An algorithm for candidate sequencing in non-dystrophic skeletal muscle channelopathies View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-07

AUTHORS

Tai-Seung Nam, Christoph Lossin, Dong-Uk Kim, Myeong-Kyu Kim, Young-Ok Kim, Kang-Ho Choi, Seok-Yong Choi, Sang-Cheol Park, In-Seop Na

ABSTRACT

Human skeletal muscle channelopathies (HSMCs) are a group of heritable conditions with ion channel-related etiology and similar presentation. To create a comprehensive picture of the phenotypic spectrum for each condition and to devise a strategy that facilitates the differential diagnosis, we collected the genotype and phenotype information from more than 500 previously published HSMC studies. Using these records, we were able to identify clear correlations between particular clinical features and the underlying alteration(s) in the genes SCN4A, CACNA1S, KCNJ2, and CLCN1. This allowed us to develop a clinical, symptom-based, binary decision flow algorithm that predicts the proper genetic origin with high accuracy (0.88-0.93). The algorithm was implemented in a stand-alone online tool ("CGPS"- http://cgps.ddd.co.kr ) to assist with HSCM diagnosis in the clinical practice. The CGPS provides simple, symptom-oriented navigation that guides the user to the most likely molecular basis of the presentation, which permits highly targeted genetic screens and, upon confirmation, tailored pharmacotherapy based on the molecular origin. More... »

PAGES

1770-1777

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00415-013-6872-8

DOI

http://dx.doi.org/10.1007/s00415-013-6872-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045047682

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23456025


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artificial Intelligence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Channelopathies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Testing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Muscle, Skeletal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Muscular Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phenotype", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Chonnam National University", 
          "id": "https://www.grid.ac/institutes/grid.14005.30", 
          "name": [
            "Department of Neurology, The Brain Korea 21 Project, Chonnam National University Medical School, 8 Hakdong, Donggu, 501-757, Gwangju, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nam", 
        "givenName": "Tai-Seung", 
        "id": "sg:person.01010315374.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010315374.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Davis", 
          "id": "https://www.grid.ac/institutes/grid.27860.3b", 
          "name": [
            "Department of Neurology, School of Medicine, University of California, Davis, 4635 Second Ave, Room 1004A, 95817, Sacramento, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lossin", 
        "givenName": "Christoph", 
        "id": "sg:person.0577751527.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577751527.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chosun University", 
          "id": "https://www.grid.ac/institutes/grid.254187.d", 
          "name": [
            "Department of Neurology, Chosun University School of Medicine, Gwangju, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Dong-Uk", 
        "id": "sg:person.0756416074.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756416074.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chonnam National University", 
          "id": "https://www.grid.ac/institutes/grid.14005.30", 
          "name": [
            "Department of Neurology, The Brain Korea 21 Project, Chonnam National University Medical School, 8 Hakdong, Donggu, 501-757, Gwangju, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Myeong-Kyu", 
        "id": "sg:person.01240772374.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240772374.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chonnam National University", 
          "id": "https://www.grid.ac/institutes/grid.14005.30", 
          "name": [
            "Department of Pediatrics, Chonnam National University Medical School, Gwangju, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Young-Ok", 
        "id": "sg:person.0777205030.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777205030.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chonnam National University", 
          "id": "https://www.grid.ac/institutes/grid.14005.30", 
          "name": [
            "Department of Neurology, The Brain Korea 21 Project, Chonnam National University Medical School, 8 Hakdong, Donggu, 501-757, Gwangju, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Kang-Ho", 
        "id": "sg:person.0742202174.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742202174.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chonnam National University", 
          "id": "https://www.grid.ac/institutes/grid.14005.30", 
          "name": [
            "Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Seok-Yong", 
        "id": "sg:person.0753156345.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753156345.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chonnam National University", 
          "id": "https://www.grid.ac/institutes/grid.14005.30", 
          "name": [
            "School of Electronics and Computer Engineering, Chonnam National University, Gwangju, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Sang-Cheol", 
        "id": "sg:person.0635714730.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635714730.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chonnam National University", 
          "id": "https://www.grid.ac/institutes/grid.14005.30", 
          "name": [
            "School of Electronics and Computer Engineering, Chonnam National University, Gwangju, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Na", 
        "givenName": "In-Seop", 
        "id": "sg:person.01240056113.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240056113.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1097/wco.0b013e32833cc97e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002415890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/wco.0b013e32833cc97e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002415890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/wco.0b013e32833cc97e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002415890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nmd.2008.01.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009164370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/wco.0b013e32832efa8f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009311191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/wco.0b013e32832efa8f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009311191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/wco.0b013e32832efa8f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009311191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1113/jphysiol.2005.082909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009861786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00415-006-0353-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010208084", 
          "https://doi.org/10.1007/s00415-006-0353-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00415-006-0353-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010208084", 
          "https://doi.org/10.1007/s00415-006-0353-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1651-2227.1971.tb06990.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012718779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ana.410350313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018880863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmpb.2011.09.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021516455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021900471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1092-148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022848553", 
          "https://doi.org/10.1038/ng1092-148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jnnp.2008.162396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026893745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mus.880130106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050152088"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-07", 
    "datePublishedReg": "2013-07-01", 
    "description": "Human skeletal muscle channelopathies (HSMCs) are a group of heritable conditions with ion channel-related etiology and similar presentation. To create a comprehensive picture of the phenotypic spectrum for each condition and to devise a strategy that facilitates the differential diagnosis, we collected the genotype and phenotype information from more than 500 previously published HSMC studies. Using these records, we were able to identify clear correlations between particular clinical features and the underlying alteration(s) in the genes SCN4A, CACNA1S, KCNJ2, and CLCN1. This allowed us to develop a clinical, symptom-based, binary decision flow algorithm that predicts the proper genetic origin with high accuracy (0.88-0.93). The algorithm was implemented in a stand-alone online tool (\"CGPS\"- http://cgps.ddd.co.kr ) to assist with HSCM diagnosis in the clinical practice. The CGPS provides simple, symptom-oriented navigation that guides the user to the most likely molecular basis of the presentation, which permits highly targeted genetic screens and, upon confirmation, tailored pharmacotherapy based on the molecular origin.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00415-013-6872-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1014525", 
        "issn": [
          "0340-5354", 
          "1432-1459"
        ], 
        "name": "Journal of Neurology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "260"
      }
    ], 
    "name": "An algorithm for candidate sequencing in non-dystrophic skeletal muscle channelopathies", 
    "pagination": "1770-1777", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d693a9410157e3ba21c862188a67a5c002eeea323dda07be63d157ec05c2ab95"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23456025"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0423161"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00415-013-6872-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045047682"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00415-013-6872-8", 
      "https://app.dimensions.ai/details/publication/pub.1045047682"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000515.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00415-013-6872-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00415-013-6872-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00415-013-6872-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00415-013-6872-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00415-013-6872-8'


 

This table displays all metadata directly associated to this object as RDF triples.

212 TRIPLES      21 PREDICATES      51 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00415-013-6872-8 schema:about N1b09e6c8c31640cba86e85280ba516ed
2 N398b219bcb8e4aa1ac3cb33fb8b78774
3 N480e6676ae69491d8af384ad9dcaa7ee
4 N5704d9a1714c486d8662fce3cabaeda1
5 N708cb8db8ae04de6ba52f325da71f593
6 Nb9eced829db14c589af92c8bace11a42
7 Nc447c9a1c3de4fac9b06f32de2300c2d
8 Ncbdc9b2cb60946bdaa4cc49904cd0a0a
9 Ncf62a58ab9dc4a2aae09b3977552b9d6
10 Nea9495ce3bb54c3ca1941843959b0dca
11 anzsrc-for:06
12 anzsrc-for:0604
13 schema:author Nae6fdd16107a4702ab73a53ece21098d
14 schema:citation sg:pub.10.1007/s00415-006-0353-2
15 sg:pub.10.1038/ng1092-148
16 https://doi.org/10.1002/ana.410350313
17 https://doi.org/10.1002/gepi.20642
18 https://doi.org/10.1002/mus.880130106
19 https://doi.org/10.1016/j.cmpb.2011.09.009
20 https://doi.org/10.1016/j.nmd.2008.01.007
21 https://doi.org/10.1097/wco.0b013e32832efa8f
22 https://doi.org/10.1097/wco.0b013e32833cc97e
23 https://doi.org/10.1111/j.1651-2227.1971.tb06990.x
24 https://doi.org/10.1113/jphysiol.2005.082909
25 https://doi.org/10.1136/jnnp.2008.162396
26 schema:datePublished 2013-07
27 schema:datePublishedReg 2013-07-01
28 schema:description Human skeletal muscle channelopathies (HSMCs) are a group of heritable conditions with ion channel-related etiology and similar presentation. To create a comprehensive picture of the phenotypic spectrum for each condition and to devise a strategy that facilitates the differential diagnosis, we collected the genotype and phenotype information from more than 500 previously published HSMC studies. Using these records, we were able to identify clear correlations between particular clinical features and the underlying alteration(s) in the genes SCN4A, CACNA1S, KCNJ2, and CLCN1. This allowed us to develop a clinical, symptom-based, binary decision flow algorithm that predicts the proper genetic origin with high accuracy (0.88-0.93). The algorithm was implemented in a stand-alone online tool ("CGPS"- http://cgps.ddd.co.kr ) to assist with HSCM diagnosis in the clinical practice. The CGPS provides simple, symptom-oriented navigation that guides the user to the most likely molecular basis of the presentation, which permits highly targeted genetic screens and, upon confirmation, tailored pharmacotherapy based on the molecular origin.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf N38e67c73f2e543f6a7b0bb99e2587cfe
33 N7eb99a2a3b07497792fc06d1251b433f
34 sg:journal.1014525
35 schema:name An algorithm for candidate sequencing in non-dystrophic skeletal muscle channelopathies
36 schema:pagination 1770-1777
37 schema:productId N29eb5df0198f4151955ef69e23819777
38 N7d529bf5f920422e963e58ac30823958
39 N97b31833b9a34d9c90246b357b0ddf81
40 Nb20ef1c02a404c34a7ef15c778124737
41 Nd3b0434b5c174b6a9466e1440df8deb0
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045047682
43 https://doi.org/10.1007/s00415-013-6872-8
44 schema:sdDatePublished 2019-04-10T17:32
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N6e29091ce74d4865925bf4d02947c2ee
47 schema:url http://link.springer.com/10.1007%2Fs00415-013-6872-8
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N0827ddfadcbb4d148612f97c0cb45ce5 rdf:first sg:person.01240772374.65
52 rdf:rest Nc4d3510384ac408d9097c59f9ca66a2b
53 N0b14f702a80d43e8b6be8d09f9f01a01 rdf:first sg:person.0577751527.05
54 rdf:rest N733955bac37b4d34aaa7ec09eda44ebc
55 N1b09e6c8c31640cba86e85280ba516ed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
56 schema:name Algorithms
57 rdf:type schema:DefinedTerm
58 N29eb5df0198f4151955ef69e23819777 schema:name nlm_unique_id
59 schema:value 0423161
60 rdf:type schema:PropertyValue
61 N38e67c73f2e543f6a7b0bb99e2587cfe schema:volumeNumber 260
62 rdf:type schema:PublicationVolume
63 N398b219bcb8e4aa1ac3cb33fb8b78774 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
64 schema:name Muscle, Skeletal
65 rdf:type schema:DefinedTerm
66 N480e6676ae69491d8af384ad9dcaa7ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name Artificial Intelligence
68 rdf:type schema:DefinedTerm
69 N5704d9a1714c486d8662fce3cabaeda1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Muscular Diseases
71 rdf:type schema:DefinedTerm
72 N5d56dc08bed745b6b501ce995e5e140a rdf:first sg:person.0742202174.81
73 rdf:rest N6b910f84ded949769b55dce8f8e59fee
74 N6b910f84ded949769b55dce8f8e59fee rdf:first sg:person.0753156345.65
75 rdf:rest N9931c98cd686479788eb5225af58ab40
76 N6e29091ce74d4865925bf4d02947c2ee schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 N708cb8db8ae04de6ba52f325da71f593 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Channelopathies
80 rdf:type schema:DefinedTerm
81 N733955bac37b4d34aaa7ec09eda44ebc rdf:first sg:person.0756416074.28
82 rdf:rest N0827ddfadcbb4d148612f97c0cb45ce5
83 N7d529bf5f920422e963e58ac30823958 schema:name readcube_id
84 schema:value d693a9410157e3ba21c862188a67a5c002eeea323dda07be63d157ec05c2ab95
85 rdf:type schema:PropertyValue
86 N7eb99a2a3b07497792fc06d1251b433f schema:issueNumber 7
87 rdf:type schema:PublicationIssue
88 N97b31833b9a34d9c90246b357b0ddf81 schema:name doi
89 schema:value 10.1007/s00415-013-6872-8
90 rdf:type schema:PropertyValue
91 N9931c98cd686479788eb5225af58ab40 rdf:first sg:person.0635714730.50
92 rdf:rest Nf2478dc8cba54d08959131466daa87ac
93 Nae6fdd16107a4702ab73a53ece21098d rdf:first sg:person.01010315374.15
94 rdf:rest N0b14f702a80d43e8b6be8d09f9f01a01
95 Nb20ef1c02a404c34a7ef15c778124737 schema:name dimensions_id
96 schema:value pub.1045047682
97 rdf:type schema:PropertyValue
98 Nb9eced829db14c589af92c8bace11a42 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Phenotype
100 rdf:type schema:DefinedTerm
101 Nc447c9a1c3de4fac9b06f32de2300c2d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Genotype
103 rdf:type schema:DefinedTerm
104 Nc4d3510384ac408d9097c59f9ca66a2b rdf:first sg:person.0777205030.54
105 rdf:rest N5d56dc08bed745b6b501ce995e5e140a
106 Ncbdc9b2cb60946bdaa4cc49904cd0a0a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Mutation
108 rdf:type schema:DefinedTerm
109 Ncf62a58ab9dc4a2aae09b3977552b9d6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Humans
111 rdf:type schema:DefinedTerm
112 Nd3b0434b5c174b6a9466e1440df8deb0 schema:name pubmed_id
113 schema:value 23456025
114 rdf:type schema:PropertyValue
115 Nea9495ce3bb54c3ca1941843959b0dca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Genetic Testing
117 rdf:type schema:DefinedTerm
118 Nf2478dc8cba54d08959131466daa87ac rdf:first sg:person.01240056113.01
119 rdf:rest rdf:nil
120 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
121 schema:name Biological Sciences
122 rdf:type schema:DefinedTerm
123 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
124 schema:name Genetics
125 rdf:type schema:DefinedTerm
126 sg:journal.1014525 schema:issn 0340-5354
127 1432-1459
128 schema:name Journal of Neurology
129 rdf:type schema:Periodical
130 sg:person.01010315374.15 schema:affiliation https://www.grid.ac/institutes/grid.14005.30
131 schema:familyName Nam
132 schema:givenName Tai-Seung
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010315374.15
134 rdf:type schema:Person
135 sg:person.01240056113.01 schema:affiliation https://www.grid.ac/institutes/grid.14005.30
136 schema:familyName Na
137 schema:givenName In-Seop
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240056113.01
139 rdf:type schema:Person
140 sg:person.01240772374.65 schema:affiliation https://www.grid.ac/institutes/grid.14005.30
141 schema:familyName Kim
142 schema:givenName Myeong-Kyu
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240772374.65
144 rdf:type schema:Person
145 sg:person.0577751527.05 schema:affiliation https://www.grid.ac/institutes/grid.27860.3b
146 schema:familyName Lossin
147 schema:givenName Christoph
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577751527.05
149 rdf:type schema:Person
150 sg:person.0635714730.50 schema:affiliation https://www.grid.ac/institutes/grid.14005.30
151 schema:familyName Park
152 schema:givenName Sang-Cheol
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635714730.50
154 rdf:type schema:Person
155 sg:person.0742202174.81 schema:affiliation https://www.grid.ac/institutes/grid.14005.30
156 schema:familyName Choi
157 schema:givenName Kang-Ho
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742202174.81
159 rdf:type schema:Person
160 sg:person.0753156345.65 schema:affiliation https://www.grid.ac/institutes/grid.14005.30
161 schema:familyName Choi
162 schema:givenName Seok-Yong
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753156345.65
164 rdf:type schema:Person
165 sg:person.0756416074.28 schema:affiliation https://www.grid.ac/institutes/grid.254187.d
166 schema:familyName Kim
167 schema:givenName Dong-Uk
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756416074.28
169 rdf:type schema:Person
170 sg:person.0777205030.54 schema:affiliation https://www.grid.ac/institutes/grid.14005.30
171 schema:familyName Kim
172 schema:givenName Young-Ok
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777205030.54
174 rdf:type schema:Person
175 sg:pub.10.1007/s00415-006-0353-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010208084
176 https://doi.org/10.1007/s00415-006-0353-2
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/ng1092-148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022848553
179 https://doi.org/10.1038/ng1092-148
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1002/ana.410350313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018880863
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1002/gepi.20642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021900471
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1002/mus.880130106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050152088
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.cmpb.2011.09.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021516455
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.nmd.2008.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009164370
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1097/wco.0b013e32832efa8f schema:sameAs https://app.dimensions.ai/details/publication/pub.1009311191
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1097/wco.0b013e32833cc97e schema:sameAs https://app.dimensions.ai/details/publication/pub.1002415890
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1111/j.1651-2227.1971.tb06990.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012718779
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1113/jphysiol.2005.082909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009861786
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1136/jnnp.2008.162396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026893745
200 rdf:type schema:CreativeWork
201 https://www.grid.ac/institutes/grid.14005.30 schema:alternateName Chonnam National University
202 schema:name Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, Korea
203 Department of Neurology, The Brain Korea 21 Project, Chonnam National University Medical School, 8 Hakdong, Donggu, 501-757, Gwangju, Korea
204 Department of Pediatrics, Chonnam National University Medical School, Gwangju, Korea
205 School of Electronics and Computer Engineering, Chonnam National University, Gwangju, Korea
206 rdf:type schema:Organization
207 https://www.grid.ac/institutes/grid.254187.d schema:alternateName Chosun University
208 schema:name Department of Neurology, Chosun University School of Medicine, Gwangju, Korea
209 rdf:type schema:Organization
210 https://www.grid.ac/institutes/grid.27860.3b schema:alternateName University of California, Davis
211 schema:name Department of Neurology, School of Medicine, University of California, Davis, 4635 Second Ave, Room 1004A, 95817, Sacramento, CA, USA
212 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...