Computer-aided detection mammography for breast cancer screening: systematic review and meta-analysis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-06

AUTHORS

Meredith Noble, Wendy Bruening, Stacey Uhl, Karen Schoelles

ABSTRACT

CONTEXT: Mammography is generally accepted as the best available breast cancer screening method; however, some cancers detectable on mammography images are missed. Computer-aided detection (CAD) systems for mammography are intended to reduce false negatives by marking suspicious areas of the mammograms for reviewers to consider. Although the prospect of improving the sensitivity of screening mammograms has led to the diffusion of CAD for mammography, little is known about its diagnostic accuracy. OBJECTIVE: To assess the diagnostic performance of CAD for screening mammography in terms of sensitivity and specificity and incremental recall, biopsy, and cancer diagnosis rates. DATA SOURCES: Published literature identified by systematic literature searches of 17 databases, including MEDLINE, EMBASE, and the Cochrane Library, searched through 25 September 2008. STUDY SELECTION: A reviewer and an information specialist selected full-length English-language articles that enrolled asymptomatic women for routine breast cancer screening and provided data needed for our analyses using criteria established a priori. We identified 75 potentially relevant publications, of which 7 (9%) were included. DATA EXTRACTION: Data were extracted and internal validity was assessed by a single review author, and forms were approved by the co-authors. RESULTS: Three studies (n = 347,324) reported sensitivity and specificity, or data to calculate them, and five studies (n = 51,162) reported data to calculate incremental rates of cancer diagnoses and recall and biopsy of women who did not have breast cancer. The pooled sensitivity was 86.0% (95% CI 84.2-87.6%) and specificity was 88.2% (95% CI 88.1-88.3%). Of the 100,000 women screened, CAD yielded an additional 50 (95% CI 30-80) correct breast cancer diagnoses, 1,190 (95% CI 1,090-1,290) recalls of healthy women, and 80 (95% CI 60-100) biopsies of healthy women. A total of 96% (95% CI 93.9-97.3%) of women recalled based upon CAD and 65.1% (95% CI 52.3-76.0%) of women biopsied based upon CAD were healthy. No studies reported patient-oriented clinical outcomes. More... »

PAGES

881-890

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00404-008-0841-y

DOI

http://dx.doi.org/10.1007/s00404-008-0841-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009188931

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19023581


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Clinical Trials as Topic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "False Positive Reactions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mammography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mass Screening", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiographic Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Research Design", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "ECRI Institute", 
          "id": "https://www.grid.ac/institutes/grid.418699.b", 
          "name": [
            "ECRI Institute, Evidence-based Practice Center and Health Technology Assessment Group, 5200 Butler Pike, 19462, Plymouth Meeting, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Noble", 
        "givenName": "Meredith", 
        "id": "sg:person.01322211430.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322211430.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "ECRI Institute", 
          "id": "https://www.grid.ac/institutes/grid.418699.b", 
          "name": [
            "ECRI Institute, Evidence-based Practice Center and Health Technology Assessment Group, 5200 Butler Pike, 19462, Plymouth Meeting, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bruening", 
        "givenName": "Wendy", 
        "id": "sg:person.0636241570.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636241570.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "ECRI Institute", 
          "id": "https://www.grid.ac/institutes/grid.418699.b", 
          "name": [
            "ECRI Institute, Evidence-based Practice Center and Health Technology Assessment Group, 5200 Butler Pike, 19462, Plymouth Meeting, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Uhl", 
        "givenName": "Stacey", 
        "id": "sg:person.01267545035.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267545035.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "ECRI Institute", 
          "id": "https://www.grid.ac/institutes/grid.418699.b", 
          "name": [
            "ECRI Institute, Evidence-based Practice Center and Health Technology Assessment Group, 5200 Butler Pike, 19462, Plymouth Meeting, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schoelles", 
        "givenName": "Karen", 
        "id": "sg:person.01066716570.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066716570.78"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1258/0969141041732175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000799207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1258/0969141041732175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000799207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.327.7414.557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005003882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/djh067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007406027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2362040864", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017766347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2392042121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018474867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2383050852", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026935812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0197-2456(86)90046-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034546744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0197-2456(86)90046-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034546744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0258(19990915/30)18:17/18<2331::aid-sim259>3.0.co;2-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035265318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2203001282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037099942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa0803545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039403917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2288-6-31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039441705", 
          "https://doi.org/10.1186/1471-2288-6-31"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejca.2008.02.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041362993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa066099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043158224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1054/brst.2001.0350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045776861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.1186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047418980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2288-3-25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048548616", 
          "https://doi.org/10.1186/1471-2288-3-25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jms.7.1.24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062818279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jms.7.1.24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062818279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.04.1300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069297144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.05.0111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069297432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.05.1582", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069297919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.07.2393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069298656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.07.2812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069298847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7326/0003-4819-146-7-200704030-00006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073709228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7326/0003-4819-146-7-200704030-00008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073709230"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-06", 
    "datePublishedReg": "2009-06-01", 
    "description": "CONTEXT: Mammography is generally accepted as the best available breast cancer screening method; however, some cancers detectable on mammography images are missed. Computer-aided detection (CAD) systems for mammography are intended to reduce false negatives by marking suspicious areas of the mammograms for reviewers to consider. Although the prospect of improving the sensitivity of screening mammograms has led to the diffusion of CAD for mammography, little is known about its diagnostic accuracy.\nOBJECTIVE: To assess the diagnostic performance of CAD for screening mammography in terms of sensitivity and specificity and incremental recall, biopsy, and cancer diagnosis rates.\nDATA SOURCES: Published literature identified by systematic literature searches of 17 databases, including MEDLINE, EMBASE, and the Cochrane Library, searched through 25 September 2008.\nSTUDY SELECTION: A reviewer and an information specialist selected full-length English-language articles that enrolled asymptomatic women for routine breast cancer screening and provided data needed for our analyses using criteria established a priori. We identified 75 potentially relevant publications, of which 7 (9%) were included.\nDATA EXTRACTION: Data were extracted and internal validity was assessed by a single review author, and forms were approved by the co-authors.\nRESULTS: Three studies (n = 347,324) reported sensitivity and specificity, or data to calculate them, and five studies (n = 51,162) reported data to calculate incremental rates of cancer diagnoses and recall and biopsy of women who did not have breast cancer. The pooled sensitivity was 86.0% (95% CI 84.2-87.6%) and specificity was 88.2% (95% CI 88.1-88.3%). Of the 100,000 women screened, CAD yielded an additional 50 (95% CI 30-80) correct breast cancer diagnoses, 1,190 (95% CI 1,090-1,290) recalls of healthy women, and 80 (95% CI 60-100) biopsies of healthy women. A total of 96% (95% CI 93.9-97.3%) of women recalled based upon CAD and 65.1% (95% CI 52.3-76.0%) of women biopsied based upon CAD were healthy. No studies reported patient-oriented clinical outcomes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00404-008-0841-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1017365", 
        "issn": [
          "0932-0067", 
          "1432-0711"
        ], 
        "name": "Archives of Gynecology and Obstetrics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "279"
      }
    ], 
    "name": "Computer-aided detection mammography for breast cancer screening: systematic review and meta-analysis", 
    "pagination": "881-890", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2bc6405e88d955077dd5059934dec0668a5cd0924cddef49b809ce429a5711cc"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19023581"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8710213"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00404-008-0841-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009188931"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00404-008-0841-y", 
      "https://app.dimensions.ai/details/publication/pub.1009188931"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13069_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00404-008-0841-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00404-008-0841-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00404-008-0841-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00404-008-0841-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00404-008-0841-y'


 

This table displays all metadata directly associated to this object as RDF triples.

204 TRIPLES      21 PREDICATES      63 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00404-008-0841-y schema:about N08e23063e4724ca49454fe2cdeb8c669
2 N45b1e493788f4102bcad8837b5086867
3 N4cbca494f2d446cc8cb60af4a2f8873b
4 N56f4c4de610f4e079993346986ecefc7
5 N5b55d73aee244aa18b90d250960308c5
6 N6306407bf8c84da6971910f00bf28047
7 N6edaf5bade634e3c9db05852a4d84619
8 N9cbb28d2dc164076939aa7e0733e7a2d
9 Nb1f8f1d8c1d342e980675d75e7162d57
10 Nf126070a60af4f64bae21f6c8eef16c2
11 anzsrc-for:11
12 anzsrc-for:1117
13 schema:author N53368cc9a10547ed97bc943c4a6b18a9
14 schema:citation sg:pub.10.1186/1471-2288-3-25
15 sg:pub.10.1186/1471-2288-6-31
16 https://doi.org/10.1002/(sici)1097-0258(19990915/30)18:17/18<2331::aid-sim259>3.0.co;2-l
17 https://doi.org/10.1002/sim.1186
18 https://doi.org/10.1016/0197-2456(86)90046-2
19 https://doi.org/10.1016/j.ejca.2008.02.016
20 https://doi.org/10.1054/brst.2001.0350
21 https://doi.org/10.1056/nejmoa066099
22 https://doi.org/10.1056/nejmoa0803545
23 https://doi.org/10.1093/jnci/djh067
24 https://doi.org/10.1136/bmj.327.7414.557
25 https://doi.org/10.1136/jms.7.1.24
26 https://doi.org/10.1148/radiol.2203001282
27 https://doi.org/10.1148/radiol.2362040864
28 https://doi.org/10.1148/radiol.2383050852
29 https://doi.org/10.1148/radiol.2392042121
30 https://doi.org/10.1258/0969141041732175
31 https://doi.org/10.2214/ajr.04.1300
32 https://doi.org/10.2214/ajr.05.0111
33 https://doi.org/10.2214/ajr.05.1582
34 https://doi.org/10.2214/ajr.07.2393
35 https://doi.org/10.2214/ajr.07.2812
36 https://doi.org/10.7326/0003-4819-146-7-200704030-00006
37 https://doi.org/10.7326/0003-4819-146-7-200704030-00008
38 schema:datePublished 2009-06
39 schema:datePublishedReg 2009-06-01
40 schema:description CONTEXT: Mammography is generally accepted as the best available breast cancer screening method; however, some cancers detectable on mammography images are missed. Computer-aided detection (CAD) systems for mammography are intended to reduce false negatives by marking suspicious areas of the mammograms for reviewers to consider. Although the prospect of improving the sensitivity of screening mammograms has led to the diffusion of CAD for mammography, little is known about its diagnostic accuracy. OBJECTIVE: To assess the diagnostic performance of CAD for screening mammography in terms of sensitivity and specificity and incremental recall, biopsy, and cancer diagnosis rates. DATA SOURCES: Published literature identified by systematic literature searches of 17 databases, including MEDLINE, EMBASE, and the Cochrane Library, searched through 25 September 2008. STUDY SELECTION: A reviewer and an information specialist selected full-length English-language articles that enrolled asymptomatic women for routine breast cancer screening and provided data needed for our analyses using criteria established a priori. We identified 75 potentially relevant publications, of which 7 (9%) were included. DATA EXTRACTION: Data were extracted and internal validity was assessed by a single review author, and forms were approved by the co-authors. RESULTS: Three studies (n = 347,324) reported sensitivity and specificity, or data to calculate them, and five studies (n = 51,162) reported data to calculate incremental rates of cancer diagnoses and recall and biopsy of women who did not have breast cancer. The pooled sensitivity was 86.0% (95% CI 84.2-87.6%) and specificity was 88.2% (95% CI 88.1-88.3%). Of the 100,000 women screened, CAD yielded an additional 50 (95% CI 30-80) correct breast cancer diagnoses, 1,190 (95% CI 1,090-1,290) recalls of healthy women, and 80 (95% CI 60-100) biopsies of healthy women. A total of 96% (95% CI 93.9-97.3%) of women recalled based upon CAD and 65.1% (95% CI 52.3-76.0%) of women biopsied based upon CAD were healthy. No studies reported patient-oriented clinical outcomes.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree false
44 schema:isPartOf N787ced78d7344d3c9693f6d4508f6323
45 Ne066639c9c034810837ab3f8ee803e3d
46 sg:journal.1017365
47 schema:name Computer-aided detection mammography for breast cancer screening: systematic review and meta-analysis
48 schema:pagination 881-890
49 schema:productId N1a4074311b4742b59cfd35b0d214ab3f
50 N4083fad72fd543e8b3ef25ced517c250
51 N64ee8054230b463583202ade1d8d24d0
52 Nbca7662bcdd144d48c9a60cce1d95b69
53 Nf402c47efa3a48c4a2015cd7aa0c5fac
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009188931
55 https://doi.org/10.1007/s00404-008-0841-y
56 schema:sdDatePublished 2019-04-11T14:25
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N67deaaf953b84f768ba6e955f4664df2
59 schema:url http://link.springer.com/10.1007%2Fs00404-008-0841-y
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N08e23063e4724ca49454fe2cdeb8c669 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
64 schema:name Humans
65 rdf:type schema:DefinedTerm
66 N156d3bca53124c7f97e5866e618edf62 rdf:first sg:person.0636241570.38
67 rdf:rest N46bbf215636240d780682558cf686000
68 N1a4074311b4742b59cfd35b0d214ab3f schema:name dimensions_id
69 schema:value pub.1009188931
70 rdf:type schema:PropertyValue
71 N4083fad72fd543e8b3ef25ced517c250 schema:name pubmed_id
72 schema:value 19023581
73 rdf:type schema:PropertyValue
74 N45b1e493788f4102bcad8837b5086867 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Mass Screening
76 rdf:type schema:DefinedTerm
77 N46bbf215636240d780682558cf686000 rdf:first sg:person.01267545035.16
78 rdf:rest Nab9ce736c60e4bee97dc849d63cf55d3
79 N4cbca494f2d446cc8cb60af4a2f8873b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Breast Neoplasms
81 rdf:type schema:DefinedTerm
82 N53368cc9a10547ed97bc943c4a6b18a9 rdf:first sg:person.01322211430.97
83 rdf:rest N156d3bca53124c7f97e5866e618edf62
84 N56f4c4de610f4e079993346986ecefc7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Clinical Trials as Topic
86 rdf:type schema:DefinedTerm
87 N5b55d73aee244aa18b90d250960308c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name False Positive Reactions
89 rdf:type schema:DefinedTerm
90 N6306407bf8c84da6971910f00bf28047 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Research Design
92 rdf:type schema:DefinedTerm
93 N64ee8054230b463583202ade1d8d24d0 schema:name doi
94 schema:value 10.1007/s00404-008-0841-y
95 rdf:type schema:PropertyValue
96 N67deaaf953b84f768ba6e955f4664df2 schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 N6edaf5bade634e3c9db05852a4d84619 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Sensitivity and Specificity
100 rdf:type schema:DefinedTerm
101 N787ced78d7344d3c9693f6d4508f6323 schema:issueNumber 6
102 rdf:type schema:PublicationIssue
103 N9cbb28d2dc164076939aa7e0733e7a2d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Female
105 rdf:type schema:DefinedTerm
106 Nab9ce736c60e4bee97dc849d63cf55d3 rdf:first sg:person.01066716570.78
107 rdf:rest rdf:nil
108 Nb1f8f1d8c1d342e980675d75e7162d57 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Radiographic Image Interpretation, Computer-Assisted
110 rdf:type schema:DefinedTerm
111 Nbca7662bcdd144d48c9a60cce1d95b69 schema:name readcube_id
112 schema:value 2bc6405e88d955077dd5059934dec0668a5cd0924cddef49b809ce429a5711cc
113 rdf:type schema:PropertyValue
114 Ne066639c9c034810837ab3f8ee803e3d schema:volumeNumber 279
115 rdf:type schema:PublicationVolume
116 Nf126070a60af4f64bae21f6c8eef16c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Mammography
118 rdf:type schema:DefinedTerm
119 Nf402c47efa3a48c4a2015cd7aa0c5fac schema:name nlm_unique_id
120 schema:value 8710213
121 rdf:type schema:PropertyValue
122 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
123 schema:name Medical and Health Sciences
124 rdf:type schema:DefinedTerm
125 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
126 schema:name Public Health and Health Services
127 rdf:type schema:DefinedTerm
128 sg:journal.1017365 schema:issn 0932-0067
129 1432-0711
130 schema:name Archives of Gynecology and Obstetrics
131 rdf:type schema:Periodical
132 sg:person.01066716570.78 schema:affiliation https://www.grid.ac/institutes/grid.418699.b
133 schema:familyName Schoelles
134 schema:givenName Karen
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066716570.78
136 rdf:type schema:Person
137 sg:person.01267545035.16 schema:affiliation https://www.grid.ac/institutes/grid.418699.b
138 schema:familyName Uhl
139 schema:givenName Stacey
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267545035.16
141 rdf:type schema:Person
142 sg:person.01322211430.97 schema:affiliation https://www.grid.ac/institutes/grid.418699.b
143 schema:familyName Noble
144 schema:givenName Meredith
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322211430.97
146 rdf:type schema:Person
147 sg:person.0636241570.38 schema:affiliation https://www.grid.ac/institutes/grid.418699.b
148 schema:familyName Bruening
149 schema:givenName Wendy
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636241570.38
151 rdf:type schema:Person
152 sg:pub.10.1186/1471-2288-3-25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048548616
153 https://doi.org/10.1186/1471-2288-3-25
154 rdf:type schema:CreativeWork
155 sg:pub.10.1186/1471-2288-6-31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039441705
156 https://doi.org/10.1186/1471-2288-6-31
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1002/(sici)1097-0258(19990915/30)18:17/18<2331::aid-sim259>3.0.co;2-l schema:sameAs https://app.dimensions.ai/details/publication/pub.1035265318
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1002/sim.1186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047418980
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/0197-2456(86)90046-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034546744
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.ejca.2008.02.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041362993
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1054/brst.2001.0350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045776861
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1056/nejmoa066099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043158224
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1056/nejmoa0803545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039403917
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1093/jnci/djh067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007406027
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1136/bmj.327.7414.557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005003882
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1136/jms.7.1.24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062818279
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1148/radiol.2203001282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037099942
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1148/radiol.2362040864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017766347
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1148/radiol.2383050852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026935812
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1148/radiol.2392042121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018474867
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1258/0969141041732175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000799207
187 rdf:type schema:CreativeWork
188 https://doi.org/10.2214/ajr.04.1300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069297144
189 rdf:type schema:CreativeWork
190 https://doi.org/10.2214/ajr.05.0111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069297432
191 rdf:type schema:CreativeWork
192 https://doi.org/10.2214/ajr.05.1582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069297919
193 rdf:type schema:CreativeWork
194 https://doi.org/10.2214/ajr.07.2393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069298656
195 rdf:type schema:CreativeWork
196 https://doi.org/10.2214/ajr.07.2812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069298847
197 rdf:type schema:CreativeWork
198 https://doi.org/10.7326/0003-4819-146-7-200704030-00006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073709228
199 rdf:type schema:CreativeWork
200 https://doi.org/10.7326/0003-4819-146-7-200704030-00008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073709230
201 rdf:type schema:CreativeWork
202 https://www.grid.ac/institutes/grid.418699.b schema:alternateName ECRI Institute
203 schema:name ECRI Institute, Evidence-based Practice Center and Health Technology Assessment Group, 5200 Butler Pike, 19462, Plymouth Meeting, USA
204 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...