Monazite behaviour during isothermal decompression in pelitic granulites: a case study from Dinggye, Tibetan Himalaya View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-09-05

AUTHORS

Jia-Min Wang, Fu-Yuan Wu, Daniela Rubatto, Shi-Ran Liu, Jin-Jiang Zhang, Xiao-Chi Liu, Lei Yang

ABSTRACT

Monazite is a key accessory mineral for metamorphic geochronology, but interpretation of its complex chemical and age zoning acquired during high-temperature metamorphism and anatexis remains a challenge. We investigate the petrology, pressure–temperature and timing of metamorphism in pelitic and psammitic granulites that contain monazite from the Greater Himalayan Crystalline Complex (GHC) in Dinggye, southern Tibet. These rocks underwent isothermal decompression from pressure of >10 kbar to ~5 kbar at temperatures of 750–830 °C, and recorded three metamorphic stages at kyanite (M1), sillimanite (M2) and cordierite-spinel grade (M3). Monazite and zircon crystals were dated by microbeam techniques either as grain separates or in thin sections. U–Th–Pb ages are linked to specific conditions of mineral growth on the basis of zoning patterns, trace element signatures, index mineral inclusions (melt inclusions, sillimanite and K-feldspar) in dated domains and textural relationships with co-existing minerals. The results show that inherited domains (500–400 Ma) are preserved in monazite even at granulite-facies conditions. Few monazites or zircon yield ages related to the M1-stage (~30–29 Ma), possibly corresponding to prograde melting by muscovite dehydration. During the early stage of isothermal decompression, inherited or prograde monazites in most samples were dissolved in the melt produced by biotite dehydration-melting. Most monazite grains crystallized from melt toward the end of decompression (M3-stage, 21–19 Ma) and are chemically related to garnet breakdown reactions. Another peak of monazite growth occurred at final melt crystallization (~15 Ma), and these monazite grains are unzoned and are homogeneous in composition. In a regional context, our pressure–temperature–time data constrains peak high-pressure metamorphism within the GHC to ~30–29 Ma in Dinggye Himalaya. Our results are in line with a melt-assisted exhumation of the GHC rocks. More... »

PAGES

81

References to SciGraph publications

  • 1999-02-01. Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: conventional and in-situ U-Pb isotope, cathodoluminescence and microchemical evidence in CONTRIBUTIONS TO MINERALOGY AND PETROLOGY
  • 1999-12. Monazite chemical composition: some implications for monazite geochronology in CONTRIBUTIONS TO MINERALOGY AND PETROLOGY
  • 2014-01-21. High-temperature cooling histories of migmatites from the High Himalayan Crystallines in Sikkim, India: rapid cooling unrelated to exhumation? in CONTRIBUTIONS TO MINERALOGY AND PETROLOGY
  • 2013-11-24. Qinghu zircon: A working reference for microbeam analysis of U-Pb age and Hf and O isotopes in CHINESE SCIENCE BULLETIN (CHINESE VERSION)
  • 1999-01. P -T paths from anatectic pelites in CONTRIBUTIONS TO MINERALOGY AND PETROLOGY
  • 2003-12. SHRIMP U-Pb zircon geochronology of granulites at Rimana (Southern Tibet) in the central segment of Himalayan orogen in CHINESE SCIENCE BULLETIN (CHINESE VERSION)
  • 2006-03-03. Crystallization thermometers for zircon and rutile in CONTRIBUTIONS TO MINERALOGY AND PETROLOGY
  • 1988-06. Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis in CONTRIBUTIONS TO MINERALOGY AND PETROLOGY
  • 2001-12. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation in NATURE
  • 2014-07-25. Post-peak, fluid-mediated modification of granulite facies zircon and monazite in the Trivandrum Block, southern India in CONTRIBUTIONS TO MINERALOGY AND PETROLOGY
  • 2001-01-01. Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia in CONTRIBUTIONS TO MINERALOGY AND PETROLOGY
  • 1990-10. Monazite U-Pb dating of staurolite grade metamorphism in pelitic schists in CONTRIBUTIONS TO MINERALOGY AND PETROLOGY
  • 2012-09-28. Timescales of crustal melting in the Higher Himalayan Crystallines (Sikkim, Eastern Himalaya) inferred from trace element-constrained monazite and zircon chronology in CONTRIBUTIONS TO MINERALOGY AND PETROLOGY
  • 2003-03-29. Prograde destruction and formation of monazite and allanite during contact and regional metamorphism of pelites: petrology and geochronology in CONTRIBUTIONS TO MINERALOGY AND PETROLOGY
  • 2007-05-08. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers in CONTRIBUTIONS TO MINERALOGY AND PETROLOGY
  • 1986-11. Monazite solubility and dissolution kinetics: implications for the thorium and light rare earth chemistry of felsic magmas in CONTRIBUTIONS TO MINERALOGY AND PETROLOGY
  • 2012-11-28. The robustness of the Zr-in-rutile and Ti-in-zircon thermometers during high-temperature metamorphism (Ivrea-Verbano Zone, northern Italy) in CONTRIBUTIONS TO MINERALOGY AND PETROLOGY
  • 2007-01-26. Thermochemistry of monazite-(La) and dissakisite-(La): implications for monazite and allanite stability in metapelites in CONTRIBUTIONS TO MINERALOGY AND PETROLOGY
  • 1971-09. Theoretical phase relations involving cordierite and garnet in the system MgO-FeO-Al2O3-SiO2 in CONTRIBUTIONS TO MINERALOGY AND PETROLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00410-017-1400-y

    DOI

    http://dx.doi.org/10.1007/s00410-017-1400-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1091491408


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0402", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Geochemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0403", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Geology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Geologie Mineralogie und Geophysik, Ruhr-Universit\u00e4t Bochum, 44780, Bochum, Germany", 
              "id": "http://www.grid.ac/institutes/grid.5570.7", 
              "name": [
                "State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029, Beijing, China", 
                "Institut f\u00fcr Geologie Mineralogie und Geophysik, Ruhr-Universit\u00e4t Bochum, 44780, Bochum, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Jia-Min", 
            "id": "sg:person.015714466344.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015714466344.53"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, 100101, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.511503.3", 
              "name": [
                "State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029, Beijing, China", 
                "Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, 100101, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wu", 
            "givenName": "Fu-Yuan", 
            "id": "sg:person.016650223644.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016650223644.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Geological Sciences, University of Bern, 3012, Bern, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5734.5", 
              "name": [
                "Institute of Geological Sciences, University of Bern, 3012, Bern, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rubatto", 
            "givenName": "Daniela", 
            "id": "sg:person.013566175305.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013566175305.82"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Earth and Space Sciences, Peking University, 100871, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.11135.37", 
              "name": [
                "School of Earth and Space Sciences, Peking University, 100871, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Shi-Ran", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Earth and Space Sciences, Peking University, 100871, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.11135.37", 
              "name": [
                "School of Earth and Space Sciences, Peking University, 100871, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Jin-Jiang", 
            "id": "sg:person.014615141767.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014615141767.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.458476.c", 
              "name": [
                "State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Xiao-Chi", 
            "id": "sg:person.010073245157.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010073245157.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.458476.c", 
              "name": [
                "State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yang", 
            "givenName": "Lei", 
            "id": "sg:person.01247740306.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247740306.36"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00410-006-0176-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021338182", 
              "https://doi.org/10.1007/s00410-006-0176-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s004100050466", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021810074", 
              "https://doi.org/10.1007/s004100050466"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00410-006-0068-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033644200", 
              "https://doi.org/10.1007/s00410-006-0068-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/pl00007673", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043897485", 
              "https://doi.org/10.1007/pl00007673"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11434-013-5932-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027740431", 
              "https://doi.org/10.1007/s11434-013-5932-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00410-013-0957-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026510909", 
              "https://doi.org/10.1007/s00410-013-0957-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1360/03wd0080", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065068030", 
              "https://doi.org/10.1360/03wd0080"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00410-012-0834-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003434242", 
              "https://doi.org/10.1007/s00410-012-0834-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00410-012-0812-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038037390", 
              "https://doi.org/10.1007/s00410-012-0812-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00410-003-0446-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053153390", 
              "https://doi.org/10.1007/s00410-003-0446-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00371439", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012865660", 
              "https://doi.org/10.1007/bf00371439"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00410-007-0201-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016165908", 
              "https://doi.org/10.1007/s00410-007-0201-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s004100050478", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009559397", 
              "https://doi.org/10.1007/s004100050478"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s004100050555", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052130098", 
              "https://doi.org/10.1007/s004100050555"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00374063", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042381468", 
              "https://doi.org/10.1007/bf00374063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00302498", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040059003", 
              "https://doi.org/10.1007/bf00302498"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/414738a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011949954", 
              "https://doi.org/10.1038/414738a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00410-014-1044-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032892747", 
              "https://doi.org/10.1007/s00410-014-1044-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00371463", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040607391", 
              "https://doi.org/10.1007/bf00371463"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-09-05", 
        "datePublishedReg": "2017-09-05", 
        "description": "Monazite is a key accessory mineral for metamorphic geochronology, but interpretation of its complex chemical and age zoning acquired during high-temperature metamorphism and anatexis remains a challenge. We investigate the petrology, pressure\u2013temperature and timing of metamorphism in pelitic and psammitic granulites that contain monazite from the Greater Himalayan Crystalline Complex (GHC) in Dinggye, southern Tibet. These rocks underwent isothermal decompression from pressure of >10\u00a0kbar to ~5\u00a0kbar at temperatures of 750\u2013830\u00a0\u00b0C, and recorded three metamorphic stages at kyanite (M1), sillimanite (M2) and cordierite-spinel grade (M3). Monazite and zircon crystals were dated by microbeam techniques either as grain separates or in thin sections. U\u2013Th\u2013Pb ages are linked to specific conditions of mineral growth on the basis of zoning patterns, trace element signatures, index mineral inclusions (melt inclusions, sillimanite and K-feldspar) in dated domains and textural relationships with co-existing minerals. The results show that inherited domains (500\u2013400\u00a0Ma) are preserved in monazite even at granulite-facies conditions. Few monazites or zircon yield ages related to the M1-stage (~30\u201329\u00a0Ma), possibly corresponding to prograde melting by muscovite dehydration. During the early stage of isothermal decompression, inherited or prograde monazites in most samples were dissolved in the melt produced by biotite dehydration-melting. Most monazite grains crystallized from melt toward the end of decompression (M3-stage, 21\u201319\u00a0Ma) and are chemically related to garnet breakdown reactions. Another peak of monazite growth occurred at final melt crystallization (~15\u00a0Ma), and these monazite grains are unzoned and are homogeneous in composition. In a regional context, our pressure\u2013temperature\u2013time data constrains peak high-pressure metamorphism within the GHC to ~30\u201329\u00a0Ma in Dinggye Himalaya. Our results are in line with a melt-assisted exhumation of the GHC rocks.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00410-017-1400-y", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8227415", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7178709", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8234597", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1026106", 
            "issn": [
              "0010-7999", 
              "1432-0967"
            ], 
            "name": "Contributions to Mineralogy and Petrology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "172"
          }
        ], 
        "keywords": [
          "Greater Himalayan Crystalline Complex", 
          "isothermal decompression", 
          "monazite grains", 
          "U\u2013Th\u2013Pb ages", 
          "key accessory minerals", 
          "Most monazite grains", 
          "timing of metamorphism", 
          "trace element signatures", 
          "high-temperature metamorphism", 
          "high-pressure metamorphism", 
          "granulite facies conditions", 
          "co-existing minerals", 
          "garnet breakdown reactions", 
          "metamorphic geochronology", 
          "age zoning", 
          "muscovite dehydration", 
          "element signatures", 
          "yield ages", 
          "monazite growth", 
          "southern Tibet", 
          "pelitic granulites", 
          "accessory minerals", 
          "zircon crystals", 
          "mineral inclusions", 
          "textural relationships", 
          "grain separates", 
          "Tibetan Himalaya", 
          "mineral growth", 
          "metamorphic stages", 
          "monazite", 
          "breakdown reactions", 
          "microbeam techniques", 
          "metamorphism", 
          "most samples", 
          "crystalline complexes", 
          "thin sections", 
          "Dinggye", 
          "granulites", 
          "rocks", 
          "melt crystallization", 
          "Himalaya", 
          "regional context", 
          "minerals", 
          "M1 stage", 
          "end of decompression", 
          "melt", 
          "geochronology", 
          "anatexis", 
          "time data", 
          "exhumation", 
          "petrology", 
          "complex chemical", 
          "kyanite", 
          "sillimanite", 
          "Tibet", 
          "Ma", 
          "zoning", 
          "melting", 
          "grains", 
          "separates", 
          "case study", 
          "signatures", 
          "decompression", 
          "crystallization", 
          "timing", 
          "composition", 
          "interpretation", 
          "conditions", 
          "age", 
          "sections", 
          "early stages", 
          "specific conditions", 
          "temperature", 
          "inclusion", 
          "patterns", 
          "stage", 
          "dehydration", 
          "peak", 
          "chemicals", 
          "data", 
          "samples", 
          "results", 
          "relationship", 
          "end", 
          "complexes", 
          "pressure", 
          "domain", 
          "growth", 
          "basis", 
          "grade", 
          "crystals", 
          "study", 
          "lines", 
          "technique", 
          "context", 
          "behavior", 
          "challenges", 
          "reaction"
        ], 
        "name": "Monazite behaviour during isothermal decompression in pelitic granulites: a case study from Dinggye, Tibetan Himalaya", 
        "pagination": "81", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1091491408"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00410-017-1400-y"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00410-017-1400-y", 
          "https://app.dimensions.ai/details/publication/pub.1091491408"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:35", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_731.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00410-017-1400-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00410-017-1400-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00410-017-1400-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00410-017-1400-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00410-017-1400-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    296 TRIPLES      21 PREDICATES      142 URIs      114 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00410-017-1400-y schema:about anzsrc-for:04
    2 anzsrc-for:0402
    3 anzsrc-for:0403
    4 schema:author N8afe68a8f3ad4536830b6c6d428e998f
    5 schema:citation sg:pub.10.1007/bf00302498
    6 sg:pub.10.1007/bf00371439
    7 sg:pub.10.1007/bf00371463
    8 sg:pub.10.1007/bf00374063
    9 sg:pub.10.1007/pl00007673
    10 sg:pub.10.1007/s00410-003-0446-1
    11 sg:pub.10.1007/s00410-006-0068-5
    12 sg:pub.10.1007/s00410-006-0176-2
    13 sg:pub.10.1007/s00410-007-0201-0
    14 sg:pub.10.1007/s00410-012-0812-y
    15 sg:pub.10.1007/s00410-012-0834-5
    16 sg:pub.10.1007/s00410-013-0957-3
    17 sg:pub.10.1007/s00410-014-1044-0
    18 sg:pub.10.1007/s004100050466
    19 sg:pub.10.1007/s004100050478
    20 sg:pub.10.1007/s004100050555
    21 sg:pub.10.1007/s11434-013-5932-x
    22 sg:pub.10.1038/414738a
    23 sg:pub.10.1360/03wd0080
    24 schema:datePublished 2017-09-05
    25 schema:datePublishedReg 2017-09-05
    26 schema:description Monazite is a key accessory mineral for metamorphic geochronology, but interpretation of its complex chemical and age zoning acquired during high-temperature metamorphism and anatexis remains a challenge. We investigate the petrology, pressure–temperature and timing of metamorphism in pelitic and psammitic granulites that contain monazite from the Greater Himalayan Crystalline Complex (GHC) in Dinggye, southern Tibet. These rocks underwent isothermal decompression from pressure of >10 kbar to ~5 kbar at temperatures of 750–830 °C, and recorded three metamorphic stages at kyanite (M1), sillimanite (M2) and cordierite-spinel grade (M3). Monazite and zircon crystals were dated by microbeam techniques either as grain separates or in thin sections. U–Th–Pb ages are linked to specific conditions of mineral growth on the basis of zoning patterns, trace element signatures, index mineral inclusions (melt inclusions, sillimanite and K-feldspar) in dated domains and textural relationships with co-existing minerals. The results show that inherited domains (500–400 Ma) are preserved in monazite even at granulite-facies conditions. Few monazites or zircon yield ages related to the M1-stage (~30–29 Ma), possibly corresponding to prograde melting by muscovite dehydration. During the early stage of isothermal decompression, inherited or prograde monazites in most samples were dissolved in the melt produced by biotite dehydration-melting. Most monazite grains crystallized from melt toward the end of decompression (M3-stage, 21–19 Ma) and are chemically related to garnet breakdown reactions. Another peak of monazite growth occurred at final melt crystallization (~15 Ma), and these monazite grains are unzoned and are homogeneous in composition. In a regional context, our pressure–temperature–time data constrains peak high-pressure metamorphism within the GHC to ~30–29 Ma in Dinggye Himalaya. Our results are in line with a melt-assisted exhumation of the GHC rocks.
    27 schema:genre article
    28 schema:isAccessibleForFree true
    29 schema:isPartOf N49e13cbfb0184b0e9b12fb3a2d8b3a31
    30 Na3c06ef586994900bc51206a1cb554bf
    31 sg:journal.1026106
    32 schema:keywords Dinggye
    33 Greater Himalayan Crystalline Complex
    34 Himalaya
    35 M1 stage
    36 Ma
    37 Most monazite grains
    38 Tibet
    39 Tibetan Himalaya
    40 U–Th–Pb ages
    41 accessory minerals
    42 age
    43 age zoning
    44 anatexis
    45 basis
    46 behavior
    47 breakdown reactions
    48 case study
    49 challenges
    50 chemicals
    51 co-existing minerals
    52 complex chemical
    53 complexes
    54 composition
    55 conditions
    56 context
    57 crystalline complexes
    58 crystallization
    59 crystals
    60 data
    61 decompression
    62 dehydration
    63 domain
    64 early stages
    65 element signatures
    66 end
    67 end of decompression
    68 exhumation
    69 garnet breakdown reactions
    70 geochronology
    71 grade
    72 grain separates
    73 grains
    74 granulite facies conditions
    75 granulites
    76 growth
    77 high-pressure metamorphism
    78 high-temperature metamorphism
    79 inclusion
    80 interpretation
    81 isothermal decompression
    82 key accessory minerals
    83 kyanite
    84 lines
    85 melt
    86 melt crystallization
    87 melting
    88 metamorphic geochronology
    89 metamorphic stages
    90 metamorphism
    91 microbeam techniques
    92 mineral growth
    93 mineral inclusions
    94 minerals
    95 monazite
    96 monazite grains
    97 monazite growth
    98 most samples
    99 muscovite dehydration
    100 patterns
    101 peak
    102 pelitic granulites
    103 petrology
    104 pressure
    105 reaction
    106 regional context
    107 relationship
    108 results
    109 rocks
    110 samples
    111 sections
    112 separates
    113 signatures
    114 sillimanite
    115 southern Tibet
    116 specific conditions
    117 stage
    118 study
    119 technique
    120 temperature
    121 textural relationships
    122 thin sections
    123 time data
    124 timing
    125 timing of metamorphism
    126 trace element signatures
    127 yield ages
    128 zircon crystals
    129 zoning
    130 schema:name Monazite behaviour during isothermal decompression in pelitic granulites: a case study from Dinggye, Tibetan Himalaya
    131 schema:pagination 81
    132 schema:productId N2ec2aafc4f78435c9a48647aee6b0871
    133 Nab38d90d0c3749c9b69b4035da18bfd8
    134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091491408
    135 https://doi.org/10.1007/s00410-017-1400-y
    136 schema:sdDatePublished 2022-12-01T06:35
    137 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    138 schema:sdPublisher Ne2615221393b438cb3e29c97f09947a2
    139 schema:url https://doi.org/10.1007/s00410-017-1400-y
    140 sgo:license sg:explorer/license/
    141 sgo:sdDataset articles
    142 rdf:type schema:ScholarlyArticle
    143 N2ec2aafc4f78435c9a48647aee6b0871 schema:name doi
    144 schema:value 10.1007/s00410-017-1400-y
    145 rdf:type schema:PropertyValue
    146 N39c57e2f2f9944a39f3627af0e720e0d rdf:first sg:person.013566175305.82
    147 rdf:rest N54bb50a8551a41e39313f6afb63e5f70
    148 N427b06a6aad842b392f0266cc876719b rdf:first sg:person.016650223644.54
    149 rdf:rest N39c57e2f2f9944a39f3627af0e720e0d
    150 N49e13cbfb0184b0e9b12fb3a2d8b3a31 schema:volumeNumber 172
    151 rdf:type schema:PublicationVolume
    152 N5466ae2455e44ee5ac3559566f62e4f4 rdf:first sg:person.014615141767.10
    153 rdf:rest N8ea90a44603c4aa7a364b2725aabd574
    154 N54bb50a8551a41e39313f6afb63e5f70 rdf:first Nedac28d0ee0b4296b25704c0d2aacf90
    155 rdf:rest N5466ae2455e44ee5ac3559566f62e4f4
    156 N809c909562634a3fb86b89a430c3fe75 rdf:first sg:person.01247740306.36
    157 rdf:rest rdf:nil
    158 N8afe68a8f3ad4536830b6c6d428e998f rdf:first sg:person.015714466344.53
    159 rdf:rest N427b06a6aad842b392f0266cc876719b
    160 N8ea90a44603c4aa7a364b2725aabd574 rdf:first sg:person.010073245157.43
    161 rdf:rest N809c909562634a3fb86b89a430c3fe75
    162 Na3c06ef586994900bc51206a1cb554bf schema:issueNumber 10
    163 rdf:type schema:PublicationIssue
    164 Nab38d90d0c3749c9b69b4035da18bfd8 schema:name dimensions_id
    165 schema:value pub.1091491408
    166 rdf:type schema:PropertyValue
    167 Ne2615221393b438cb3e29c97f09947a2 schema:name Springer Nature - SN SciGraph project
    168 rdf:type schema:Organization
    169 Nedac28d0ee0b4296b25704c0d2aacf90 schema:affiliation grid-institutes:grid.11135.37
    170 schema:familyName Liu
    171 schema:givenName Shi-Ran
    172 rdf:type schema:Person
    173 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    174 schema:name Earth Sciences
    175 rdf:type schema:DefinedTerm
    176 anzsrc-for:0402 schema:inDefinedTermSet anzsrc-for:
    177 schema:name Geochemistry
    178 rdf:type schema:DefinedTerm
    179 anzsrc-for:0403 schema:inDefinedTermSet anzsrc-for:
    180 schema:name Geology
    181 rdf:type schema:DefinedTerm
    182 sg:grant.7178709 http://pending.schema.org/fundedItem sg:pub.10.1007/s00410-017-1400-y
    183 rdf:type schema:MonetaryGrant
    184 sg:grant.8227415 http://pending.schema.org/fundedItem sg:pub.10.1007/s00410-017-1400-y
    185 rdf:type schema:MonetaryGrant
    186 sg:grant.8234597 http://pending.schema.org/fundedItem sg:pub.10.1007/s00410-017-1400-y
    187 rdf:type schema:MonetaryGrant
    188 sg:journal.1026106 schema:issn 0010-7999
    189 1432-0967
    190 schema:name Contributions to Mineralogy and Petrology
    191 schema:publisher Springer Nature
    192 rdf:type schema:Periodical
    193 sg:person.010073245157.43 schema:affiliation grid-institutes:grid.458476.c
    194 schema:familyName Liu
    195 schema:givenName Xiao-Chi
    196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010073245157.43
    197 rdf:type schema:Person
    198 sg:person.01247740306.36 schema:affiliation grid-institutes:grid.458476.c
    199 schema:familyName Yang
    200 schema:givenName Lei
    201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247740306.36
    202 rdf:type schema:Person
    203 sg:person.013566175305.82 schema:affiliation grid-institutes:grid.5734.5
    204 schema:familyName Rubatto
    205 schema:givenName Daniela
    206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013566175305.82
    207 rdf:type schema:Person
    208 sg:person.014615141767.10 schema:affiliation grid-institutes:grid.11135.37
    209 schema:familyName Zhang
    210 schema:givenName Jin-Jiang
    211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014615141767.10
    212 rdf:type schema:Person
    213 sg:person.015714466344.53 schema:affiliation grid-institutes:grid.5570.7
    214 schema:familyName Wang
    215 schema:givenName Jia-Min
    216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015714466344.53
    217 rdf:type schema:Person
    218 sg:person.016650223644.54 schema:affiliation grid-institutes:grid.511503.3
    219 schema:familyName Wu
    220 schema:givenName Fu-Yuan
    221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016650223644.54
    222 rdf:type schema:Person
    223 sg:pub.10.1007/bf00302498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040059003
    224 https://doi.org/10.1007/bf00302498
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1007/bf00371439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012865660
    227 https://doi.org/10.1007/bf00371439
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1007/bf00371463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040607391
    230 https://doi.org/10.1007/bf00371463
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1007/bf00374063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042381468
    233 https://doi.org/10.1007/bf00374063
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1007/pl00007673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043897485
    236 https://doi.org/10.1007/pl00007673
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1007/s00410-003-0446-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053153390
    239 https://doi.org/10.1007/s00410-003-0446-1
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1007/s00410-006-0068-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033644200
    242 https://doi.org/10.1007/s00410-006-0068-5
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1007/s00410-006-0176-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021338182
    245 https://doi.org/10.1007/s00410-006-0176-2
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1007/s00410-007-0201-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016165908
    248 https://doi.org/10.1007/s00410-007-0201-0
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1007/s00410-012-0812-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1038037390
    251 https://doi.org/10.1007/s00410-012-0812-y
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1007/s00410-012-0834-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003434242
    254 https://doi.org/10.1007/s00410-012-0834-5
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1007/s00410-013-0957-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026510909
    257 https://doi.org/10.1007/s00410-013-0957-3
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1007/s00410-014-1044-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032892747
    260 https://doi.org/10.1007/s00410-014-1044-0
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1007/s004100050466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021810074
    263 https://doi.org/10.1007/s004100050466
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1007/s004100050478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009559397
    266 https://doi.org/10.1007/s004100050478
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1007/s004100050555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052130098
    269 https://doi.org/10.1007/s004100050555
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1007/s11434-013-5932-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027740431
    272 https://doi.org/10.1007/s11434-013-5932-x
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1038/414738a schema:sameAs https://app.dimensions.ai/details/publication/pub.1011949954
    275 https://doi.org/10.1038/414738a
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1360/03wd0080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065068030
    278 https://doi.org/10.1360/03wd0080
    279 rdf:type schema:CreativeWork
    280 grid-institutes:grid.11135.37 schema:alternateName School of Earth and Space Sciences, Peking University, 100871, Beijing, China
    281 schema:name School of Earth and Space Sciences, Peking University, 100871, Beijing, China
    282 rdf:type schema:Organization
    283 grid-institutes:grid.458476.c schema:alternateName State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029, Beijing, China
    284 schema:name State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029, Beijing, China
    285 rdf:type schema:Organization
    286 grid-institutes:grid.511503.3 schema:alternateName Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, 100101, Beijing, China
    287 schema:name Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, 100101, Beijing, China
    288 State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029, Beijing, China
    289 rdf:type schema:Organization
    290 grid-institutes:grid.5570.7 schema:alternateName Institut für Geologie Mineralogie und Geophysik, Ruhr-Universität Bochum, 44780, Bochum, Germany
    291 schema:name Institut für Geologie Mineralogie und Geophysik, Ruhr-Universität Bochum, 44780, Bochum, Germany
    292 State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029, Beijing, China
    293 rdf:type schema:Organization
    294 grid-institutes:grid.5734.5 schema:alternateName Institute of Geological Sciences, University of Bern, 3012, Bern, Switzerland
    295 schema:name Institute of Geological Sciences, University of Bern, 3012, Bern, Switzerland
    296 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...