New reference tables and user-friendly Internet application for predicted heart weights View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-01-11

AUTHORS

Jessica Vanhaebost, Mohamed Faouzi, Patrice Mangin, Katarzyna Michaud

ABSTRACT

BackgroundKnowledge of normal heart weight ranges is important information for pathologists. Comparing the measured heart weight to reference values is one of the key elements used to determine if the heart is pathological, as heart weight increases in many cardiac pathologies. The current reference tables are old and in need of an update.AimsThe purposes of this study are to establish new reference tables for normal heart weights in the local population and to determine the best predictive factor for normal heart weight. We also aim to provide technical support to calculate the predictive normal heart weight.MethodsThe reference values are based on retrospective analysis of adult Caucasian autopsy cases without any obvious pathology that were collected at the University Centre of Legal Medicine in Lausanne from 2007 to 2011. We selected 288 cases. The mean age was 39.2 years. There were 118 men and 170 women. Regression analyses were performed to assess the relationship of heart weight to body weight, body height, body mass index (BMI) and body surface area (BSA).ResultsThe heart weight increased along with an increase in all the parameters studied. The mean heart weight was greater in men than in women at a similar body weight. BSA was determined to be the best predictor for normal heart weight. New reference tables for predicted heart weights are presented as a web application that enable the comparison of heart weights observed at autopsy with the reference values.ConclusionsThe reference tables for heart weight and other organs should be systematically updated and adapted for the local population. Web access and smartphone applications for the predicted heart weight represent important investigational tools. More... »

PAGES

615-620

References to SciGraph publications

  • 1999-12. Harmonisation of Medico-Legal Autopsy Rules in INTERNATIONAL JOURNAL OF LEGAL MEDICINE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00414-013-0958-9

    DOI

    http://dx.doi.org/10.1007/s00414-013-0958-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1036293265

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/24414936


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Cardiorespiratory Medicine and Haematology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adolescent", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged, 80 and over", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Body Mass Index", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Body Weight", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Phone", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Child", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Child, Preschool", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Forensic Pathology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Heart", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Infant", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Internet", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Organ Size", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reference Values", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Regression Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Retrospective Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sex Factors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Software", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Switzerland", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Whites", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Young Adult", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University Center of Legal Medicine, Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.411686.c", 
              "name": [
                "University Center of Legal Medicine, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vanhaebost", 
            "givenName": "Jessica", 
            "id": "sg:person.0713201566.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713201566.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Social and Preventive Medicine, Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.482968.9", 
              "name": [
                "Institute of Social and Preventive Medicine, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Faouzi", 
            "givenName": "Mohamed", 
            "id": "sg:person.01253767506.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253767506.82"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University Center of Legal Medicine, Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.411686.c", 
              "name": [
                "University Center of Legal Medicine, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mangin", 
            "givenName": "Patrice", 
            "id": "sg:person.0652263172.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652263172.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University Center of Legal Medicine, Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.411686.c", 
              "name": [
                "University Center of Legal Medicine, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Michaud", 
            "givenName": "Katarzyna", 
            "id": "sg:person.01263672630.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263672630.14"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s004140050271", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001555042", 
              "https://doi.org/10.1007/s004140050271"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-01-11", 
        "datePublishedReg": "2014-01-11", 
        "description": "BackgroundKnowledge of normal heart weight ranges is important information for pathologists. Comparing the measured heart weight to reference values is one of the key elements used to determine if the heart is pathological, as heart weight increases in many cardiac pathologies. The current reference tables are old and in need of an update.AimsThe purposes of this study are to establish new reference tables for normal heart weights in the local population and to determine the best predictive factor for normal heart weight. We also aim to provide technical support to calculate the predictive normal heart weight.MethodsThe reference values are based on retrospective analysis of adult Caucasian autopsy cases without any obvious pathology that were collected at the University Centre of Legal Medicine in Lausanne from 2007 to 2011. We selected 288 cases. The mean age was 39.2\u00a0years. There were 118 men and 170 women. Regression analyses were performed to assess the relationship of heart weight to body weight, body height, body mass index (BMI) and body surface area (BSA).ResultsThe heart weight increased along with an increase in all the parameters studied. The mean heart weight was greater in men than in women at a similar body weight. BSA was determined to be the best predictor for normal heart weight. New reference tables for predicted heart weights are presented as a web application that enable the comparison of heart weights observed at autopsy with the reference values.ConclusionsThe reference tables for heart weight and other organs should be systematically updated and adapted for the local population. Web access and smartphone applications for the predicted heart weight represent important investigational tools.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00414-013-0958-9", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1013672", 
            "issn": [
              "0937-9827", 
              "1437-1596"
            ], 
            "name": "International Journal of Legal Medicine", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "128"
          }
        ], 
        "keywords": [
          "normal heart weight", 
          "body surface area", 
          "body mass index", 
          "heart weight", 
          "body weight", 
          "mean heart weight", 
          "best predictive factor", 
          "heart weight increase", 
          "similar body weight", 
          "important investigational tool", 
          "mass index", 
          "predictive factors", 
          "mean age", 
          "autopsy cases", 
          "retrospective analysis", 
          "cardiac pathology", 
          "new reference tables", 
          "obvious pathology", 
          "AimsThe purpose", 
          "reference values", 
          "body height", 
          "investigational tool", 
          "regression analysis", 
          "reference table", 
          "pathology", 
          "women", 
          "weight increase", 
          "University Center", 
          "men", 
          "best predictor", 
          "Legal Medicine", 
          "weight", 
          "weight range", 
          "population", 
          "pathologists", 
          "BackgroundKnowledge", 
          "age", 
          "heart", 
          "predictors", 
          "cases", 
          "organs", 
          "smartphone application", 
          "increase", 
          "medicine", 
          "important information", 
          "years", 
          "index", 
          "factors", 
          "local population", 
          "center", 
          "study", 
          "update", 
          "analysis", 
          "values", 
          "Lausanne", 
          "need", 
          "purpose", 
          "key elements", 
          "support", 
          "access", 
          "relationship", 
          "comparison", 
          "area", 
          "table", 
          "information", 
          "tool", 
          "height", 
          "parameters", 
          "range", 
          "technical support", 
          "surface area", 
          "applications", 
          "elements", 
          "web access", 
          "web application", 
          "Internet applications"
        ], 
        "name": "New reference tables and user-friendly Internet application for predicted heart weights", 
        "pagination": "615-620", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1036293265"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00414-013-0958-9"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "24414936"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00414-013-0958-9", 
          "https://app.dimensions.ai/details/publication/pub.1036293265"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T20:58", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_614.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00414-013-0958-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00414-013-0958-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00414-013-0958-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00414-013-0958-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00414-013-0958-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    269 TRIPLES      21 PREDICATES      128 URIs      119 LITERALS      33 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00414-013-0958-9 schema:about N0a5c69b3c1644d9db65e2235815958b6
    2 N17335e30e69e44f8a0afb72a804f4576
    3 N1fba14214a394331bf453d3c12f7deb3
    4 N222cbede04554b38b25d0fe248776fca
    5 N29487f9d3c1448ed80fd18650bbca37f
    6 N2b3957d82438405bb455987dfab39740
    7 N314f9df8a6864943baf9782f9097a43b
    8 N333e1c520b884f269cb3d976eafdddfc
    9 N42d688248eca46be9b03a0e4328fc348
    10 N44a0cfe42c2e49a1bf65c476ef53bc25
    11 N52cd373f86aa45e18e1aaa5ab3367a65
    12 N5b967433c3ad4462bf2b636301bf5eb8
    13 N5d17ee653c1941f2b66d3e94b177e56d
    14 N75abe3bf19d94e8f9611209276137978
    15 N886b9ba01b8743ac9768830fe2e84a4b
    16 N8891591619474c70aebc8dfca1939f1b
    17 N8a5190c2b9f8470384f68acc1902d36f
    18 N8c8e8178cb2c408b89e805a590412f3e
    19 N92916fd3467a495e87b9ea2c7c8e7b72
    20 N92e6dece9a5343ccbb4a466a538b2ccd
    21 N9ec77b05b0864a879c3492e9ad704e94
    22 Na54e26eb7c06457eb73eddec5879bc06
    23 Nb05bcc37997c461fab0c6cf1457feeff
    24 Neb6fb81902fd480c804cfc898ba60c55
    25 Nece10ccdc4bd4352ab504a9b659d8663
    26 Nf487d2f6bc0543ae9748d37c9e499eb2
    27 anzsrc-for:11
    28 anzsrc-for:1102
    29 schema:author N488a68520d9044fcb199044761da0a47
    30 schema:citation sg:pub.10.1007/s004140050271
    31 schema:datePublished 2014-01-11
    32 schema:datePublishedReg 2014-01-11
    33 schema:description BackgroundKnowledge of normal heart weight ranges is important information for pathologists. Comparing the measured heart weight to reference values is one of the key elements used to determine if the heart is pathological, as heart weight increases in many cardiac pathologies. The current reference tables are old and in need of an update.AimsThe purposes of this study are to establish new reference tables for normal heart weights in the local population and to determine the best predictive factor for normal heart weight. We also aim to provide technical support to calculate the predictive normal heart weight.MethodsThe reference values are based on retrospective analysis of adult Caucasian autopsy cases without any obvious pathology that were collected at the University Centre of Legal Medicine in Lausanne from 2007 to 2011. We selected 288 cases. The mean age was 39.2 years. There were 118 men and 170 women. Regression analyses were performed to assess the relationship of heart weight to body weight, body height, body mass index (BMI) and body surface area (BSA).ResultsThe heart weight increased along with an increase in all the parameters studied. The mean heart weight was greater in men than in women at a similar body weight. BSA was determined to be the best predictor for normal heart weight. New reference tables for predicted heart weights are presented as a web application that enable the comparison of heart weights observed at autopsy with the reference values.ConclusionsThe reference tables for heart weight and other organs should be systematically updated and adapted for the local population. Web access and smartphone applications for the predicted heart weight represent important investigational tools.
    34 schema:genre article
    35 schema:isAccessibleForFree true
    36 schema:isPartOf N0b970b3a62374cff9e12828e3adaef94
    37 N6656a3254f7a48e081d2a48511471099
    38 sg:journal.1013672
    39 schema:keywords AimsThe purpose
    40 BackgroundKnowledge
    41 Internet applications
    42 Lausanne
    43 Legal Medicine
    44 University Center
    45 access
    46 age
    47 analysis
    48 applications
    49 area
    50 autopsy cases
    51 best predictive factor
    52 best predictor
    53 body height
    54 body mass index
    55 body surface area
    56 body weight
    57 cardiac pathology
    58 cases
    59 center
    60 comparison
    61 elements
    62 factors
    63 heart
    64 heart weight
    65 heart weight increase
    66 height
    67 important information
    68 important investigational tool
    69 increase
    70 index
    71 information
    72 investigational tool
    73 key elements
    74 local population
    75 mass index
    76 mean age
    77 mean heart weight
    78 medicine
    79 men
    80 need
    81 new reference tables
    82 normal heart weight
    83 obvious pathology
    84 organs
    85 parameters
    86 pathologists
    87 pathology
    88 population
    89 predictive factors
    90 predictors
    91 purpose
    92 range
    93 reference table
    94 reference values
    95 regression analysis
    96 relationship
    97 retrospective analysis
    98 similar body weight
    99 smartphone application
    100 study
    101 support
    102 surface area
    103 table
    104 technical support
    105 tool
    106 update
    107 values
    108 web access
    109 web application
    110 weight
    111 weight increase
    112 weight range
    113 women
    114 years
    115 schema:name New reference tables and user-friendly Internet application for predicted heart weights
    116 schema:pagination 615-620
    117 schema:productId N3fcb1de8ed984b4c925fab98a24fbec3
    118 N6ea2bc90bef046d3890ba32facfa475e
    119 N7b5f73200fb9420ea8b8d911c196de8c
    120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036293265
    121 https://doi.org/10.1007/s00414-013-0958-9
    122 schema:sdDatePublished 2022-11-24T20:58
    123 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    124 schema:sdPublisher N92751f589f1b4bfc9488d67ab9309469
    125 schema:url https://doi.org/10.1007/s00414-013-0958-9
    126 sgo:license sg:explorer/license/
    127 sgo:sdDataset articles
    128 rdf:type schema:ScholarlyArticle
    129 N0a5c69b3c1644d9db65e2235815958b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name Whites
    131 rdf:type schema:DefinedTerm
    132 N0b970b3a62374cff9e12828e3adaef94 schema:volumeNumber 128
    133 rdf:type schema:PublicationVolume
    134 N17335e30e69e44f8a0afb72a804f4576 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    135 schema:name Retrospective Studies
    136 rdf:type schema:DefinedTerm
    137 N1fba14214a394331bf453d3c12f7deb3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Child
    139 rdf:type schema:DefinedTerm
    140 N222cbede04554b38b25d0fe248776fca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Body Mass Index
    142 rdf:type schema:DefinedTerm
    143 N29487f9d3c1448ed80fd18650bbca37f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Humans
    145 rdf:type schema:DefinedTerm
    146 N2b3957d82438405bb455987dfab39740 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name Aged, 80 and over
    148 rdf:type schema:DefinedTerm
    149 N314f9df8a6864943baf9782f9097a43b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    150 schema:name Software
    151 rdf:type schema:DefinedTerm
    152 N333e1c520b884f269cb3d976eafdddfc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    153 schema:name Adult
    154 rdf:type schema:DefinedTerm
    155 N3fcb1de8ed984b4c925fab98a24fbec3 schema:name doi
    156 schema:value 10.1007/s00414-013-0958-9
    157 rdf:type schema:PropertyValue
    158 N42d688248eca46be9b03a0e4328fc348 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name Child, Preschool
    160 rdf:type schema:DefinedTerm
    161 N44a0cfe42c2e49a1bf65c476ef53bc25 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    162 schema:name Male
    163 rdf:type schema:DefinedTerm
    164 N488a68520d9044fcb199044761da0a47 rdf:first sg:person.0713201566.43
    165 rdf:rest Nd21a1886ece044e6b46f5e04a03c282b
    166 N52cd373f86aa45e18e1aaa5ab3367a65 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    167 schema:name Switzerland
    168 rdf:type schema:DefinedTerm
    169 N5b967433c3ad4462bf2b636301bf5eb8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    170 schema:name Regression Analysis
    171 rdf:type schema:DefinedTerm
    172 N5d17ee653c1941f2b66d3e94b177e56d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    173 schema:name Cell Phone
    174 rdf:type schema:DefinedTerm
    175 N6656a3254f7a48e081d2a48511471099 schema:issueNumber 4
    176 rdf:type schema:PublicationIssue
    177 N6ea2bc90bef046d3890ba32facfa475e schema:name pubmed_id
    178 schema:value 24414936
    179 rdf:type schema:PropertyValue
    180 N75abe3bf19d94e8f9611209276137978 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    181 schema:name Adolescent
    182 rdf:type schema:DefinedTerm
    183 N7b5f73200fb9420ea8b8d911c196de8c schema:name dimensions_id
    184 schema:value pub.1036293265
    185 rdf:type schema:PropertyValue
    186 N886b9ba01b8743ac9768830fe2e84a4b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    187 schema:name Heart
    188 rdf:type schema:DefinedTerm
    189 N8891591619474c70aebc8dfca1939f1b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    190 schema:name Sex Factors
    191 rdf:type schema:DefinedTerm
    192 N8a5190c2b9f8470384f68acc1902d36f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    193 schema:name Young Adult
    194 rdf:type schema:DefinedTerm
    195 N8c8e8178cb2c408b89e805a590412f3e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    196 schema:name Forensic Pathology
    197 rdf:type schema:DefinedTerm
    198 N92751f589f1b4bfc9488d67ab9309469 schema:name Springer Nature - SN SciGraph project
    199 rdf:type schema:Organization
    200 N92916fd3467a495e87b9ea2c7c8e7b72 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    201 schema:name Infant
    202 rdf:type schema:DefinedTerm
    203 N92e6dece9a5343ccbb4a466a538b2ccd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    204 schema:name Internet
    205 rdf:type schema:DefinedTerm
    206 N9ec77b05b0864a879c3492e9ad704e94 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    207 schema:name Reference Values
    208 rdf:type schema:DefinedTerm
    209 Na54e26eb7c06457eb73eddec5879bc06 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    210 schema:name Middle Aged
    211 rdf:type schema:DefinedTerm
    212 Nb05bcc37997c461fab0c6cf1457feeff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    213 schema:name Female
    214 rdf:type schema:DefinedTerm
    215 Nd21a1886ece044e6b46f5e04a03c282b rdf:first sg:person.01253767506.82
    216 rdf:rest Nf3ae56301a2742bd90a1e3b120e6cd74
    217 Neb6fb81902fd480c804cfc898ba60c55 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    218 schema:name Body Weight
    219 rdf:type schema:DefinedTerm
    220 Nece10ccdc4bd4352ab504a9b659d8663 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    221 schema:name Aged
    222 rdf:type schema:DefinedTerm
    223 Nf014957b182d425f9781adbbd6cc2e3c rdf:first sg:person.01263672630.14
    224 rdf:rest rdf:nil
    225 Nf3ae56301a2742bd90a1e3b120e6cd74 rdf:first sg:person.0652263172.19
    226 rdf:rest Nf014957b182d425f9781adbbd6cc2e3c
    227 Nf487d2f6bc0543ae9748d37c9e499eb2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    228 schema:name Organ Size
    229 rdf:type schema:DefinedTerm
    230 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    231 schema:name Medical and Health Sciences
    232 rdf:type schema:DefinedTerm
    233 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
    234 schema:name Cardiorespiratory Medicine and Haematology
    235 rdf:type schema:DefinedTerm
    236 sg:journal.1013672 schema:issn 0937-9827
    237 1437-1596
    238 schema:name International Journal of Legal Medicine
    239 schema:publisher Springer Nature
    240 rdf:type schema:Periodical
    241 sg:person.01253767506.82 schema:affiliation grid-institutes:grid.482968.9
    242 schema:familyName Faouzi
    243 schema:givenName Mohamed
    244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253767506.82
    245 rdf:type schema:Person
    246 sg:person.01263672630.14 schema:affiliation grid-institutes:grid.411686.c
    247 schema:familyName Michaud
    248 schema:givenName Katarzyna
    249 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263672630.14
    250 rdf:type schema:Person
    251 sg:person.0652263172.19 schema:affiliation grid-institutes:grid.411686.c
    252 schema:familyName Mangin
    253 schema:givenName Patrice
    254 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652263172.19
    255 rdf:type schema:Person
    256 sg:person.0713201566.43 schema:affiliation grid-institutes:grid.411686.c
    257 schema:familyName Vanhaebost
    258 schema:givenName Jessica
    259 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713201566.43
    260 rdf:type schema:Person
    261 sg:pub.10.1007/s004140050271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001555042
    262 https://doi.org/10.1007/s004140050271
    263 rdf:type schema:CreativeWork
    264 grid-institutes:grid.411686.c schema:alternateName University Center of Legal Medicine, Lausanne, Switzerland
    265 schema:name University Center of Legal Medicine, Lausanne, Switzerland
    266 rdf:type schema:Organization
    267 grid-institutes:grid.482968.9 schema:alternateName Institute of Social and Preventive Medicine, Lausanne, Switzerland
    268 schema:name Institute of Social and Preventive Medicine, Lausanne, Switzerland
    269 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...