017-8550-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00415-017-8550-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00415-017-8550-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00415-017-8550-8'


 

This table displays all metadata directly associated to this object as RDF triples.

310 TRIPLES      20 PREDICATES      126 URIs      118 LITERALS      29 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00415-017-8550-8 schema:about N11b362d6c2374b7aa5062c8072b037ea
2 N1f385a47881a420d9598e495d0aba8a0
3 N2868b09991da490aaf66c2bc124d9a61
4 N2c267f816e5741b78454ad6bd48b8b66
5 N35849ec217c8419682e0c9560c7f3f85
6 N53107afc6c3a4b58afff8ccb475a6249
7 N5ee806a0a5ce4897928cdeef3dc502ef
8 N60ae430e094542a4aca8ffaadbd4f997
9 N74b26673924b428aa076d76682a49102
10 N783c0e5bcb504e13a1ba55888b548a3e
11 N966502f5b6054b7a98d0cb1b62e76f10
12 N9aa021bed4564fe4b86ca4f9248b28a3
13 Na2d9b63a75ae4b7da39635b941d529ac
14 Na3f0e78ec1cb41c4bfec0c1f3ba4fcd3
15 Nbf74853bf20e4828be410469fc25a30d
16 Nc968342a272842e998942b57cef9f4f9
17 Nca909aaf4ae6426a940fcc68c708f49f
18 Nce39c30ef6ac41d78ada25fea08120d0
19 Nd9f3c3bb32b94f6b9c7bf73093748793
20 Ne16d416c4dec43a9afa6643e5c13f20c
21 Ne78fbbc8dc724daa8404f81549054612
22 Nf4daeb86363149afb872ce26b24325e1
23 anzsrc-for:11
24 anzsrc-for:1109
25 schema:author N8a7a740350e542b1a4bd43b9a7326a2b
26 schema:datePublished 2017-06-26
27 schema:datePublishedReg 2017-06-26
28 schema:description The pathogenesis of white matter hyperintensities (WMH) is incompletely understood but blood–brain barrier (BBB) dysfunction may play a key role. This study aimed to investigate the relationship between BBB permeability and the severity of WMH burden. Consecutive participants without symptomatic stroke history presented for physical examination were recruited in this cross-sectional study and divided into three WMH burden groups according to total Fazekas scores. They received dynamic contrast-enhanced-magnetic resonance imaging to measure BBB permeability, and received Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA). A total of 102 participants aged 49–90 years (mean age of 69.82 years) were enrolled (36 with low WMH burden, 35 with medium WMH burden, and 31 with high WMH burden). Multivariable linear regression analyses revealed that participants with higher WMH burden had significantly higher BBB leakage rate and area under the leakage curve in normal-appearing white matter, WMH, cortical gray matter, and deep gray matter (DGM) after adjustment for age, sex, and vascular risk factors. Scores on MMSE and MoCA decreased with increasing leakage rate in WMH and DGM after adjustment for age, sex, WMH burden, and education years. We found that higher BBB permeability is associated with higher WMH burden and cognitive decline. The compromised BBB integrity may be a critical contributor to the pathogenesis of WMH and part of a series of pathological processes that finally lead to cognitive impairment.
29 schema:genre article
30 schema:isAccessibleForFree false
31 schema:isPartOf N0a281d06cc3c48a880ae8f9a832443c2
32 N39fdffad718742d183fe6683fd35bf46
33 sg:journal.1014525
34 schema:keywords BBB integrity
35 BBB permeability
36 Cognitive Assessment
37 Fazekas score
38 Mini-Mental State Examination
39 MoCA
40 Montreal Cognitive Assessment
41 State Examination
42 WMH burden
43 adjustment
44 age
45 analysis
46 area
47 assessment
48 barrier dysfunction
49 barrier permeability
50 blood-brain barrier dysfunction
51 blood-brain barrier permeability
52 burden
53 burden group
54 cognitive decline
55 cognitive impairment
56 consecutive participants
57 contributor
58 cortical gray matter
59 critical contributor
60 cross-sectional study
61 curves
62 decline
63 deep gray matter
64 dysfunction
65 education years
66 examination
67 factors
68 gray matter
69 group
70 high BBB permeability
71 high blood-brain barrier permeability
72 higher WMH burden
73 higher white matter hyperintensities
74 history
75 hyperintensity
76 impairment
77 integrity
78 key role
79 leakage curves
80 leakage rate
81 linear regression analysis
82 magnetic resonance
83 matter
84 matter hyperintensities
85 multivariable linear regression analysis
86 normal-appearing white matter
87 part
88 participants
89 pathogenesis
90 pathogenesis of WMH
91 pathological processes
92 permeability
93 physical examination
94 process
95 rate
96 regression analysis
97 relationship
98 resonance
99 risk factors
100 role
101 scores
102 series
103 severity
104 sex
105 stroke history
106 study
107 total
108 total Fazekas score
109 vascular risk factors
110 white matter
111 white matter hyperintensities
112 years
113 schema:name Higher blood–brain barrier permeability is associated with higher white matter hyperintensities burden
114 schema:pagination 1474-1481
115 schema:productId N4525406f687945ea9c98e0eb210fc32a
116 N4aa9c1c744b2416a9014cbb4cb8f3c5e
117 N5eb8e8cb01d845a5ad1eda6c1b63f2a9
118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086341352
119 https://doi.org/10.1007/s00415-017-8550-8
120 schema:sdDatePublished 2022-12-01T06:36
121 schema:sdLicense https://scigraph.springernature.com/explorer/license/
122 schema:sdPublisher N11726c48eccf4c5f8bf130fd297f6865
123 schema:url https://doi.org/10.1007/s00415-017-8550-8
124 sgo:license sg:explorer/license/
125 sgo:sdDataset articles
126 rdf:type schema:ScholarlyArticle
127 N0a281d06cc3c48a880ae8f9a832443c2 schema:volumeNumber 264
128 rdf:type schema:PublicationVolume
129 N11726c48eccf4c5f8bf130fd297f6865 schema:name Springer Nature - SN SciGraph project
130 rdf:type schema:Organization
131 N11b362d6c2374b7aa5062c8072b037ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name White Matter
133 rdf:type schema:DefinedTerm
134 N1f385a47881a420d9598e495d0aba8a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Middle Aged
136 rdf:type schema:DefinedTerm
137 N2868b09991da490aaf66c2bc124d9a61 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Multivariate Analysis
139 rdf:type schema:DefinedTerm
140 N2c267f816e5741b78454ad6bd48b8b66 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Magnetic Resonance Imaging
142 rdf:type schema:DefinedTerm
143 N35849ec217c8419682e0c9560c7f3f85 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Capillary Permeability
145 rdf:type schema:DefinedTerm
146 N39fdffad718742d183fe6683fd35bf46 schema:issueNumber 7
147 rdf:type schema:PublicationIssue
148 N4525406f687945ea9c98e0eb210fc32a schema:name dimensions_id
149 schema:value pub.1086341352
150 rdf:type schema:PropertyValue
151 N4aa9c1c744b2416a9014cbb4cb8f3c5e schema:name pubmed_id
152 schema:value 28653212
153 rdf:type schema:PropertyValue
154 N4c54afdbe2a84a409c6bb35e6f3e77e7 rdf:first sg:person.01201073331.78
155 rdf:rest Nb7442eb42eed47a087c6ad3b73b8153f
156 N53107afc6c3a4b58afff8ccb475a6249 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Aged, 80 and over
158 rdf:type schema:DefinedTerm
159 N5eb8e8cb01d845a5ad1eda6c1b63f2a9 schema:name doi
160 schema:value 10.1007/s00415-017-8550-8
161 rdf:type schema:PropertyValue
162 N5ee806a0a5ce4897928cdeef3dc502ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Cross-Sectional Studies
164 rdf:type schema:DefinedTerm
165 N60ae430e094542a4aca8ffaadbd4f997 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Cognition
167 rdf:type schema:DefinedTerm
168 N671704095afe417fb1016342dcda8f4c rdf:first sg:person.010322120603.85
169 rdf:rest Nc3b01d265d284d9799e946b20a795799
170 N6aaae664c6954386a9f2f7f7e40ec055 rdf:first sg:person.07524540203.49
171 rdf:rest N671704095afe417fb1016342dcda8f4c
172 N6afa1d7d0a2d49358c454fd6491f976f rdf:first sg:person.012512442203.59
173 rdf:rest N88369b1e9a3445ac944fabf13248c0b0
174 N7162ef2bd6124543aac2284a8160646c rdf:first sg:person.01120042502.89
175 rdf:rest rdf:nil
176 N74b26673924b428aa076d76682a49102 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Humans
178 rdf:type schema:DefinedTerm
179 N783c0e5bcb504e13a1ba55888b548a3e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Adult
181 rdf:type schema:DefinedTerm
182 N7e0feea4ae734f9e8d06d3d89c940e8f rdf:first sg:person.013701141421.02
183 rdf:rest N6afa1d7d0a2d49358c454fd6491f976f
184 N823ea68e4de24fcf9e4b647df5bf0a3a rdf:first sg:person.01003440065.55
185 rdf:rest N4c54afdbe2a84a409c6bb35e6f3e77e7
186 N88369b1e9a3445ac944fabf13248c0b0 rdf:first sg:person.01356625732.44
187 rdf:rest N823ea68e4de24fcf9e4b647df5bf0a3a
188 N8a7a740350e542b1a4bd43b9a7326a2b rdf:first sg:person.01161465075.44
189 rdf:rest N6aaae664c6954386a9f2f7f7e40ec055
190 N966502f5b6054b7a98d0cb1b62e76f10 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
191 schema:name Contrast Media
192 rdf:type schema:DefinedTerm
193 N9aa021bed4564fe4b86ca4f9248b28a3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
194 schema:name Brain Diseases
195 rdf:type schema:DefinedTerm
196 Na2d9b63a75ae4b7da39635b941d529ac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
197 schema:name Severity of Illness Index
198 rdf:type schema:DefinedTerm
199 Na3f0e78ec1cb41c4bfec0c1f3ba4fcd3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
200 schema:name Blood-Brain Barrier
201 rdf:type schema:DefinedTerm
202 Nb7442eb42eed47a087c6ad3b73b8153f rdf:first sg:person.0766756324.29
203 rdf:rest N7162ef2bd6124543aac2284a8160646c
204 Nbf74853bf20e4828be410469fc25a30d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
205 schema:name Female
206 rdf:type schema:DefinedTerm
207 Nc3b01d265d284d9799e946b20a795799 rdf:first sg:person.011117501203.64
208 rdf:rest N7e0feea4ae734f9e8d06d3d89c940e8f
209 Nc968342a272842e998942b57cef9f4f9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
210 schema:name Male
211 rdf:type schema:DefinedTerm
212 Nca909aaf4ae6426a940fcc68c708f49f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
213 schema:name Mental Status and Dementia Tests
214 rdf:type schema:DefinedTerm
215 Nce39c30ef6ac41d78ada25fea08120d0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
216 schema:name Image Processing, Computer-Assisted
217 rdf:type schema:DefinedTerm
218 Nd9f3c3bb32b94f6b9c7bf73093748793 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
219 schema:name Linear Models
220 rdf:type schema:DefinedTerm
221 Ne16d416c4dec43a9afa6643e5c13f20c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
222 schema:name Aged
223 rdf:type schema:DefinedTerm
224 Ne78fbbc8dc724daa8404f81549054612 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
225 schema:name Cost of Illness
226 rdf:type schema:DefinedTerm
227 Nf4daeb86363149afb872ce26b24325e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
228 schema:name Gray Matter
229 rdf:type schema:DefinedTerm
230 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
231 schema:name Medical and Health Sciences
232 rdf:type schema:DefinedTerm
233 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
234 schema:name Neurosciences
235 rdf:type schema:DefinedTerm
236 sg:grant.7186584 http://pending.schema.org/fundedItem sg:pub.10.1007/s00415-017-8550-8
237 rdf:type schema:MonetaryGrant
238 sg:grant.7203814 http://pending.schema.org/fundedItem sg:pub.10.1007/s00415-017-8550-8
239 rdf:type schema:MonetaryGrant
240 sg:journal.1014525 schema:issn 0340-5354
241 1432-1459
242 schema:name Journal of Neurology
243 schema:publisher Springer Nature
244 rdf:type schema:Periodical
245 sg:person.01003440065.55 schema:affiliation grid-institutes:grid.24696.3f
246 schema:familyName Yang
247 schema:givenName Lei
248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003440065.55
249 rdf:type schema:Person
250 sg:person.010322120603.85 schema:affiliation grid-institutes:grid.27255.37
251 schema:familyName Zhang
252 schema:givenName Xiaoyu
253 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010322120603.85
254 rdf:type schema:Person
255 sg:person.011117501203.64 schema:affiliation grid-institutes:None
256 schema:familyName Shi
257 schema:givenName Qinglei
258 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011117501203.64
259 rdf:type schema:Person
260 sg:person.01120042502.89 schema:affiliation grid-institutes:grid.24696.3f
261 schema:familyName Hu
262 schema:givenName Wenli
263 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120042502.89
264 rdf:type schema:Person
265 sg:person.01161465075.44 schema:affiliation grid-institutes:grid.24696.3f
266 schema:familyName Li
267 schema:givenName Yue
268 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161465075.44
269 rdf:type schema:Person
270 sg:person.01201073331.78 schema:affiliation grid-institutes:grid.24696.3f
271 schema:familyName Yuan
272 schema:givenName Junliang
273 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201073331.78
274 rdf:type schema:Person
275 sg:person.012512442203.59 schema:affiliation grid-institutes:grid.24696.3f
276 schema:familyName Fan
277 schema:givenName Huimin
278 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012512442203.59
279 rdf:type schema:Person
280 sg:person.01356625732.44 schema:affiliation grid-institutes:grid.24696.3f
281 schema:familyName Qin
282 schema:givenName Wei
283 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356625732.44
284 rdf:type schema:Person
285 sg:person.013701141421.02 schema:affiliation grid-institutes:grid.24696.3f
286 schema:familyName Yang
287 schema:givenName Shuna
288 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013701141421.02
289 rdf:type schema:Person
290 sg:person.07524540203.49 schema:affiliation grid-institutes:grid.24696.3f
291 schema:familyName Li
292 schema:givenName Man
293 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07524540203.49
294 rdf:type schema:Person
295 sg:person.0766756324.29 schema:affiliation grid-institutes:grid.24696.3f
296 schema:familyName Jiang
297 schema:givenName Tao
298 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766756324.29
299 rdf:type schema:Person
300 grid-institutes:None schema:alternateName Diagnosis Imaging, Siemens Healthcare Ltd., Beijing, People’s Republic of China
301 schema:name Diagnosis Imaging, Siemens Healthcare Ltd., Beijing, People’s Republic of China
302 rdf:type schema:Organization
303 grid-institutes:grid.24696.3f schema:alternateName Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, South Gongti Road, 100020, Beijing, People’s Republic of China
304 Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People’s Republic of China
305 schema:name Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, South Gongti Road, 100020, Beijing, People’s Republic of China
306 Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People’s Republic of China
307 rdf:type schema:Organization
308 grid-institutes:grid.27255.37 schema:alternateName Department of Neurology, Qianfoshan Hospital, Shandong University, Beijing, People’s Republic of China
309 schema:name Department of Neurology, Qianfoshan Hospital, Shandong University, Beijing, People’s Republic of China
310 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...