Monazite trumps zircon: applying SHRIMP U–Pb geochronology to systematically evaluate emplacement ages of leucocratic, low-temperature granites in a complex Precambrian ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-07-07

AUTHORS

Agnieszka M. Piechocka, Courtney J. Gregory, Jian-Wei Zi, Stephen Sheppard, Michael T. D. Wingate, Birger Rasmussen

ABSTRACT

Although zircon is the most widely used geochronometer to determine the crystallisation ages of granites, it can be unreliable for low-temperature melts because they may not crystallise new zircon. For leucocratic granites U–Pb zircon dates, therefore, may reflect the ages of the source rocks rather than the igneous crystallisation age. In the Proterozoic Capricorn Orogen of Western Australia, leucocratic granites are associated with several pulses of intracontinental magmatism spanning ~800 million years. In several instances, SHRIMP U–Pb zircon dating of these leucocratic granites either yielded ages that were inconclusive (e.g., multiple concordant ages) or incompatible with other geochronological data. To overcome this we used SHRIMP U–Th–Pb monazite geochronology to obtain igneous crystallisation ages that are consistent with the geological and geochronological framework of the orogen. The U–Th–Pb monazite geochronology has resolved the time interval over which two granitic supersuites were emplaced; a Paleoproterozoic supersuite thought to span ~80 million years was emplaced in less than half that time (1688–1659 Ma) and a small Meso- to Neoproterozoic supersuite considered to have been intruded over ~70 million years was instead assembled over ~130 million years and outlasted associated regional metamorphism by ~100 million years. Both findings have consequences for the duration of associated orogenic events and any estimates for magma generation rates. The monazite geochronology has contributed to a more reliable tectonic history for a complex, long-lived orogen. Our results emphasise the benefit of monazite as a geochronometer for leucocratic granites derived by low-temperature crustal melting and are relevant to other orogens worldwide. More... »

PAGES

63

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00410-017-1386-5

DOI

http://dx.doi.org/10.1007/s00410-017-1386-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090380003


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Applied Geology, Curtin University, Kent Street, 6102, Bentley, WA, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1032.0", 
          "name": [
            "Department of Applied Geology, Curtin University, Kent Street, 6102, Bentley, WA, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Piechocka", 
        "givenName": "Agnieszka M.", 
        "id": "sg:person.010272101516.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010272101516.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Applied Geology, Curtin University, Kent Street, 6102, Bentley, WA, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1032.0", 
          "name": [
            "Department of Applied Geology, Curtin University, Kent Street, 6102, Bentley, WA, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gregory", 
        "givenName": "Courtney J.", 
        "id": "sg:person.01120724573.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120724573.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Applied Geology, Curtin University, Kent Street, 6102, Bentley, WA, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1032.0", 
          "name": [
            "Department of Applied Geology, Curtin University, Kent Street, 6102, Bentley, WA, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zi", 
        "givenName": "Jian-Wei", 
        "id": "sg:person.015217170067.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015217170067.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Applied Geology, Curtin University, Kent Street, 6102, Bentley, WA, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1032.0", 
          "name": [
            "Department of Applied Geology, Curtin University, Kent Street, 6102, Bentley, WA, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sheppard", 
        "givenName": "Stephen", 
        "id": "sg:person.011220424323.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011220424323.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Geological Survey of Western Australia, 100 Plain Street, 6004, East Perth, WA, Australia", 
          "id": "http://www.grid.ac/institutes/grid.466784.f", 
          "name": [
            "Geological Survey of Western Australia, 100 Plain Street, 6004, East Perth, WA, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wingate", 
        "givenName": "Michael T. D.", 
        "id": "sg:person.01265467662.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265467662.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Applied Geology, Curtin University, Kent Street, 6102, Bentley, WA, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1032.0", 
          "name": [
            "Department of Applied Geology, Curtin University, Kent Street, 6102, Bentley, WA, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rasmussen", 
        "givenName": "Birger", 
        "id": "sg:person.0670247573.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670247573.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00410-010-0556-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015739047", 
          "https://doi.org/10.1007/s00410-010-0556-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00371439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012865660", 
          "https://doi.org/10.1007/bf00371439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/333760a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026470846", 
          "https://doi.org/10.1038/333760a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00531-007-0297-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048201231", 
          "https://doi.org/10.1007/s00531-007-0297-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-07-07", 
    "datePublishedReg": "2017-07-07", 
    "description": "Although zircon is the most widely used geochronometer to determine the crystallisation ages of granites, it can be unreliable for low-temperature melts because they may not crystallise new zircon. For leucocratic granites U\u2013Pb zircon dates, therefore, may reflect the ages of the source rocks rather than the igneous crystallisation age. In the Proterozoic Capricorn Orogen of Western Australia, leucocratic granites are associated with several pulses of intracontinental magmatism spanning ~800 million years. In several instances, SHRIMP U\u2013Pb zircon dating of these leucocratic granites either yielded ages that were inconclusive (e.g., multiple concordant ages) or incompatible with other geochronological data. To overcome this we used SHRIMP U\u2013Th\u2013Pb monazite geochronology to obtain igneous crystallisation ages that are consistent with the geological and geochronological framework of the orogen. The U\u2013Th\u2013Pb monazite geochronology has resolved the time interval over which two granitic supersuites were emplaced; a Paleoproterozoic supersuite thought to span ~80 million years was emplaced in less than half that time (1688\u20131659\u00a0Ma) and a small Meso- to Neoproterozoic supersuite considered to have been intruded over ~70 million years was instead assembled over ~130 million years and outlasted associated regional metamorphism by ~100 million years. Both findings have consequences for the duration of associated orogenic events and any estimates for magma generation rates. The monazite geochronology has contributed to a more reliable tectonic history for a complex, long-lived orogen. Our results emphasise the benefit of monazite as a geochronometer for leucocratic granites derived by low-temperature crustal melting and are relevant to other orogens worldwide.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00410-017-1386-5", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3930612", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1026106", 
        "issn": [
          "0010-7999", 
          "1432-0967"
        ], 
        "name": "Contributions to Mineralogy and Petrology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "172"
      }
    ], 
    "keywords": [
      "U\u2013Th\u2013Pb monazite geochronology", 
      "igneous crystallisation ages", 
      "crystallisation age", 
      "monazite geochronology", 
      "leucocratic granites", 
      "SHRIMP U\u2013Pb zircon", 
      "SHRIMP U\u2013Pb geochronology", 
      "U\u2013Pb zircon dates", 
      "Proterozoic Capricorn Orogen", 
      "U\u2013Pb zircon", 
      "U\u2013Pb geochronology", 
      "low-temperature granites", 
      "low-temperature melts", 
      "new zircon", 
      "zircon dates", 
      "Capricorn Orogen", 
      "crustal melting", 
      "Precambrian orogens", 
      "intracontinental magmatism", 
      "geochronological data", 
      "geochronological framework", 
      "orogenic events", 
      "tectonic history", 
      "emplacement age", 
      "regional metamorphism", 
      "orogen", 
      "geochronology", 
      "granite", 
      "Supersuite", 
      "zircon", 
      "Western Australia", 
      "small meso", 
      "geochronometer", 
      "magmatism", 
      "metamorphism", 
      "monazite", 
      "time interval", 
      "melting", 
      "melt", 
      "Australia", 
      "meso", 
      "events", 
      "estimates", 
      "age", 
      "years", 
      "source", 
      "interval", 
      "history", 
      "date", 
      "data", 
      "generation rate", 
      "pulses", 
      "consequences", 
      "time", 
      "duration", 
      "rate", 
      "results", 
      "framework", 
      "instances", 
      "findings", 
      "benefits", 
      "Trump"
    ], 
    "name": "Monazite trumps zircon: applying SHRIMP U\u2013Pb geochronology to systematically evaluate emplacement ages of leucocratic, low-temperature granites in a complex Precambrian orogen", 
    "pagination": "63", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090380003"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00410-017-1386-5"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00410-017-1386-5", 
      "https://app.dimensions.ai/details/publication/pub.1090380003"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_747.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00410-017-1386-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00410-017-1386-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00410-017-1386-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00410-017-1386-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00410-017-1386-5'


 

This table displays all metadata directly associated to this object as RDF triples.

175 TRIPLES      21 PREDICATES      90 URIs      78 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00410-017-1386-5 schema:about anzsrc-for:04
2 anzsrc-for:0403
3 schema:author N2e5bad3a0572486cabda98f09a09bda0
4 schema:citation sg:pub.10.1007/bf00371439
5 sg:pub.10.1007/s00410-010-0556-5
6 sg:pub.10.1007/s00531-007-0297-5
7 sg:pub.10.1038/333760a0
8 schema:datePublished 2017-07-07
9 schema:datePublishedReg 2017-07-07
10 schema:description Although zircon is the most widely used geochronometer to determine the crystallisation ages of granites, it can be unreliable for low-temperature melts because they may not crystallise new zircon. For leucocratic granites U–Pb zircon dates, therefore, may reflect the ages of the source rocks rather than the igneous crystallisation age. In the Proterozoic Capricorn Orogen of Western Australia, leucocratic granites are associated with several pulses of intracontinental magmatism spanning ~800 million years. In several instances, SHRIMP U–Pb zircon dating of these leucocratic granites either yielded ages that were inconclusive (e.g., multiple concordant ages) or incompatible with other geochronological data. To overcome this we used SHRIMP U–Th–Pb monazite geochronology to obtain igneous crystallisation ages that are consistent with the geological and geochronological framework of the orogen. The U–Th–Pb monazite geochronology has resolved the time interval over which two granitic supersuites were emplaced; a Paleoproterozoic supersuite thought to span ~80 million years was emplaced in less than half that time (1688–1659 Ma) and a small Meso- to Neoproterozoic supersuite considered to have been intruded over ~70 million years was instead assembled over ~130 million years and outlasted associated regional metamorphism by ~100 million years. Both findings have consequences for the duration of associated orogenic events and any estimates for magma generation rates. The monazite geochronology has contributed to a more reliable tectonic history for a complex, long-lived orogen. Our results emphasise the benefit of monazite as a geochronometer for leucocratic granites derived by low-temperature crustal melting and are relevant to other orogens worldwide.
11 schema:genre article
12 schema:isAccessibleForFree true
13 schema:isPartOf N60e9c6ee28704cadbc15fa71f1327f39
14 N98b37615d0ec44fe865e7d0231e5b341
15 sg:journal.1026106
16 schema:keywords Australia
17 Capricorn Orogen
18 Precambrian orogens
19 Proterozoic Capricorn Orogen
20 SHRIMP U–Pb geochronology
21 SHRIMP U–Pb zircon
22 Supersuite
23 Trump
24 U–Pb geochronology
25 U–Pb zircon
26 U–Pb zircon dates
27 U–Th–Pb monazite geochronology
28 Western Australia
29 age
30 benefits
31 consequences
32 crustal melting
33 crystallisation age
34 data
35 date
36 duration
37 emplacement age
38 estimates
39 events
40 findings
41 framework
42 generation rate
43 geochronological data
44 geochronological framework
45 geochronology
46 geochronometer
47 granite
48 history
49 igneous crystallisation ages
50 instances
51 interval
52 intracontinental magmatism
53 leucocratic granites
54 low-temperature granites
55 low-temperature melts
56 magmatism
57 melt
58 melting
59 meso
60 metamorphism
61 monazite
62 monazite geochronology
63 new zircon
64 orogen
65 orogenic events
66 pulses
67 rate
68 regional metamorphism
69 results
70 small meso
71 source
72 tectonic history
73 time
74 time interval
75 years
76 zircon
77 zircon dates
78 schema:name Monazite trumps zircon: applying SHRIMP U–Pb geochronology to systematically evaluate emplacement ages of leucocratic, low-temperature granites in a complex Precambrian orogen
79 schema:pagination 63
80 schema:productId Na27759953c944ec3bfe851f2141414b8
81 Na35f54a214244101a03690a296b3b326
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090380003
83 https://doi.org/10.1007/s00410-017-1386-5
84 schema:sdDatePublished 2022-12-01T06:36
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher Nb467ac22a0e948e4a892deba66f09a50
87 schema:url https://doi.org/10.1007/s00410-017-1386-5
88 sgo:license sg:explorer/license/
89 sgo:sdDataset articles
90 rdf:type schema:ScholarlyArticle
91 N2e5bad3a0572486cabda98f09a09bda0 rdf:first sg:person.010272101516.52
92 rdf:rest N500babcea1c54d3485ca1fe28754b498
93 N307883e5f7d546c4957d8edb69b93661 rdf:first sg:person.011220424323.27
94 rdf:rest Na9a2f8d19c1049e1853608af345836ba
95 N500babcea1c54d3485ca1fe28754b498 rdf:first sg:person.01120724573.35
96 rdf:rest Na984e0d6291b4907b520da65b3f00010
97 N5559d08193814a759f663ca9ca8f5609 rdf:first sg:person.0670247573.03
98 rdf:rest rdf:nil
99 N60e9c6ee28704cadbc15fa71f1327f39 schema:volumeNumber 172
100 rdf:type schema:PublicationVolume
101 N98b37615d0ec44fe865e7d0231e5b341 schema:issueNumber 8
102 rdf:type schema:PublicationIssue
103 Na27759953c944ec3bfe851f2141414b8 schema:name doi
104 schema:value 10.1007/s00410-017-1386-5
105 rdf:type schema:PropertyValue
106 Na35f54a214244101a03690a296b3b326 schema:name dimensions_id
107 schema:value pub.1090380003
108 rdf:type schema:PropertyValue
109 Na984e0d6291b4907b520da65b3f00010 rdf:first sg:person.015217170067.42
110 rdf:rest N307883e5f7d546c4957d8edb69b93661
111 Na9a2f8d19c1049e1853608af345836ba rdf:first sg:person.01265467662.98
112 rdf:rest N5559d08193814a759f663ca9ca8f5609
113 Nb467ac22a0e948e4a892deba66f09a50 schema:name Springer Nature - SN SciGraph project
114 rdf:type schema:Organization
115 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
116 schema:name Earth Sciences
117 rdf:type schema:DefinedTerm
118 anzsrc-for:0403 schema:inDefinedTermSet anzsrc-for:
119 schema:name Geology
120 rdf:type schema:DefinedTerm
121 sg:grant.3930612 http://pending.schema.org/fundedItem sg:pub.10.1007/s00410-017-1386-5
122 rdf:type schema:MonetaryGrant
123 sg:journal.1026106 schema:issn 0010-7999
124 1432-0967
125 schema:name Contributions to Mineralogy and Petrology
126 schema:publisher Springer Nature
127 rdf:type schema:Periodical
128 sg:person.010272101516.52 schema:affiliation grid-institutes:grid.1032.0
129 schema:familyName Piechocka
130 schema:givenName Agnieszka M.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010272101516.52
132 rdf:type schema:Person
133 sg:person.01120724573.35 schema:affiliation grid-institutes:grid.1032.0
134 schema:familyName Gregory
135 schema:givenName Courtney J.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120724573.35
137 rdf:type schema:Person
138 sg:person.011220424323.27 schema:affiliation grid-institutes:grid.1032.0
139 schema:familyName Sheppard
140 schema:givenName Stephen
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011220424323.27
142 rdf:type schema:Person
143 sg:person.01265467662.98 schema:affiliation grid-institutes:grid.466784.f
144 schema:familyName Wingate
145 schema:givenName Michael T. D.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265467662.98
147 rdf:type schema:Person
148 sg:person.015217170067.42 schema:affiliation grid-institutes:grid.1032.0
149 schema:familyName Zi
150 schema:givenName Jian-Wei
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015217170067.42
152 rdf:type schema:Person
153 sg:person.0670247573.03 schema:affiliation grid-institutes:grid.1032.0
154 schema:familyName Rasmussen
155 schema:givenName Birger
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670247573.03
157 rdf:type schema:Person
158 sg:pub.10.1007/bf00371439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012865660
159 https://doi.org/10.1007/bf00371439
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/s00410-010-0556-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015739047
162 https://doi.org/10.1007/s00410-010-0556-5
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/s00531-007-0297-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048201231
165 https://doi.org/10.1007/s00531-007-0297-5
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/333760a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026470846
168 https://doi.org/10.1038/333760a0
169 rdf:type schema:CreativeWork
170 grid-institutes:grid.1032.0 schema:alternateName Department of Applied Geology, Curtin University, Kent Street, 6102, Bentley, WA, Australia
171 schema:name Department of Applied Geology, Curtin University, Kent Street, 6102, Bentley, WA, Australia
172 rdf:type schema:Organization
173 grid-institutes:grid.466784.f schema:alternateName Geological Survey of Western Australia, 100 Plain Street, 6004, East Perth, WA, Australia
174 schema:name Geological Survey of Western Australia, 100 Plain Street, 6004, East Perth, WA, Australia
175 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...