An eye tracking study of bloodstain pattern analysts during pattern classification View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-05

AUTHORS

R. M. Arthur, J. Hoogenboom, R. D. Green, M. C. Taylor, K. G. de Bruin

ABSTRACT

Bloodstain pattern analysis (BPA) is the forensic discipline concerned with the classification and interpretation of bloodstains and bloodstain patterns at the crime scene. At present, it is unclear exactly which stain or pattern properties and their associated values are most relevant to analysts when classifying a bloodstain pattern. Eye tracking technology has been widely used to investigate human perception and cognition. Its application to forensics, however, is limited. This is the first study to use eye tracking as a tool for gaining access to the mindset of the bloodstain pattern expert. An eye tracking method was used to follow the gaze of 24 bloodstain pattern analysts during an assigned task of classifying a laboratory-generated test bloodstain pattern. With the aid of an automated image-processing methodology, the properties of selected features of the pattern were quantified leading to the delineation of areas of interest (AOIs). Eye tracking data were collected for each AOI and combined with verbal statements made by analysts after the classification task to determine the critical range of values for relevant diagnostic features. Eye-tracking data indicated that there were four main regions of the pattern that analysts were most interested in. Within each region, individual elements or groups of elements that exhibited features associated with directionality, size, colour and shape appeared to capture the most interest of analysts during the classification task. The study showed that the eye movements of trained bloodstain pattern experts and their verbal descriptions of a pattern were well correlated. More... »

PAGES

875-885

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00414-017-1711-6

DOI

http://dx.doi.org/10.1007/s00414-017-1711-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092274948

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29046954


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Blood Stains", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Eye Movement Measurements", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Forensic Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pattern Recognition, Visual", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Saccades", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Netherlands Forensic Institute", 
          "id": "https://www.grid.ac/institutes/grid.419915.1", 
          "name": [
            "School of Chemical Sciences, The University of Auckland, Private Bag 92019, 1142, Auckland, New Zealand", 
            "Netherlands Forensic Institute, P.O. Box 24044, 2490 AA, The Hague, Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arthur", 
        "givenName": "R. M.", 
        "id": "sg:person.01024626737.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024626737.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Netherlands Forensic Institute", 
          "id": "https://www.grid.ac/institutes/grid.419915.1", 
          "name": [
            "Netherlands Forensic Institute, P.O. Box 24044, 2490 AA, The Hague, Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hoogenboom", 
        "givenName": "J.", 
        "id": "sg:person.012716246455.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012716246455.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Canterbury", 
          "id": "https://www.grid.ac/institutes/grid.21006.35", 
          "name": [
            "Department of Computer Science and Software Engineering, College of Engineering, University of Canterbury, Christchurch, New Zealand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Green", 
        "givenName": "R. D.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Environmental Science and Research", 
          "id": "https://www.grid.ac/institutes/grid.419706.d", 
          "name": [
            "Institute of Environmental Science and Research Ltd (ESR), Christchurch Science Centre, PO Box 29-181, 8041, Christchurch, New Zealand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taylor", 
        "givenName": "M. C.", 
        "id": "sg:person.0731707163.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731707163.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Netherlands Forensic Institute", 
          "id": "https://www.grid.ac/institutes/grid.419915.1", 
          "name": [
            "Netherlands Forensic Institute, P.O. Box 24044, 2490 AA, The Hague, Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Bruin", 
        "givenName": "K. G.", 
        "id": "sg:person.01277750043.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277750043.53"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.3758/bf03215795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001602658", 
          "https://doi.org/10.3758/bf03215795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2168556.2168563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002351257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0096-3445.114.3.342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003836621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.newideapsych.2012.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004017979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-5379-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005084291", 
          "https://doi.org/10.1007/978-1-4899-5379-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-5379-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005084291", 
          "https://doi.org/10.1007/978-1-4899-5379-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6918(67)90080-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009524027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6918(67)90080-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009524027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0028928", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011107807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781420039467.ch20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017717568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0010-0285(76)90015-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020535536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3758/bf03206384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022719784", 
          "https://doi.org/10.3758/bf03206384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-02574-7_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025043161", 
          "https://doi.org/10.1007/978-3-642-02574-7_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-02574-7_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025043161", 
          "https://doi.org/10.1007/978-3-642-02574-7_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0096-1523.4.4.565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027009430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0747-5632(86)90006-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027803464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3758/bf03210264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032149575", 
          "https://doi.org/10.3758/bf03210264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.forsciint.2015.08.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034966242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acra.2008.01.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035117009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0926-907x(05)80003-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035853004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1556-4029.2006.00269.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048083294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/355744.355745", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051377384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.179.4.1790917", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069324993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.forsciint.2017.05.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085859891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109725606", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781420039467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109725606"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-05", 
    "datePublishedReg": "2018-05-01", 
    "description": "Bloodstain pattern analysis (BPA) is the forensic discipline concerned with the classification and interpretation of bloodstains and bloodstain patterns at the crime scene. At present, it is unclear exactly which stain or pattern properties and their associated values are most relevant to analysts when classifying a bloodstain pattern. Eye tracking technology has been widely used to investigate human perception and cognition. Its application to forensics, however, is limited. This is the first study to use eye tracking as a tool for gaining access to the mindset of the bloodstain pattern expert. An eye tracking method was used to follow the gaze of 24 bloodstain pattern analysts during an assigned task of classifying a laboratory-generated test bloodstain pattern. With the aid of an automated image-processing methodology, the properties of selected features of the pattern were quantified leading to the delineation of areas of interest (AOIs). Eye tracking data were collected for each AOI and combined with verbal statements made by analysts after the classification task to determine the critical range of values for relevant diagnostic features. Eye-tracking data indicated that there were four main regions of the pattern that analysts were most interested in. Within each region, individual elements or groups of elements that exhibited features associated with directionality, size, colour and shape appeared to capture the most interest of analysts during the classification task. The study showed that the eye movements of trained bloodstain pattern experts and their verbal descriptions of a pattern were well correlated.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00414-017-1711-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1013672", 
        "issn": [
          "0937-9827", 
          "1437-1596"
        ], 
        "name": "International Journal of Legal Medicine", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "132"
      }
    ], 
    "name": "An eye tracking study of bloodstain pattern analysts during pattern classification", 
    "pagination": "875-885", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ac26b169002ca4c6f9e9626242d61135cf49536ed0090e490ff2ef37041e3196"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29046954"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9101456"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00414-017-1711-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092274948"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00414-017-1711-6", 
      "https://app.dimensions.ai/details/publication/pub.1092274948"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000601.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00414-017-1711-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00414-017-1711-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00414-017-1711-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00414-017-1711-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00414-017-1711-6'


 

This table displays all metadata directly associated to this object as RDF triples.

204 TRIPLES      21 PREDICATES      59 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00414-017-1711-6 schema:about N30f488bea93b40bba57409e94067c46b
2 N45d2e9899d1843b19e4afc60beebdd6e
3 N4ab61dec559f4198a7b22907796e7934
4 N7c590ac66f05416883b4be16899dbdf1
5 Nc52e3e1ef40f4fb1af51ca5354b9e4ee
6 Ne4326f4eef384cf4a1ddef6dbd468fc5
7 Ne655173c909f47258c4f25fd046c39dd
8 anzsrc-for:08
9 anzsrc-for:0801
10 schema:author Nb3683ab8750245678753a2efc754dc0f
11 schema:citation sg:pub.10.1007/978-1-4899-5379-7
12 sg:pub.10.1007/978-3-642-02574-7_4
13 sg:pub.10.3758/bf03206384
14 sg:pub.10.3758/bf03210264
15 sg:pub.10.3758/bf03215795
16 https://app.dimensions.ai/details/publication/pub.1109725606
17 https://doi.org/10.1016/0001-6918(67)90080-7
18 https://doi.org/10.1016/0010-0285(76)90015-3
19 https://doi.org/10.1016/0747-5632(86)90006-3
20 https://doi.org/10.1016/j.acra.2008.01.023
21 https://doi.org/10.1016/j.forsciint.2015.08.028
22 https://doi.org/10.1016/j.forsciint.2017.05.022
23 https://doi.org/10.1016/j.newideapsych.2012.08.001
24 https://doi.org/10.1016/s0926-907x(05)80003-0
25 https://doi.org/10.1037/0096-1523.4.4.565
26 https://doi.org/10.1037/0096-3445.114.3.342
27 https://doi.org/10.1111/j.1556-4029.2006.00269.x
28 https://doi.org/10.1145/2168556.2168563
29 https://doi.org/10.1145/355744.355745
30 https://doi.org/10.1201/9781420039467
31 https://doi.org/10.1201/9781420039467.ch20
32 https://doi.org/10.1371/journal.pone.0028928
33 https://doi.org/10.2214/ajr.179.4.1790917
34 schema:datePublished 2018-05
35 schema:datePublishedReg 2018-05-01
36 schema:description Bloodstain pattern analysis (BPA) is the forensic discipline concerned with the classification and interpretation of bloodstains and bloodstain patterns at the crime scene. At present, it is unclear exactly which stain or pattern properties and their associated values are most relevant to analysts when classifying a bloodstain pattern. Eye tracking technology has been widely used to investigate human perception and cognition. Its application to forensics, however, is limited. This is the first study to use eye tracking as a tool for gaining access to the mindset of the bloodstain pattern expert. An eye tracking method was used to follow the gaze of 24 bloodstain pattern analysts during an assigned task of classifying a laboratory-generated test bloodstain pattern. With the aid of an automated image-processing methodology, the properties of selected features of the pattern were quantified leading to the delineation of areas of interest (AOIs). Eye tracking data were collected for each AOI and combined with verbal statements made by analysts after the classification task to determine the critical range of values for relevant diagnostic features. Eye-tracking data indicated that there were four main regions of the pattern that analysts were most interested in. Within each region, individual elements or groups of elements that exhibited features associated with directionality, size, colour and shape appeared to capture the most interest of analysts during the classification task. The study showed that the eye movements of trained bloodstain pattern experts and their verbal descriptions of a pattern were well correlated.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf N79c667c865854dd5b52f1f125c154d5d
41 Nd6dc282274c14537a15af12bf4529698
42 sg:journal.1013672
43 schema:name An eye tracking study of bloodstain pattern analysts during pattern classification
44 schema:pagination 875-885
45 schema:productId N13be28e0c094497794ed08f759f0fc16
46 N3bb3c552152948f08effce541dfe88d9
47 N9cb7a6f08027445695c9b1598e4922eb
48 Ne9936a6ffe7549598c200447ba06e3cb
49 Neffb2d08ad9243f6b60fc37923116d8a
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092274948
51 https://doi.org/10.1007/s00414-017-1711-6
52 schema:sdDatePublished 2019-04-11T02:30
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher Nfd4c59c8d053451096241bc588d178a4
55 schema:url https://link.springer.com/10.1007%2Fs00414-017-1711-6
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N13be28e0c094497794ed08f759f0fc16 schema:name doi
60 schema:value 10.1007/s00414-017-1711-6
61 rdf:type schema:PropertyValue
62 N30f488bea93b40bba57409e94067c46b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name Pattern Recognition, Visual
64 rdf:type schema:DefinedTerm
65 N3bb3c552152948f08effce541dfe88d9 schema:name pubmed_id
66 schema:value 29046954
67 rdf:type schema:PropertyValue
68 N45d2e9899d1843b19e4afc60beebdd6e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Forensic Sciences
70 rdf:type schema:DefinedTerm
71 N4ab61dec559f4198a7b22907796e7934 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Blood Stains
73 rdf:type schema:DefinedTerm
74 N5ebaf630e828414aa600e5f9d398bbd6 rdf:first Nea141219aa0448e3b6cddb1814794c36
75 rdf:rest Nc9289e6373844ea3b5f0f4407a6ea7eb
76 N79c667c865854dd5b52f1f125c154d5d schema:issueNumber 3
77 rdf:type schema:PublicationIssue
78 N7c590ac66f05416883b4be16899dbdf1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Eye Movement Measurements
80 rdf:type schema:DefinedTerm
81 N9cb7a6f08027445695c9b1598e4922eb schema:name dimensions_id
82 schema:value pub.1092274948
83 rdf:type schema:PropertyValue
84 Nb3683ab8750245678753a2efc754dc0f rdf:first sg:person.01024626737.08
85 rdf:rest Nc7c3a81abeda40289f264e4a9a449540
86 Nc52e3e1ef40f4fb1af51ca5354b9e4ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Humans
88 rdf:type schema:DefinedTerm
89 Nc7c3a81abeda40289f264e4a9a449540 rdf:first sg:person.012716246455.47
90 rdf:rest N5ebaf630e828414aa600e5f9d398bbd6
91 Nc9289e6373844ea3b5f0f4407a6ea7eb rdf:first sg:person.0731707163.44
92 rdf:rest Nda773a7ddb0a4575adfad2f7f8d3c70f
93 Nd6dc282274c14537a15af12bf4529698 schema:volumeNumber 132
94 rdf:type schema:PublicationVolume
95 Nda773a7ddb0a4575adfad2f7f8d3c70f rdf:first sg:person.01277750043.53
96 rdf:rest rdf:nil
97 Ne4326f4eef384cf4a1ddef6dbd468fc5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Image Processing, Computer-Assisted
99 rdf:type schema:DefinedTerm
100 Ne655173c909f47258c4f25fd046c39dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Saccades
102 rdf:type schema:DefinedTerm
103 Ne9936a6ffe7549598c200447ba06e3cb schema:name readcube_id
104 schema:value ac26b169002ca4c6f9e9626242d61135cf49536ed0090e490ff2ef37041e3196
105 rdf:type schema:PropertyValue
106 Nea141219aa0448e3b6cddb1814794c36 schema:affiliation https://www.grid.ac/institutes/grid.21006.35
107 schema:familyName Green
108 schema:givenName R. D.
109 rdf:type schema:Person
110 Neffb2d08ad9243f6b60fc37923116d8a schema:name nlm_unique_id
111 schema:value 9101456
112 rdf:type schema:PropertyValue
113 Nfd4c59c8d053451096241bc588d178a4 schema:name Springer Nature - SN SciGraph project
114 rdf:type schema:Organization
115 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
116 schema:name Information and Computing Sciences
117 rdf:type schema:DefinedTerm
118 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
119 schema:name Artificial Intelligence and Image Processing
120 rdf:type schema:DefinedTerm
121 sg:journal.1013672 schema:issn 0937-9827
122 1437-1596
123 schema:name International Journal of Legal Medicine
124 rdf:type schema:Periodical
125 sg:person.01024626737.08 schema:affiliation https://www.grid.ac/institutes/grid.419915.1
126 schema:familyName Arthur
127 schema:givenName R. M.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024626737.08
129 rdf:type schema:Person
130 sg:person.012716246455.47 schema:affiliation https://www.grid.ac/institutes/grid.419915.1
131 schema:familyName Hoogenboom
132 schema:givenName J.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012716246455.47
134 rdf:type schema:Person
135 sg:person.01277750043.53 schema:affiliation https://www.grid.ac/institutes/grid.419915.1
136 schema:familyName de Bruin
137 schema:givenName K. G.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277750043.53
139 rdf:type schema:Person
140 sg:person.0731707163.44 schema:affiliation https://www.grid.ac/institutes/grid.419706.d
141 schema:familyName Taylor
142 schema:givenName M. C.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731707163.44
144 rdf:type schema:Person
145 sg:pub.10.1007/978-1-4899-5379-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005084291
146 https://doi.org/10.1007/978-1-4899-5379-7
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/978-3-642-02574-7_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025043161
149 https://doi.org/10.1007/978-3-642-02574-7_4
150 rdf:type schema:CreativeWork
151 sg:pub.10.3758/bf03206384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022719784
152 https://doi.org/10.3758/bf03206384
153 rdf:type schema:CreativeWork
154 sg:pub.10.3758/bf03210264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032149575
155 https://doi.org/10.3758/bf03210264
156 rdf:type schema:CreativeWork
157 sg:pub.10.3758/bf03215795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001602658
158 https://doi.org/10.3758/bf03215795
159 rdf:type schema:CreativeWork
160 https://app.dimensions.ai/details/publication/pub.1109725606 schema:CreativeWork
161 https://doi.org/10.1016/0001-6918(67)90080-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009524027
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/0010-0285(76)90015-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020535536
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/0747-5632(86)90006-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027803464
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.acra.2008.01.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035117009
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.forsciint.2015.08.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034966242
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.forsciint.2017.05.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085859891
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.newideapsych.2012.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004017979
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/s0926-907x(05)80003-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035853004
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1037/0096-1523.4.4.565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027009430
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1037/0096-3445.114.3.342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003836621
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1111/j.1556-4029.2006.00269.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048083294
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1145/2168556.2168563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002351257
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1145/355744.355745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051377384
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1201/9781420039467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109725606
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1201/9781420039467.ch20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017717568
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1371/journal.pone.0028928 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011107807
192 rdf:type schema:CreativeWork
193 https://doi.org/10.2214/ajr.179.4.1790917 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069324993
194 rdf:type schema:CreativeWork
195 https://www.grid.ac/institutes/grid.21006.35 schema:alternateName University of Canterbury
196 schema:name Department of Computer Science and Software Engineering, College of Engineering, University of Canterbury, Christchurch, New Zealand
197 rdf:type schema:Organization
198 https://www.grid.ac/institutes/grid.419706.d schema:alternateName Institute of Environmental Science and Research
199 schema:name Institute of Environmental Science and Research Ltd (ESR), Christchurch Science Centre, PO Box 29-181, 8041, Christchurch, New Zealand
200 rdf:type schema:Organization
201 https://www.grid.ac/institutes/grid.419915.1 schema:alternateName Netherlands Forensic Institute
202 schema:name Netherlands Forensic Institute, P.O. Box 24044, 2490 AA, The Hague, Netherlands
203 School of Chemical Sciences, The University of Auckland, Private Bag 92019, 1142, Auckland, New Zealand
204 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...