Effect of high tibial flexion osteotomy on cartilage pressure and joint kinematics: a biomechanical study in human cadaveric knees View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-08-03

AUTHORS

J. D. Agneskirchner, C. Hurschler, C. Stukenborg-Colsman, A. B. Imhoff, P. Lobenhoffer

ABSTRACT

IntroductionValgus high tibial osteotomy is an established treatment for unicompartmental varus osteoarthritis. However, only little is known about the effect of osteotomy in the sagittal plane on biomechanical parameters such as cartilage pressure and joint kinematics. This study investigated the effects of high tibial flexion osteotomy in a human cadaver model.Materials and methodsSeven fresh human cadaveric knees underwent an opening wedge osteotomy of the proximal tibia in the sagittal plane. The osteotomy was opened anteriorly, and the tibial slope of the specimen was increased gradually. An isokinetic flexion-extension motion was simulated in a kinematic knee simulator. The contact pressure and topographic pressure distribution in the medial joint space was recorded using an electronic pressure-sensitive film. Simultaneously the motion of the tibial plateau was analyzed three-dimensionally by an ultrasonic tracking system. The traction force to the quadriceps tendon which was applied by the simulator for extension of the joint was continuously measured. The experiments were carried out with intact ligaments and then after successively cutting the posterior and anterior cruciate ligaments.ResultsThe results demonstrate that tibial flexion osteotomy leads to a significant alteration in pressure distribution on the tibial plateau. The tibiofemoral contact area and contact pressure was shifted anteriorly, which led to decompression of the posterior half of the plateau. Moreover, the increase in the slope resulted in a significant anterior and superior translation of the tibial plateau with respect to the femoral condyles. Posterior subluxation of the tibial head after cutting the posterior cruciate ligament was completely neutralized by the osteotomy. The increase in slope resulted in a significant higher quadriceps strength which was necessary for full knee extension.ConclusionsWe conclude from these results that changes in tibial slope have a strong effect on cartilage pressure and kinematics of the knee. Therapeutically a flexion osteotomy may be used for decompression of the degenerated cartilage in the posterior part of the plateau, for example, after arthroscopic partial posterior meniscectomy. If a valgus osteotomy is combined with a flexion component of the proximal tibia, complex knee pathologies consisting of posteromedial cartilage damage and posterior and posterolateral instability can be addressed in one procedure, which facilitates a quicker rehabilitation of these patients. More... »

PAGES

575-584

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00402-004-0728-8

DOI

http://dx.doi.org/10.1007/s00402-004-0728-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009896516

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15480717


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomechanical Phenomena", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cartilage, Articular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Knee Joint", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Osteotomy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Postoperative Period", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pressure", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tibia", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Trauma and Reconstructive Surgery, Henriettenstiftung, Marienstrasse 72\u201390, 30171, Hanover, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Trauma and Reconstructive Surgery, Henriettenstiftung, Marienstrasse 72\u201390, 30171, Hanover, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Agneskirchner", 
        "givenName": "J. D.", 
        "id": "sg:person.01267104021.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267104021.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Biomechanics and Biomaterials, Hanover Medical School, Hanover, Germany", 
          "id": "http://www.grid.ac/institutes/grid.10423.34", 
          "name": [
            "Institute for Biomechanics and Biomaterials, Hanover Medical School, Hanover, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hurschler", 
        "givenName": "C.", 
        "id": "sg:person.01155605277.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155605277.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Orthopedic Department, Hanover Medical School, Hanover, Germany", 
          "id": "http://www.grid.ac/institutes/grid.10423.34", 
          "name": [
            "Orthopedic Department, Hanover Medical School, Hanover, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stukenborg-Colsman", 
        "givenName": "C.", 
        "id": "sg:person.016431527667.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016431527667.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Orthopedic Sports Medicine, Technical University of Munich, Munich, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Department of Orthopedic Sports Medicine, Technical University of Munich, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Imhoff", 
        "givenName": "A. B.", 
        "id": "sg:person.01114221457.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114221457.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Trauma and Reconstructive Surgery, Henriettenstiftung, Marienstrasse 72\u201390, 30171, Hanover, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Trauma and Reconstructive Surgery, Henriettenstiftung, Marienstrasse 72\u201390, 30171, Hanover, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lobenhoffer", 
        "givenName": "P.", 
        "id": "sg:person.01121012050.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121012050.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00167-002-0334-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022013889", 
          "https://doi.org/10.1007/s00167-002-0334-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00132-003-0593-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040057667", 
          "https://doi.org/10.1007/s00132-003-0593-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001130050491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012795486", 
          "https://doi.org/10.1007/s001130050491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00132-003-0619-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015846169", 
          "https://doi.org/10.1007/s00132-003-0619-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-08-03", 
    "datePublishedReg": "2004-08-03", 
    "description": "IntroductionValgus high tibial osteotomy is an established treatment for unicompartmental varus osteoarthritis. However, only little is known about the effect of osteotomy in the sagittal plane on biomechanical parameters such as cartilage pressure and joint kinematics. This study investigated the effects of high tibial flexion osteotomy in a human cadaver model.Materials and methodsSeven fresh human cadaveric knees underwent an opening wedge osteotomy of the proximal tibia in the sagittal plane. The osteotomy was opened anteriorly, and the tibial slope of the specimen was increased gradually. An isokinetic flexion-extension motion was simulated in a kinematic knee simulator. The contact pressure and topographic pressure distribution in the medial joint space was recorded using an electronic pressure-sensitive film. Simultaneously the motion of the tibial plateau was analyzed three-dimensionally by an ultrasonic tracking system. The traction force to the quadriceps tendon which was applied by the simulator for extension of the joint was continuously measured. The experiments were carried out with intact ligaments and then after successively cutting the posterior and anterior cruciate ligaments.ResultsThe results demonstrate that tibial flexion osteotomy leads to a significant alteration in pressure distribution on the tibial plateau. The tibiofemoral contact area and contact pressure was shifted anteriorly, which led to decompression of the posterior half of the plateau. Moreover, the increase in the slope resulted in a significant anterior and superior translation of the tibial plateau with respect to the femoral condyles. Posterior subluxation of the tibial head after cutting the posterior cruciate ligament was completely neutralized by the osteotomy. The increase in slope resulted in a significant higher quadriceps strength which was necessary for full knee extension.ConclusionsWe conclude from these results that changes in tibial slope have a strong effect on cartilage pressure and kinematics of the knee. Therapeutically a flexion osteotomy may be used for decompression of the degenerated cartilage in the posterior part of the plateau, for example, after arthroscopic partial posterior meniscectomy. If a valgus osteotomy is combined with a flexion component of the proximal tibia, complex knee pathologies consisting of posteromedial cartilage damage and posterior and posterolateral instability can be addressed in one procedure, which facilitates a quicker rehabilitation of these patients.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00402-004-0728-8", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1087582", 
        "issn": [
          "0936-8051", 
          "1434-3916"
        ], 
        "name": "Archives of Orthopaedic and Trauma Surgery", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "124"
      }
    ], 
    "keywords": [
      "flexion osteotomy", 
      "human cadaveric knees", 
      "tibial plateau", 
      "cruciate ligament", 
      "proximal tibia", 
      "tibial slope", 
      "cadaveric knees", 
      "effect of osteotomy", 
      "higher quadriceps strength", 
      "cartilage pressure", 
      "anterior cruciate ligament", 
      "medial joint space", 
      "posterior cruciate ligament", 
      "joint kinematics", 
      "full knee extension", 
      "high tibial osteotomy", 
      "fresh human cadaveric knees", 
      "sagittal plane", 
      "flexion-extension motion", 
      "tibiofemoral contact area", 
      "pressure-sensitive film", 
      "quadriceps strength", 
      "posterior subluxation", 
      "valgus osteotomy", 
      "varus osteoarthritis", 
      "quadriceps tendon", 
      "kinematic knee simulator", 
      "tibial osteotomy", 
      "human cadaver model", 
      "wedge osteotomy", 
      "knee pathology", 
      "knee extension", 
      "cartilage damage", 
      "posterolateral instability", 
      "superior translation", 
      "quicker rehabilitation", 
      "osteotomy", 
      "intact ligaments", 
      "flexion component", 
      "femoral condyle", 
      "biomechanical study", 
      "tibial head", 
      "biomechanical parameters", 
      "posterior part", 
      "significant alterations", 
      "knee", 
      "ligament", 
      "cadaver model", 
      "posterior half", 
      "joint space", 
      "tibia", 
      "decompression", 
      "ResultsThe results", 
      "degenerated cartilage", 
      "knee simulator", 
      "subluxation", 
      "osteoarthritis", 
      "patients", 
      "meniscectomy", 
      "pathology", 
      "tendon", 
      "condyle", 
      "pressure", 
      "ConclusionsWe", 
      "effect", 
      "rehabilitation", 
      "treatment", 
      "study", 
      "alterations", 
      "cartilage", 
      "increase", 
      "head", 
      "damage", 
      "joints", 
      "half", 
      "ultrasonic tracking system", 
      "kinematics", 
      "procedure", 
      "strong effect", 
      "results", 
      "changes", 
      "traction forces", 
      "plateau", 
      "specimen", 
      "contact pressure", 
      "area", 
      "translation", 
      "part", 
      "extension", 
      "slope", 
      "components", 
      "contact area", 
      "instability", 
      "distribution", 
      "respect", 
      "model", 
      "motion", 
      "materials", 
      "parameters", 
      "system", 
      "tracking system", 
      "strength", 
      "experiments", 
      "pressure distribution", 
      "force", 
      "plane", 
      "space", 
      "simulator", 
      "example", 
      "films", 
      "IntroductionValgus high tibial osteotomy", 
      "unicompartmental varus osteoarthritis", 
      "high tibial flexion osteotomy", 
      "tibial flexion osteotomy", 
      "methodsSeven fresh human cadaveric knees", 
      "isokinetic flexion-extension motion", 
      "topographic pressure distribution", 
      "electronic pressure-sensitive film", 
      "significant higher quadriceps strength", 
      "arthroscopic partial posterior meniscectomy", 
      "partial posterior meniscectomy", 
      "posterior meniscectomy", 
      "complex knee pathologies", 
      "posteromedial cartilage damage"
    ], 
    "name": "Effect of high tibial flexion osteotomy on cartilage pressure and joint kinematics: a biomechanical study in human cadaveric knees", 
    "pagination": "575-584", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009896516"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00402-004-0728-8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15480717"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00402-004-0728-8", 
      "https://app.dimensions.ai/details/publication/pub.1009896516"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_392.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00402-004-0728-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00402-004-0728-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00402-004-0728-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00402-004-0728-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00402-004-0728-8'


 

This table displays all metadata directly associated to this object as RDF triples.

282 TRIPLES      22 PREDICATES      165 URIs      153 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00402-004-0728-8 schema:about N0ba0bf5fa3cf46caa71aba9b00fa1835
2 N17d1142133b74342be98d40021be2de4
3 N28006390e0bd47d69ef1b0681c605ffe
4 N7bec3c86863a452a9cbe66dc411b8a0d
5 N926c5e271d2e453c9b4a4b28b3c31500
6 N94d4f8247f74418e8cdd7fa485a207be
7 Nb877582eea1148f680adcbc02d2ad029
8 Ne2e3d674ff1c4535a5b9722d56f71fdd
9 Nf096d05538f84a40859d09820ee531a7
10 Nf28dc9ce345a42729d7281c405f8830a
11 Nffb5162f3c994d93be65d01e98730b71
12 anzsrc-for:11
13 anzsrc-for:1103
14 schema:author N203c6f5a1de54e97b2d3ad014da69cbb
15 schema:citation sg:pub.10.1007/s001130050491
16 sg:pub.10.1007/s00132-003-0593-0
17 sg:pub.10.1007/s00132-003-0619-7
18 sg:pub.10.1007/s00167-002-0334-7
19 schema:datePublished 2004-08-03
20 schema:datePublishedReg 2004-08-03
21 schema:description IntroductionValgus high tibial osteotomy is an established treatment for unicompartmental varus osteoarthritis. However, only little is known about the effect of osteotomy in the sagittal plane on biomechanical parameters such as cartilage pressure and joint kinematics. This study investigated the effects of high tibial flexion osteotomy in a human cadaver model.Materials and methodsSeven fresh human cadaveric knees underwent an opening wedge osteotomy of the proximal tibia in the sagittal plane. The osteotomy was opened anteriorly, and the tibial slope of the specimen was increased gradually. An isokinetic flexion-extension motion was simulated in a kinematic knee simulator. The contact pressure and topographic pressure distribution in the medial joint space was recorded using an electronic pressure-sensitive film. Simultaneously the motion of the tibial plateau was analyzed three-dimensionally by an ultrasonic tracking system. The traction force to the quadriceps tendon which was applied by the simulator for extension of the joint was continuously measured. The experiments were carried out with intact ligaments and then after successively cutting the posterior and anterior cruciate ligaments.ResultsThe results demonstrate that tibial flexion osteotomy leads to a significant alteration in pressure distribution on the tibial plateau. The tibiofemoral contact area and contact pressure was shifted anteriorly, which led to decompression of the posterior half of the plateau. Moreover, the increase in the slope resulted in a significant anterior and superior translation of the tibial plateau with respect to the femoral condyles. Posterior subluxation of the tibial head after cutting the posterior cruciate ligament was completely neutralized by the osteotomy. The increase in slope resulted in a significant higher quadriceps strength which was necessary for full knee extension.ConclusionsWe conclude from these results that changes in tibial slope have a strong effect on cartilage pressure and kinematics of the knee. Therapeutically a flexion osteotomy may be used for decompression of the degenerated cartilage in the posterior part of the plateau, for example, after arthroscopic partial posterior meniscectomy. If a valgus osteotomy is combined with a flexion component of the proximal tibia, complex knee pathologies consisting of posteromedial cartilage damage and posterior and posterolateral instability can be addressed in one procedure, which facilitates a quicker rehabilitation of these patients.
22 schema:genre article
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf Nad665e7f240543ac8e65ec7cc3f30801
26 Nee841aa5b8704ae187053cf1aaeeaa2a
27 sg:journal.1087582
28 schema:keywords ConclusionsWe
29 IntroductionValgus high tibial osteotomy
30 ResultsThe results
31 alterations
32 anterior cruciate ligament
33 area
34 arthroscopic partial posterior meniscectomy
35 biomechanical parameters
36 biomechanical study
37 cadaver model
38 cadaveric knees
39 cartilage
40 cartilage damage
41 cartilage pressure
42 changes
43 complex knee pathologies
44 components
45 condyle
46 contact area
47 contact pressure
48 cruciate ligament
49 damage
50 decompression
51 degenerated cartilage
52 distribution
53 effect
54 effect of osteotomy
55 electronic pressure-sensitive film
56 example
57 experiments
58 extension
59 femoral condyle
60 films
61 flexion component
62 flexion osteotomy
63 flexion-extension motion
64 force
65 fresh human cadaveric knees
66 full knee extension
67 half
68 head
69 high tibial flexion osteotomy
70 high tibial osteotomy
71 higher quadriceps strength
72 human cadaver model
73 human cadaveric knees
74 increase
75 instability
76 intact ligaments
77 isokinetic flexion-extension motion
78 joint kinematics
79 joint space
80 joints
81 kinematic knee simulator
82 kinematics
83 knee
84 knee extension
85 knee pathology
86 knee simulator
87 ligament
88 materials
89 medial joint space
90 meniscectomy
91 methodsSeven fresh human cadaveric knees
92 model
93 motion
94 osteoarthritis
95 osteotomy
96 parameters
97 part
98 partial posterior meniscectomy
99 pathology
100 patients
101 plane
102 plateau
103 posterior cruciate ligament
104 posterior half
105 posterior meniscectomy
106 posterior part
107 posterior subluxation
108 posterolateral instability
109 posteromedial cartilage damage
110 pressure
111 pressure distribution
112 pressure-sensitive film
113 procedure
114 proximal tibia
115 quadriceps strength
116 quadriceps tendon
117 quicker rehabilitation
118 rehabilitation
119 respect
120 results
121 sagittal plane
122 significant alterations
123 significant higher quadriceps strength
124 simulator
125 slope
126 space
127 specimen
128 strength
129 strong effect
130 study
131 subluxation
132 superior translation
133 system
134 tendon
135 tibia
136 tibial flexion osteotomy
137 tibial head
138 tibial osteotomy
139 tibial plateau
140 tibial slope
141 tibiofemoral contact area
142 topographic pressure distribution
143 tracking system
144 traction forces
145 translation
146 treatment
147 ultrasonic tracking system
148 unicompartmental varus osteoarthritis
149 valgus osteotomy
150 varus osteoarthritis
151 wedge osteotomy
152 schema:name Effect of high tibial flexion osteotomy on cartilage pressure and joint kinematics: a biomechanical study in human cadaveric knees
153 schema:pagination 575-584
154 schema:productId N1f00d26a7e2b4727b4dd0e5f49ce077a
155 Nd085c929f1ec4d1e9020b177d8e3b739
156 Nee308fbe16a3427e8e860316dba3901e
157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009896516
158 https://doi.org/10.1007/s00402-004-0728-8
159 schema:sdDatePublished 2022-01-01T18:13
160 schema:sdLicense https://scigraph.springernature.com/explorer/license/
161 schema:sdPublisher N645f4147ba7a497a85ca795147bca20a
162 schema:url https://doi.org/10.1007/s00402-004-0728-8
163 sgo:license sg:explorer/license/
164 sgo:sdDataset articles
165 rdf:type schema:ScholarlyArticle
166 N0ba0bf5fa3cf46caa71aba9b00fa1835 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Humans
168 rdf:type schema:DefinedTerm
169 N1268254bc0384e06aad21921220f16d0 rdf:first sg:person.01114221457.27
170 rdf:rest N128e99638a634d3fa7d72ffa006f45e5
171 N128e99638a634d3fa7d72ffa006f45e5 rdf:first sg:person.01121012050.09
172 rdf:rest rdf:nil
173 N17d1142133b74342be98d40021be2de4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Osteotomy
175 rdf:type schema:DefinedTerm
176 N1f00d26a7e2b4727b4dd0e5f49ce077a schema:name pubmed_id
177 schema:value 15480717
178 rdf:type schema:PropertyValue
179 N203c6f5a1de54e97b2d3ad014da69cbb rdf:first sg:person.01267104021.49
180 rdf:rest N83fcacdde5af4cf8abf38e24c6a09465
181 N28006390e0bd47d69ef1b0681c605ffe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Knee Joint
183 rdf:type schema:DefinedTerm
184 N645f4147ba7a497a85ca795147bca20a schema:name Springer Nature - SN SciGraph project
185 rdf:type schema:Organization
186 N7bec3c86863a452a9cbe66dc411b8a0d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Aged, 80 and over
188 rdf:type schema:DefinedTerm
189 N83fcacdde5af4cf8abf38e24c6a09465 rdf:first sg:person.01155605277.36
190 rdf:rest N8e61e440ece7491ab02e2f486b04779e
191 N8e61e440ece7491ab02e2f486b04779e rdf:first sg:person.016431527667.65
192 rdf:rest N1268254bc0384e06aad21921220f16d0
193 N926c5e271d2e453c9b4a4b28b3c31500 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
194 schema:name Postoperative Period
195 rdf:type schema:DefinedTerm
196 N94d4f8247f74418e8cdd7fa485a207be schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
197 schema:name Aged
198 rdf:type schema:DefinedTerm
199 Nad665e7f240543ac8e65ec7cc3f30801 schema:volumeNumber 124
200 rdf:type schema:PublicationVolume
201 Nb877582eea1148f680adcbc02d2ad029 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
202 schema:name Cartilage, Articular
203 rdf:type schema:DefinedTerm
204 Nd085c929f1ec4d1e9020b177d8e3b739 schema:name dimensions_id
205 schema:value pub.1009896516
206 rdf:type schema:PropertyValue
207 Ne2e3d674ff1c4535a5b9722d56f71fdd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
208 schema:name Male
209 rdf:type schema:DefinedTerm
210 Nee308fbe16a3427e8e860316dba3901e schema:name doi
211 schema:value 10.1007/s00402-004-0728-8
212 rdf:type schema:PropertyValue
213 Nee841aa5b8704ae187053cf1aaeeaa2a schema:issueNumber 9
214 rdf:type schema:PublicationIssue
215 Nf096d05538f84a40859d09820ee531a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
216 schema:name Pressure
217 rdf:type schema:DefinedTerm
218 Nf28dc9ce345a42729d7281c405f8830a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
219 schema:name Tibia
220 rdf:type schema:DefinedTerm
221 Nffb5162f3c994d93be65d01e98730b71 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
222 schema:name Biomechanical Phenomena
223 rdf:type schema:DefinedTerm
224 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
225 schema:name Medical and Health Sciences
226 rdf:type schema:DefinedTerm
227 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
228 schema:name Clinical Sciences
229 rdf:type schema:DefinedTerm
230 sg:journal.1087582 schema:issn 0936-8051
231 1434-3916
232 schema:name Archives of Orthopaedic and Trauma Surgery
233 schema:publisher Springer Nature
234 rdf:type schema:Periodical
235 sg:person.01114221457.27 schema:affiliation grid-institutes:grid.6936.a
236 schema:familyName Imhoff
237 schema:givenName A. B.
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114221457.27
239 rdf:type schema:Person
240 sg:person.01121012050.09 schema:affiliation grid-institutes:None
241 schema:familyName Lobenhoffer
242 schema:givenName P.
243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121012050.09
244 rdf:type schema:Person
245 sg:person.01155605277.36 schema:affiliation grid-institutes:grid.10423.34
246 schema:familyName Hurschler
247 schema:givenName C.
248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155605277.36
249 rdf:type schema:Person
250 sg:person.01267104021.49 schema:affiliation grid-institutes:None
251 schema:familyName Agneskirchner
252 schema:givenName J. D.
253 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267104021.49
254 rdf:type schema:Person
255 sg:person.016431527667.65 schema:affiliation grid-institutes:grid.10423.34
256 schema:familyName Stukenborg-Colsman
257 schema:givenName C.
258 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016431527667.65
259 rdf:type schema:Person
260 sg:pub.10.1007/s001130050491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012795486
261 https://doi.org/10.1007/s001130050491
262 rdf:type schema:CreativeWork
263 sg:pub.10.1007/s00132-003-0593-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040057667
264 https://doi.org/10.1007/s00132-003-0593-0
265 rdf:type schema:CreativeWork
266 sg:pub.10.1007/s00132-003-0619-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015846169
267 https://doi.org/10.1007/s00132-003-0619-7
268 rdf:type schema:CreativeWork
269 sg:pub.10.1007/s00167-002-0334-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022013889
270 https://doi.org/10.1007/s00167-002-0334-7
271 rdf:type schema:CreativeWork
272 grid-institutes:None schema:alternateName Department of Trauma and Reconstructive Surgery, Henriettenstiftung, Marienstrasse 72–90, 30171, Hanover, Germany
273 schema:name Department of Trauma and Reconstructive Surgery, Henriettenstiftung, Marienstrasse 72–90, 30171, Hanover, Germany
274 rdf:type schema:Organization
275 grid-institutes:grid.10423.34 schema:alternateName Institute for Biomechanics and Biomaterials, Hanover Medical School, Hanover, Germany
276 Orthopedic Department, Hanover Medical School, Hanover, Germany
277 schema:name Institute for Biomechanics and Biomaterials, Hanover Medical School, Hanover, Germany
278 Orthopedic Department, Hanover Medical School, Hanover, Germany
279 rdf:type schema:Organization
280 grid-institutes:grid.6936.a schema:alternateName Department of Orthopedic Sports Medicine, Technical University of Munich, Munich, Germany
281 schema:name Department of Orthopedic Sports Medicine, Technical University of Munich, Munich, Germany
282 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...