Effect of high tibial flexion osteotomy on cartilage pressure and joint kinematics: a biomechanical study in human cadaveric knees View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-08-03

AUTHORS

J. D. Agneskirchner, C. Hurschler, C. Stukenborg-Colsman, A. B. Imhoff, P. Lobenhoffer

ABSTRACT

IntroductionValgus high tibial osteotomy is an established treatment for unicompartmental varus osteoarthritis. However, only little is known about the effect of osteotomy in the sagittal plane on biomechanical parameters such as cartilage pressure and joint kinematics. This study investigated the effects of high tibial flexion osteotomy in a human cadaver model.Materials and methodsSeven fresh human cadaveric knees underwent an opening wedge osteotomy of the proximal tibia in the sagittal plane. The osteotomy was opened anteriorly, and the tibial slope of the specimen was increased gradually. An isokinetic flexion-extension motion was simulated in a kinematic knee simulator. The contact pressure and topographic pressure distribution in the medial joint space was recorded using an electronic pressure-sensitive film. Simultaneously the motion of the tibial plateau was analyzed three-dimensionally by an ultrasonic tracking system. The traction force to the quadriceps tendon which was applied by the simulator for extension of the joint was continuously measured. The experiments were carried out with intact ligaments and then after successively cutting the posterior and anterior cruciate ligaments.ResultsThe results demonstrate that tibial flexion osteotomy leads to a significant alteration in pressure distribution on the tibial plateau. The tibiofemoral contact area and contact pressure was shifted anteriorly, which led to decompression of the posterior half of the plateau. Moreover, the increase in the slope resulted in a significant anterior and superior translation of the tibial plateau with respect to the femoral condyles. Posterior subluxation of the tibial head after cutting the posterior cruciate ligament was completely neutralized by the osteotomy. The increase in slope resulted in a significant higher quadriceps strength which was necessary for full knee extension.ConclusionsWe conclude from these results that changes in tibial slope have a strong effect on cartilage pressure and kinematics of the knee. Therapeutically a flexion osteotomy may be used for decompression of the degenerated cartilage in the posterior part of the plateau, for example, after arthroscopic partial posterior meniscectomy. If a valgus osteotomy is combined with a flexion component of the proximal tibia, complex knee pathologies consisting of posteromedial cartilage damage and posterior and posterolateral instability can be addressed in one procedure, which facilitates a quicker rehabilitation of these patients. More... »

PAGES

575-584

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00402-004-0728-8

DOI

http://dx.doi.org/10.1007/s00402-004-0728-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009896516

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15480717


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomechanical Phenomena", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cartilage, Articular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Knee Joint", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Osteotomy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Postoperative Period", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pressure", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tibia", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Trauma and Reconstructive Surgery, Henriettenstiftung, Marienstrasse 72\u201390, 30171, Hanover, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Trauma and Reconstructive Surgery, Henriettenstiftung, Marienstrasse 72\u201390, 30171, Hanover, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Agneskirchner", 
        "givenName": "J. D.", 
        "id": "sg:person.01267104021.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267104021.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Biomechanics and Biomaterials, Hanover Medical School, Hanover, Germany", 
          "id": "http://www.grid.ac/institutes/grid.10423.34", 
          "name": [
            "Institute for Biomechanics and Biomaterials, Hanover Medical School, Hanover, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hurschler", 
        "givenName": "C.", 
        "id": "sg:person.01155605277.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155605277.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Orthopedic Department, Hanover Medical School, Hanover, Germany", 
          "id": "http://www.grid.ac/institutes/grid.10423.34", 
          "name": [
            "Orthopedic Department, Hanover Medical School, Hanover, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stukenborg-Colsman", 
        "givenName": "C.", 
        "id": "sg:person.016431527667.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016431527667.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Orthopedic Sports Medicine, Technical University of Munich, Munich, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Department of Orthopedic Sports Medicine, Technical University of Munich, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Imhoff", 
        "givenName": "A. B.", 
        "id": "sg:person.01114221457.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114221457.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Trauma and Reconstructive Surgery, Henriettenstiftung, Marienstrasse 72\u201390, 30171, Hanover, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Trauma and Reconstructive Surgery, Henriettenstiftung, Marienstrasse 72\u201390, 30171, Hanover, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lobenhoffer", 
        "givenName": "P.", 
        "id": "sg:person.01121012050.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121012050.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00167-002-0334-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022013889", 
          "https://doi.org/10.1007/s00167-002-0334-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00132-003-0593-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040057667", 
          "https://doi.org/10.1007/s00132-003-0593-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001130050491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012795486", 
          "https://doi.org/10.1007/s001130050491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00132-003-0619-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015846169", 
          "https://doi.org/10.1007/s00132-003-0619-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-08-03", 
    "datePublishedReg": "2004-08-03", 
    "description": "IntroductionValgus high tibial osteotomy is an established treatment for unicompartmental varus osteoarthritis. However, only little is known about the effect of osteotomy in the sagittal plane on biomechanical parameters such as cartilage pressure and joint kinematics. This study investigated the effects of high tibial flexion osteotomy in a human cadaver model.Materials and methodsSeven fresh human cadaveric knees underwent an opening wedge osteotomy of the proximal tibia in the sagittal plane. The osteotomy was opened anteriorly, and the tibial slope of the specimen was increased gradually. An isokinetic flexion-extension motion was simulated in a kinematic knee simulator. The contact pressure and topographic pressure distribution in the medial joint space was recorded using an electronic pressure-sensitive film. Simultaneously the motion of the tibial plateau was analyzed three-dimensionally by an ultrasonic tracking system. The traction force to the quadriceps tendon which was applied by the simulator for extension of the joint was continuously measured. The experiments were carried out with intact ligaments and then after successively cutting the posterior and anterior cruciate ligaments.ResultsThe results demonstrate that tibial flexion osteotomy leads to a significant alteration in pressure distribution on the tibial plateau. The tibiofemoral contact area and contact pressure was shifted anteriorly, which led to decompression of the posterior half of the plateau. Moreover, the increase in the slope resulted in a significant anterior and superior translation of the tibial plateau with respect to the femoral condyles. Posterior subluxation of the tibial head after cutting the posterior cruciate ligament was completely neutralized by the osteotomy. The increase in slope resulted in a significant higher quadriceps strength which was necessary for full knee extension.ConclusionsWe conclude from these results that changes in tibial slope have a strong effect on cartilage pressure and kinematics of the knee. Therapeutically a flexion osteotomy may be used for decompression of the degenerated cartilage in the posterior part of the plateau, for example, after arthroscopic partial posterior meniscectomy. If a valgus osteotomy is combined with a flexion component of the proximal tibia, complex knee pathologies consisting of posteromedial cartilage damage and posterior and posterolateral instability can be addressed in one procedure, which facilitates a quicker rehabilitation of these patients.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00402-004-0728-8", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1087582", 
        "issn": [
          "0936-8051", 
          "1434-3916"
        ], 
        "name": "Archives of Orthopaedic and Trauma Surgery", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "124"
      }
    ], 
    "keywords": [
      "flexion osteotomy", 
      "human cadaveric knees", 
      "tibial plateau", 
      "cruciate ligament", 
      "proximal tibia", 
      "tibial slope", 
      "cadaveric knees", 
      "effect of osteotomy", 
      "higher quadriceps strength", 
      "cartilage pressure", 
      "anterior cruciate ligament", 
      "medial joint space", 
      "posterior cruciate ligament", 
      "joint kinematics", 
      "full knee extension", 
      "high tibial osteotomy", 
      "fresh human cadaveric knees", 
      "sagittal plane", 
      "flexion-extension motion", 
      "tibiofemoral contact area", 
      "pressure-sensitive film", 
      "quadriceps strength", 
      "posterior subluxation", 
      "valgus osteotomy", 
      "varus osteoarthritis", 
      "quadriceps tendon", 
      "kinematic knee simulator", 
      "tibial osteotomy", 
      "human cadaver model", 
      "wedge osteotomy", 
      "knee pathology", 
      "knee extension", 
      "cartilage damage", 
      "posterolateral instability", 
      "superior translation", 
      "quicker rehabilitation", 
      "osteotomy", 
      "intact ligaments", 
      "flexion component", 
      "femoral condyle", 
      "biomechanical study", 
      "tibial head", 
      "biomechanical parameters", 
      "posterior part", 
      "significant alterations", 
      "knee", 
      "ligament", 
      "cadaver model", 
      "posterior half", 
      "joint space", 
      "tibia", 
      "decompression", 
      "ResultsThe results", 
      "degenerated cartilage", 
      "knee simulator", 
      "subluxation", 
      "osteoarthritis", 
      "patients", 
      "meniscectomy", 
      "pathology", 
      "tendon", 
      "condyle", 
      "pressure", 
      "ConclusionsWe", 
      "effect", 
      "rehabilitation", 
      "treatment", 
      "study", 
      "alterations", 
      "cartilage", 
      "increase", 
      "head", 
      "damage", 
      "joints", 
      "half", 
      "ultrasonic tracking system", 
      "kinematics", 
      "procedure", 
      "strong effect", 
      "results", 
      "changes", 
      "traction forces", 
      "plateau", 
      "specimen", 
      "contact pressure", 
      "area", 
      "translation", 
      "part", 
      "extension", 
      "slope", 
      "components", 
      "contact area", 
      "instability", 
      "distribution", 
      "respect", 
      "model", 
      "motion", 
      "materials", 
      "parameters", 
      "system", 
      "tracking system", 
      "strength", 
      "experiments", 
      "pressure distribution", 
      "force", 
      "plane", 
      "space", 
      "simulator", 
      "example", 
      "films", 
      "IntroductionValgus high tibial osteotomy", 
      "unicompartmental varus osteoarthritis", 
      "high tibial flexion osteotomy", 
      "tibial flexion osteotomy", 
      "methodsSeven fresh human cadaveric knees", 
      "isokinetic flexion-extension motion", 
      "topographic pressure distribution", 
      "electronic pressure-sensitive film", 
      "significant higher quadriceps strength", 
      "arthroscopic partial posterior meniscectomy", 
      "partial posterior meniscectomy", 
      "posterior meniscectomy", 
      "complex knee pathologies", 
      "posteromedial cartilage damage"
    ], 
    "name": "Effect of high tibial flexion osteotomy on cartilage pressure and joint kinematics: a biomechanical study in human cadaveric knees", 
    "pagination": "575-584", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009896516"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00402-004-0728-8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15480717"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00402-004-0728-8", 
      "https://app.dimensions.ai/details/publication/pub.1009896516"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_392.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00402-004-0728-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00402-004-0728-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00402-004-0728-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00402-004-0728-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00402-004-0728-8'


 

This table displays all metadata directly associated to this object as RDF triples.

282 TRIPLES      22 PREDICATES      165 URIs      153 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00402-004-0728-8 schema:about N02dd020f033c42bfb4e022d123f056c6
2 N21173b9ab84844f5850dd847f265a0b6
3 N2cd550bebb604b73a29a3a6c871544f7
4 N5f1fb0a01a684756bcb2b3c5416df723
5 N602b2f60134447728d65396d9d3d5fa2
6 Nb00fac5430a448549d29de732d86bad5
7 Nb3ff3bf199924f8eba8d3cdb4fe06675
8 Nb4eee0347e104932a4c421688609159c
9 Nc71f01b6af8b4b069ea2f09257c2ce77
10 Nd0e20e45fdcf49afa1c06d75d56abb2d
11 Nd74a09c958714ebb88c9698e049ff3d7
12 anzsrc-for:11
13 anzsrc-for:1103
14 schema:author N05e53c33108f474da2c0a5999ef138f6
15 schema:citation sg:pub.10.1007/s001130050491
16 sg:pub.10.1007/s00132-003-0593-0
17 sg:pub.10.1007/s00132-003-0619-7
18 sg:pub.10.1007/s00167-002-0334-7
19 schema:datePublished 2004-08-03
20 schema:datePublishedReg 2004-08-03
21 schema:description IntroductionValgus high tibial osteotomy is an established treatment for unicompartmental varus osteoarthritis. However, only little is known about the effect of osteotomy in the sagittal plane on biomechanical parameters such as cartilage pressure and joint kinematics. This study investigated the effects of high tibial flexion osteotomy in a human cadaver model.Materials and methodsSeven fresh human cadaveric knees underwent an opening wedge osteotomy of the proximal tibia in the sagittal plane. The osteotomy was opened anteriorly, and the tibial slope of the specimen was increased gradually. An isokinetic flexion-extension motion was simulated in a kinematic knee simulator. The contact pressure and topographic pressure distribution in the medial joint space was recorded using an electronic pressure-sensitive film. Simultaneously the motion of the tibial plateau was analyzed three-dimensionally by an ultrasonic tracking system. The traction force to the quadriceps tendon which was applied by the simulator for extension of the joint was continuously measured. The experiments were carried out with intact ligaments and then after successively cutting the posterior and anterior cruciate ligaments.ResultsThe results demonstrate that tibial flexion osteotomy leads to a significant alteration in pressure distribution on the tibial plateau. The tibiofemoral contact area and contact pressure was shifted anteriorly, which led to decompression of the posterior half of the plateau. Moreover, the increase in the slope resulted in a significant anterior and superior translation of the tibial plateau with respect to the femoral condyles. Posterior subluxation of the tibial head after cutting the posterior cruciate ligament was completely neutralized by the osteotomy. The increase in slope resulted in a significant higher quadriceps strength which was necessary for full knee extension.ConclusionsWe conclude from these results that changes in tibial slope have a strong effect on cartilage pressure and kinematics of the knee. Therapeutically a flexion osteotomy may be used for decompression of the degenerated cartilage in the posterior part of the plateau, for example, after arthroscopic partial posterior meniscectomy. If a valgus osteotomy is combined with a flexion component of the proximal tibia, complex knee pathologies consisting of posteromedial cartilage damage and posterior and posterolateral instability can be addressed in one procedure, which facilitates a quicker rehabilitation of these patients.
22 schema:genre article
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf N0d42b52debb54ce1b953ec6153a4f8f6
26 N68afacbe535c4f1a8c7ef622b281b744
27 sg:journal.1087582
28 schema:keywords ConclusionsWe
29 IntroductionValgus high tibial osteotomy
30 ResultsThe results
31 alterations
32 anterior cruciate ligament
33 area
34 arthroscopic partial posterior meniscectomy
35 biomechanical parameters
36 biomechanical study
37 cadaver model
38 cadaveric knees
39 cartilage
40 cartilage damage
41 cartilage pressure
42 changes
43 complex knee pathologies
44 components
45 condyle
46 contact area
47 contact pressure
48 cruciate ligament
49 damage
50 decompression
51 degenerated cartilage
52 distribution
53 effect
54 effect of osteotomy
55 electronic pressure-sensitive film
56 example
57 experiments
58 extension
59 femoral condyle
60 films
61 flexion component
62 flexion osteotomy
63 flexion-extension motion
64 force
65 fresh human cadaveric knees
66 full knee extension
67 half
68 head
69 high tibial flexion osteotomy
70 high tibial osteotomy
71 higher quadriceps strength
72 human cadaver model
73 human cadaveric knees
74 increase
75 instability
76 intact ligaments
77 isokinetic flexion-extension motion
78 joint kinematics
79 joint space
80 joints
81 kinematic knee simulator
82 kinematics
83 knee
84 knee extension
85 knee pathology
86 knee simulator
87 ligament
88 materials
89 medial joint space
90 meniscectomy
91 methodsSeven fresh human cadaveric knees
92 model
93 motion
94 osteoarthritis
95 osteotomy
96 parameters
97 part
98 partial posterior meniscectomy
99 pathology
100 patients
101 plane
102 plateau
103 posterior cruciate ligament
104 posterior half
105 posterior meniscectomy
106 posterior part
107 posterior subluxation
108 posterolateral instability
109 posteromedial cartilage damage
110 pressure
111 pressure distribution
112 pressure-sensitive film
113 procedure
114 proximal tibia
115 quadriceps strength
116 quadriceps tendon
117 quicker rehabilitation
118 rehabilitation
119 respect
120 results
121 sagittal plane
122 significant alterations
123 significant higher quadriceps strength
124 simulator
125 slope
126 space
127 specimen
128 strength
129 strong effect
130 study
131 subluxation
132 superior translation
133 system
134 tendon
135 tibia
136 tibial flexion osteotomy
137 tibial head
138 tibial osteotomy
139 tibial plateau
140 tibial slope
141 tibiofemoral contact area
142 topographic pressure distribution
143 tracking system
144 traction forces
145 translation
146 treatment
147 ultrasonic tracking system
148 unicompartmental varus osteoarthritis
149 valgus osteotomy
150 varus osteoarthritis
151 wedge osteotomy
152 schema:name Effect of high tibial flexion osteotomy on cartilage pressure and joint kinematics: a biomechanical study in human cadaveric knees
153 schema:pagination 575-584
154 schema:productId N132f0aa6382149cb9b772b1be9d5985f
155 N46703531f0be466aa4e9de70b67566f8
156 Nb29ab2796f7f4d43a77d7b25ad1cefb6
157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009896516
158 https://doi.org/10.1007/s00402-004-0728-8
159 schema:sdDatePublished 2022-01-01T18:13
160 schema:sdLicense https://scigraph.springernature.com/explorer/license/
161 schema:sdPublisher N30a3e60bfe1846ccb2778133ae79f77c
162 schema:url https://doi.org/10.1007/s00402-004-0728-8
163 sgo:license sg:explorer/license/
164 sgo:sdDataset articles
165 rdf:type schema:ScholarlyArticle
166 N02dd020f033c42bfb4e022d123f056c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Knee Joint
168 rdf:type schema:DefinedTerm
169 N05e53c33108f474da2c0a5999ef138f6 rdf:first sg:person.01267104021.49
170 rdf:rest N978e68596bad4f528fb32e21fbc3b26a
171 N0d42b52debb54ce1b953ec6153a4f8f6 schema:volumeNumber 124
172 rdf:type schema:PublicationVolume
173 N132f0aa6382149cb9b772b1be9d5985f schema:name dimensions_id
174 schema:value pub.1009896516
175 rdf:type schema:PropertyValue
176 N13f558dacf6e445b885ee7bca72fbac9 rdf:first sg:person.01114221457.27
177 rdf:rest Nfde520bd01504a9dba03e34a86e93816
178 N21173b9ab84844f5850dd847f265a0b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Biomechanical Phenomena
180 rdf:type schema:DefinedTerm
181 N2cd550bebb604b73a29a3a6c871544f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Male
183 rdf:type schema:DefinedTerm
184 N2f71899f35ee4f5c911d5cafe3b7cc02 rdf:first sg:person.016431527667.65
185 rdf:rest N13f558dacf6e445b885ee7bca72fbac9
186 N30a3e60bfe1846ccb2778133ae79f77c schema:name Springer Nature - SN SciGraph project
187 rdf:type schema:Organization
188 N46703531f0be466aa4e9de70b67566f8 schema:name pubmed_id
189 schema:value 15480717
190 rdf:type schema:PropertyValue
191 N5f1fb0a01a684756bcb2b3c5416df723 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Cartilage, Articular
193 rdf:type schema:DefinedTerm
194 N602b2f60134447728d65396d9d3d5fa2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
195 schema:name Aged
196 rdf:type schema:DefinedTerm
197 N68afacbe535c4f1a8c7ef622b281b744 schema:issueNumber 9
198 rdf:type schema:PublicationIssue
199 N978e68596bad4f528fb32e21fbc3b26a rdf:first sg:person.01155605277.36
200 rdf:rest N2f71899f35ee4f5c911d5cafe3b7cc02
201 Nb00fac5430a448549d29de732d86bad5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
202 schema:name Postoperative Period
203 rdf:type schema:DefinedTerm
204 Nb29ab2796f7f4d43a77d7b25ad1cefb6 schema:name doi
205 schema:value 10.1007/s00402-004-0728-8
206 rdf:type schema:PropertyValue
207 Nb3ff3bf199924f8eba8d3cdb4fe06675 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
208 schema:name Humans
209 rdf:type schema:DefinedTerm
210 Nb4eee0347e104932a4c421688609159c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
211 schema:name Tibia
212 rdf:type schema:DefinedTerm
213 Nc71f01b6af8b4b069ea2f09257c2ce77 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
214 schema:name Osteotomy
215 rdf:type schema:DefinedTerm
216 Nd0e20e45fdcf49afa1c06d75d56abb2d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
217 schema:name Pressure
218 rdf:type schema:DefinedTerm
219 Nd74a09c958714ebb88c9698e049ff3d7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
220 schema:name Aged, 80 and over
221 rdf:type schema:DefinedTerm
222 Nfde520bd01504a9dba03e34a86e93816 rdf:first sg:person.01121012050.09
223 rdf:rest rdf:nil
224 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
225 schema:name Medical and Health Sciences
226 rdf:type schema:DefinedTerm
227 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
228 schema:name Clinical Sciences
229 rdf:type schema:DefinedTerm
230 sg:journal.1087582 schema:issn 0936-8051
231 1434-3916
232 schema:name Archives of Orthopaedic and Trauma Surgery
233 schema:publisher Springer Nature
234 rdf:type schema:Periodical
235 sg:person.01114221457.27 schema:affiliation grid-institutes:grid.6936.a
236 schema:familyName Imhoff
237 schema:givenName A. B.
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114221457.27
239 rdf:type schema:Person
240 sg:person.01121012050.09 schema:affiliation grid-institutes:None
241 schema:familyName Lobenhoffer
242 schema:givenName P.
243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121012050.09
244 rdf:type schema:Person
245 sg:person.01155605277.36 schema:affiliation grid-institutes:grid.10423.34
246 schema:familyName Hurschler
247 schema:givenName C.
248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155605277.36
249 rdf:type schema:Person
250 sg:person.01267104021.49 schema:affiliation grid-institutes:None
251 schema:familyName Agneskirchner
252 schema:givenName J. D.
253 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267104021.49
254 rdf:type schema:Person
255 sg:person.016431527667.65 schema:affiliation grid-institutes:grid.10423.34
256 schema:familyName Stukenborg-Colsman
257 schema:givenName C.
258 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016431527667.65
259 rdf:type schema:Person
260 sg:pub.10.1007/s001130050491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012795486
261 https://doi.org/10.1007/s001130050491
262 rdf:type schema:CreativeWork
263 sg:pub.10.1007/s00132-003-0593-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040057667
264 https://doi.org/10.1007/s00132-003-0593-0
265 rdf:type schema:CreativeWork
266 sg:pub.10.1007/s00132-003-0619-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015846169
267 https://doi.org/10.1007/s00132-003-0619-7
268 rdf:type schema:CreativeWork
269 sg:pub.10.1007/s00167-002-0334-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022013889
270 https://doi.org/10.1007/s00167-002-0334-7
271 rdf:type schema:CreativeWork
272 grid-institutes:None schema:alternateName Department of Trauma and Reconstructive Surgery, Henriettenstiftung, Marienstrasse 72–90, 30171, Hanover, Germany
273 schema:name Department of Trauma and Reconstructive Surgery, Henriettenstiftung, Marienstrasse 72–90, 30171, Hanover, Germany
274 rdf:type schema:Organization
275 grid-institutes:grid.10423.34 schema:alternateName Institute for Biomechanics and Biomaterials, Hanover Medical School, Hanover, Germany
276 Orthopedic Department, Hanover Medical School, Hanover, Germany
277 schema:name Institute for Biomechanics and Biomaterials, Hanover Medical School, Hanover, Germany
278 Orthopedic Department, Hanover Medical School, Hanover, Germany
279 rdf:type schema:Organization
280 grid-institutes:grid.6936.a schema:alternateName Department of Orthopedic Sports Medicine, Technical University of Munich, Munich, Germany
281 schema:name Department of Orthopedic Sports Medicine, Technical University of Munich, Munich, Germany
282 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...