An experimental study of Fe2+-MgKD between orthopyroxene and rhyolite: a strong dependence on H2O in the melt View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-05-23

AUTHORS

Laura E. Waters, Rebecca A. Lange

ABSTRACT

The effect of temperature, pressure, and dissolved H2O in the melt on the Fe2+–Mg exchange coefficient between orthopyroxene and rhyolite melt was investigated with a series of H2O fluid-saturated phase-equilibrium experiments. Experiments were conducted in a rapid-quench cold-seal pressure vessel over a temperature and pressure range of 785–850 °C and 80–185 MPa, respectively. Oxygen fugacity was buffered with the solid Ni–NiO assemblage in a double-capsule assembly. These experiments, when combined with H2O-undersaturated experiments in the literature, show that Fe2+-MgKD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ ^{{{\text{Fe}}^{2 + } {-}{\text{Mg}}}} K_{\text{D}} $$\end{document} between orthopyroxene and rhyolite liquid increases strongly (from 0.23 to 0.54) as a function of dissolved water in the melt (from 2.7 to 5.6 wt%). There is no detectable effect of temperature or pressure over an interval of 65 °C and 100 MPa, respectively, on the Fe2+–Mg exchange coefficient values. The data show that Fe-rich orthopyroxene is favored at high water contents, whereas Mg-rich orthopyroxene crystallizes at low water contents. It is proposed that the effect of dissolved water in the melt on the composition of orthopyroxene is analogous to its effect on the composition of plagioclase. In the latter case, dissolved hydroxyl groups preferentially complex with Na+ relative to Ca2+, which reduces the activity of the albite component, leading to a more anorthite-rich (calcic) plagioclase. Similarly, it is proposed that dissolved hydroxyl groups preferentially complex with Mg2+ relative to Fe2+, thus lowering the activity of the enstatite component, leading to a more Fe-rich orthopyroxene at high water contents in the melt. The experimental results presented in this study show that reversely zoned pyroxene (i.e., Mg-rich rims) in silicic magmas may be a result of H2O degassing and not necessarily the result of mixing with a more mafic magma. More... »

PAGES

42

References to SciGraph publications

  • 1998-02. The hydrous phase equilibria (to 3 kbar) of an andesite and basaltic andesite from western Mexico: constraints on water content and conditions of phenocryst growth in CONTRIBUTIONS TO MINERALOGY AND PETROLOGY
  • 1995-11. Crystallization of microlites during magma ascent: the fluid mechanics of 1980–1986 eruptions at Mount St Helens in BULLETIN OF VOLCANOLOGY
  • 1998-05. The influence of water on melting of mantle peridotite in CONTRIBUTIONS TO MINERALOGY AND PETROLOGY
  • 1995-03. Experimental constraints on pre-eruptive water contents and changing magma storage prior to explosive eruptions of Mount St Helens volcano in BULLETIN OF VOLCANOLOGY
  • 2010-12-25. Phenocryst complexity in andesites and dacites from the Tequila volcanic field, Mexico: resolving the effects of degassing vs. magma mixing in CONTRIBUTIONS TO MINERALOGY AND PETROLOGY
  • 2013-08-22. Crystal-poor, multiply saturated rhyolites (obsidians) from the Cascade and Mexican arcs: evidence of degassing-induced crystallization of phenocrysts in CONTRIBUTIONS TO MINERALOGY AND PETROLOGY
  • 1991-07. The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states in CONTRIBUTIONS TO MINERALOGY AND PETROLOGY
  • 2003-06-21. Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends in CONTRIBUTIONS TO MINERALOGY AND PETROLOGY
  • 1993-02. Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism in CONTRIBUTIONS TO MINERALOGY AND PETROLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00410-017-1358-9

    DOI

    http://dx.doi.org/10.1007/s00410-017-1358-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1085561155


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0403", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Geology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mineral Science, National Museum of Natural History, Smithsonian Institution, 10 St and Constitution Ave., 20560, Washington, DC, NW, USA", 
              "id": "http://www.grid.ac/institutes/grid.453560.1", 
              "name": [
                "Department of Mineral Science, National Museum of Natural History, Smithsonian Institution, 10 St and Constitution Ave., 20560, Washington, DC, NW, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Waters", 
            "givenName": "Laura E.", 
            "id": "sg:person.013033020721.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033020721.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Earth and Environmental Sciences, University of Michigan, 48109, Ann Arbor, MI, USA", 
              "id": "http://www.grid.ac/institutes/grid.214458.e", 
              "name": [
                "Department of Earth and Environmental Sciences, University of Michigan, 48109, Ann Arbor, MI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lange", 
            "givenName": "Rebecca A.", 
            "id": "sg:person.015531700513.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015531700513.03"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00283225", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033893886", 
              "https://doi.org/10.1007/bf00283225"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00298703", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007798950", 
              "https://doi.org/10.1007/bf00298703"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s004100050367", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039287452", 
              "https://doi.org/10.1007/s004100050367"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00410-010-0604-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052091485", 
              "https://doi.org/10.1007/s00410-010-0604-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00301293", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015594089", 
              "https://doi.org/10.1007/bf00301293"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s004100050396", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047361115", 
              "https://doi.org/10.1007/s004100050396"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00307328", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033779883", 
              "https://doi.org/10.1007/bf00307328"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00410-003-0448-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032758744", 
              "https://doi.org/10.1007/s00410-003-0448-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00410-013-0919-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011300388", 
              "https://doi.org/10.1007/s00410-013-0919-9"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-05-23", 
        "datePublishedReg": "2017-05-23", 
        "description": "The effect of temperature, pressure, and dissolved H2O in the melt on the Fe2+\u2013Mg exchange coefficient between orthopyroxene and rhyolite melt was investigated with a series of H2O fluid-saturated phase-equilibrium experiments. Experiments were conducted in a rapid-quench cold-seal pressure vessel over a temperature and pressure range of 785\u2013850\u00a0\u00b0C and 80\u2013185\u00a0MPa, respectively. Oxygen fugacity was buffered with the solid Ni\u2013NiO assemblage in a double-capsule assembly. These experiments, when combined with H2O-undersaturated experiments in the literature, show that Fe2+-MgKD\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ ^{{{\\text{Fe}}^{2 + } {-}{\\text{Mg}}}} K_{\\text{D}} $$\\end{document} between orthopyroxene and rhyolite liquid increases strongly (from 0.23 to 0.54) as a function of dissolved water in the melt (from 2.7 to 5.6\u00a0wt%). There is no detectable effect of temperature or pressure over an interval of 65\u00a0\u00b0C and 100\u00a0MPa, respectively, on the Fe2+\u2013Mg exchange coefficient values. The data show that Fe-rich orthopyroxene is favored at high water contents, whereas Mg-rich orthopyroxene crystallizes at low water contents. It is proposed that the effect of dissolved water in the melt on the composition of orthopyroxene is analogous to its effect on the composition of plagioclase. In the latter case, dissolved hydroxyl groups preferentially complex with Na+ relative to Ca2+, which reduces the activity of the albite component, leading to a more anorthite-rich (calcic) plagioclase. Similarly, it is proposed that dissolved hydroxyl groups preferentially complex with Mg2+ relative to Fe2+, thus lowering the activity of the enstatite component, leading to a more Fe-rich orthopyroxene at high water contents in the melt. The experimental results presented in this study show that reversely zoned pyroxene (i.e., Mg-rich rims) in silicic magmas may be a result of H2O degassing and not necessarily the result of mixing with a more mafic magma.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00410-017-1358-9", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4727569", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3480974", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1026106", 
            "issn": [
              "0010-7999", 
              "1432-0967"
            ], 
            "name": "Contributions to Mineralogy and Petrology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "172"
          }
        ], 
        "keywords": [
          "high water content", 
          "dissolved water", 
          "water content", 
          "pressure vessel", 
          "low water content", 
          "exchange coefficient", 
          "liquid increases", 
          "cold-seal pressure vessels", 
          "MPa", 
          "effect of temperature", 
          "pressure range", 
          "experimental results", 
          "experimental study", 
          "result of H2O", 
          "temperature", 
          "melt", 
          "strong dependence", 
          "coefficient values", 
          "hydroxyl groups", 
          "phase equilibrium experiments", 
          "rapid-quench cold-seal pressure vessels", 
          "water", 
          "Fe2", 
          "experiments", 
          "pressure", 
          "rhyolite melt", 
          "latter case", 
          "H2O", 
          "enstatite component", 
          "content", 
          "coefficient", 
          "results", 
          "composition", 
          "components", 
          "effect", 
          "Fe-rich orthopyroxene", 
          "range", 
          "dependence", 
          "assembly", 
          "composition of orthopyroxene", 
          "show", 
          "values", 
          "increase", 
          "Mg-rich orthopyroxene", 
          "study show", 
          "vessels", 
          "series", 
          "fugacity", 
          "function", 
          "data", 
          "composition of plagioclase", 
          "cases", 
          "oxygen fugacity", 
          "study", 
          "silicic magmas", 
          "literature", 
          "interval", 
          "Mg2", 
          "albite component", 
          "pyroxene", 
          "activity", 
          "plagioclase", 
          "anorthite-rich plagioclase", 
          "magma", 
          "more mafic magma", 
          "orthopyroxene", 
          "group", 
          "rhyolites", 
          "detectable effect", 
          "assemblages", 
          "Ca2", 
          "relatives", 
          "mafic magmas"
        ], 
        "name": "An experimental study of Fe2+-MgKD between orthopyroxene and rhyolite: a strong dependence on H2O in the melt", 
        "pagination": "42", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1085561155"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00410-017-1358-9"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00410-017-1358-9", 
          "https://app.dimensions.ai/details/publication/pub.1085561155"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:35", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_721.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00410-017-1358-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00410-017-1358-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00410-017-1358-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00410-017-1358-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00410-017-1358-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    180 TRIPLES      21 PREDICATES      106 URIs      89 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00410-017-1358-9 schema:about anzsrc-for:04
    2 anzsrc-for:0403
    3 schema:author N33160ba2cce44773abebaf2306434c8b
    4 schema:citation sg:pub.10.1007/bf00283225
    5 sg:pub.10.1007/bf00298703
    6 sg:pub.10.1007/bf00301293
    7 sg:pub.10.1007/bf00307328
    8 sg:pub.10.1007/s00410-003-0448-z
    9 sg:pub.10.1007/s00410-010-0604-1
    10 sg:pub.10.1007/s00410-013-0919-9
    11 sg:pub.10.1007/s004100050367
    12 sg:pub.10.1007/s004100050396
    13 schema:datePublished 2017-05-23
    14 schema:datePublishedReg 2017-05-23
    15 schema:description The effect of temperature, pressure, and dissolved H2O in the melt on the Fe2+–Mg exchange coefficient between orthopyroxene and rhyolite melt was investigated with a series of H2O fluid-saturated phase-equilibrium experiments. Experiments were conducted in a rapid-quench cold-seal pressure vessel over a temperature and pressure range of 785–850 °C and 80–185 MPa, respectively. Oxygen fugacity was buffered with the solid Ni–NiO assemblage in a double-capsule assembly. These experiments, when combined with H2O-undersaturated experiments in the literature, show that Fe2+-MgKD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ ^{{{\text{Fe}}^{2 + } {-}{\text{Mg}}}} K_{\text{D}} $$\end{document} between orthopyroxene and rhyolite liquid increases strongly (from 0.23 to 0.54) as a function of dissolved water in the melt (from 2.7 to 5.6 wt%). There is no detectable effect of temperature or pressure over an interval of 65 °C and 100 MPa, respectively, on the Fe2+–Mg exchange coefficient values. The data show that Fe-rich orthopyroxene is favored at high water contents, whereas Mg-rich orthopyroxene crystallizes at low water contents. It is proposed that the effect of dissolved water in the melt on the composition of orthopyroxene is analogous to its effect on the composition of plagioclase. In the latter case, dissolved hydroxyl groups preferentially complex with Na+ relative to Ca2+, which reduces the activity of the albite component, leading to a more anorthite-rich (calcic) plagioclase. Similarly, it is proposed that dissolved hydroxyl groups preferentially complex with Mg2+ relative to Fe2+, thus lowering the activity of the enstatite component, leading to a more Fe-rich orthopyroxene at high water contents in the melt. The experimental results presented in this study show that reversely zoned pyroxene (i.e., Mg-rich rims) in silicic magmas may be a result of H2O degassing and not necessarily the result of mixing with a more mafic magma.
    16 schema:genre article
    17 schema:isAccessibleForFree false
    18 schema:isPartOf N8813b4d98fc94792ada737038715bca6
    19 Nddd5bd5f38e048c990da036890acf30c
    20 sg:journal.1026106
    21 schema:keywords Ca2
    22 Fe-rich orthopyroxene
    23 Fe2
    24 H2O
    25 MPa
    26 Mg-rich orthopyroxene
    27 Mg2
    28 activity
    29 albite component
    30 anorthite-rich plagioclase
    31 assemblages
    32 assembly
    33 cases
    34 coefficient
    35 coefficient values
    36 cold-seal pressure vessels
    37 components
    38 composition
    39 composition of orthopyroxene
    40 composition of plagioclase
    41 content
    42 data
    43 dependence
    44 detectable effect
    45 dissolved water
    46 effect
    47 effect of temperature
    48 enstatite component
    49 exchange coefficient
    50 experimental results
    51 experimental study
    52 experiments
    53 fugacity
    54 function
    55 group
    56 high water content
    57 hydroxyl groups
    58 increase
    59 interval
    60 latter case
    61 liquid increases
    62 literature
    63 low water content
    64 mafic magmas
    65 magma
    66 melt
    67 more mafic magma
    68 orthopyroxene
    69 oxygen fugacity
    70 phase equilibrium experiments
    71 plagioclase
    72 pressure
    73 pressure range
    74 pressure vessel
    75 pyroxene
    76 range
    77 rapid-quench cold-seal pressure vessels
    78 relatives
    79 result of H2O
    80 results
    81 rhyolite melt
    82 rhyolites
    83 series
    84 show
    85 silicic magmas
    86 strong dependence
    87 study
    88 study show
    89 temperature
    90 values
    91 vessels
    92 water
    93 water content
    94 schema:name An experimental study of Fe2+-MgKD between orthopyroxene and rhyolite: a strong dependence on H2O in the melt
    95 schema:pagination 42
    96 schema:productId N5cdcb59d4ffc481fa21b35bfc7606435
    97 N9619fc585d0a4986aba972fd236b6752
    98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085561155
    99 https://doi.org/10.1007/s00410-017-1358-9
    100 schema:sdDatePublished 2022-12-01T06:35
    101 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    102 schema:sdPublisher N7a40f4599da34b84aca0b4fcf73aadb9
    103 schema:url https://doi.org/10.1007/s00410-017-1358-9
    104 sgo:license sg:explorer/license/
    105 sgo:sdDataset articles
    106 rdf:type schema:ScholarlyArticle
    107 N33160ba2cce44773abebaf2306434c8b rdf:first sg:person.013033020721.16
    108 rdf:rest Na60e4b8a3e9a4b9ea35107db4735128c
    109 N5cdcb59d4ffc481fa21b35bfc7606435 schema:name doi
    110 schema:value 10.1007/s00410-017-1358-9
    111 rdf:type schema:PropertyValue
    112 N7a40f4599da34b84aca0b4fcf73aadb9 schema:name Springer Nature - SN SciGraph project
    113 rdf:type schema:Organization
    114 N8813b4d98fc94792ada737038715bca6 schema:volumeNumber 172
    115 rdf:type schema:PublicationVolume
    116 N9619fc585d0a4986aba972fd236b6752 schema:name dimensions_id
    117 schema:value pub.1085561155
    118 rdf:type schema:PropertyValue
    119 Na60e4b8a3e9a4b9ea35107db4735128c rdf:first sg:person.015531700513.03
    120 rdf:rest rdf:nil
    121 Nddd5bd5f38e048c990da036890acf30c schema:issueNumber 6
    122 rdf:type schema:PublicationIssue
    123 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    124 schema:name Earth Sciences
    125 rdf:type schema:DefinedTerm
    126 anzsrc-for:0403 schema:inDefinedTermSet anzsrc-for:
    127 schema:name Geology
    128 rdf:type schema:DefinedTerm
    129 sg:grant.3480974 http://pending.schema.org/fundedItem sg:pub.10.1007/s00410-017-1358-9
    130 rdf:type schema:MonetaryGrant
    131 sg:grant.4727569 http://pending.schema.org/fundedItem sg:pub.10.1007/s00410-017-1358-9
    132 rdf:type schema:MonetaryGrant
    133 sg:journal.1026106 schema:issn 0010-7999
    134 1432-0967
    135 schema:name Contributions to Mineralogy and Petrology
    136 schema:publisher Springer Nature
    137 rdf:type schema:Periodical
    138 sg:person.013033020721.16 schema:affiliation grid-institutes:grid.453560.1
    139 schema:familyName Waters
    140 schema:givenName Laura E.
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033020721.16
    142 rdf:type schema:Person
    143 sg:person.015531700513.03 schema:affiliation grid-institutes:grid.214458.e
    144 schema:familyName Lange
    145 schema:givenName Rebecca A.
    146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015531700513.03
    147 rdf:type schema:Person
    148 sg:pub.10.1007/bf00283225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033893886
    149 https://doi.org/10.1007/bf00283225
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/bf00298703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007798950
    152 https://doi.org/10.1007/bf00298703
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/bf00301293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015594089
    155 https://doi.org/10.1007/bf00301293
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/bf00307328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033779883
    158 https://doi.org/10.1007/bf00307328
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/s00410-003-0448-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1032758744
    161 https://doi.org/10.1007/s00410-003-0448-z
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/s00410-010-0604-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052091485
    164 https://doi.org/10.1007/s00410-010-0604-1
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/s00410-013-0919-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011300388
    167 https://doi.org/10.1007/s00410-013-0919-9
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/s004100050367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039287452
    170 https://doi.org/10.1007/s004100050367
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/s004100050396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047361115
    173 https://doi.org/10.1007/s004100050396
    174 rdf:type schema:CreativeWork
    175 grid-institutes:grid.214458.e schema:alternateName Department of Earth and Environmental Sciences, University of Michigan, 48109, Ann Arbor, MI, USA
    176 schema:name Department of Earth and Environmental Sciences, University of Michigan, 48109, Ann Arbor, MI, USA
    177 rdf:type schema:Organization
    178 grid-institutes:grid.453560.1 schema:alternateName Department of Mineral Science, National Museum of Natural History, Smithsonian Institution, 10 St and Constitution Ave., 20560, Washington, DC, NW, USA
    179 schema:name Department of Mineral Science, National Museum of Natural History, Smithsonian Institution, 10 St and Constitution Ave., 20560, Washington, DC, NW, USA
    180 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...