Nonlinear mechanical behavior of elastomers under tension/tension fatigue deformation as determined by Fourier transform View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-10-21

AUTHORS

Valerian Hirschberg, Shan Lyu, Manfred Wilhelm, Denis Rodrigue

ABSTRACT

The mechanical nonlinear visco-hyper-elastic behavior of elastomers via Fourier transform (FT) of the stress during cyclic sinusoidal strain controlled fatigue in tension/tension is investigated. FT allows to quantify the nonlinear contributions in the stress, changing due to ongoing fatigue, i.e., its deviation from a purely sinusoidal waveform via the intensities of the second (I2/1) and third (I3/1) normalized higher harmonics. Two commercial resins, ethylene–vinyl-acetate (EVA) and poly(ethylene-co-octene), a polyolefin elastomer (POE), are used. The nonlinear contributions in the stress depend on the strain amplitude, so strain sweep tests with different deformation ratio R (ratio of the minimum (εmin) over maximum (εmax) strain, R = εmin/ εmax), are performed, to understand and predict the FT spectra at the beginning of each fatigue test. Linear and nonlinear mechanical parameters are compared to those computed via Neo-Hooke, Mooney-Rivlin, Ogden, and Arruda-Boyce models. A modified Neo-Hookean model is proposed to fit the nonlinear visco-hyper-elastic mechanical behavior, covering the nonlinear contributions detectable for large strain amplitudes (I2/1 or I3/1 > 10−3), and the linear stress response (I2/1 and I3/1 < 10−3) occurring at very large strain amplitudes and R ratios. Finally, changes in the visco-hyper-elastic material behavior due to fatigue are detected and quantified via FT, showing that I2/1 and I3/1 are more sensitive parameters towards fatigue than storage (E’) and loss (E”) moduli. The I2/1 intensity is found to decrease to a minimum before increasing fast at failure for time-dependent measurements. This I2/1 minimum can be correlated to changes of the hyper-elastic material behavior from strain softening to strain hardening, occurring in the high cycle fatigue regime after about 50% and 70% of the total fatigue lifetime for POE and EVA, respectively. More... »

PAGES

787-801

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00397-021-01310-3

DOI

http://dx.doi.org/10.1007/s00397-021-01310-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1142048544


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstra\u00dfe 18, 76131, Karlsruhe, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7892.4", 
          "name": [
            "Department of Chemical Engineering and CERMA, Universit\u00e9 Laval, 1065 Avenue de la M\u00e9decine, G1V 0A6, Quebec, Canada", 
            "Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstra\u00dfe 18, 76131, Karlsruhe, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hirschberg", 
        "givenName": "Valerian", 
        "id": "sg:person.012045224665.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012045224665.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering and CERMA, Universit\u00e9 Laval, 1065 Avenue de la M\u00e9decine, G1V 0A6, Quebec, Canada", 
          "id": "http://www.grid.ac/institutes/grid.23856.3a", 
          "name": [
            "Department of Chemical Engineering and CERMA, Universit\u00e9 Laval, 1065 Avenue de la M\u00e9decine, G1V 0A6, Quebec, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lyu", 
        "givenName": "Shan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstra\u00dfe 18, 76131, Karlsruhe, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7892.4", 
          "name": [
            "Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstra\u00dfe 18, 76131, Karlsruhe, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wilhelm", 
        "givenName": "Manfred", 
        "id": "sg:person.01102204065.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102204065.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering and CERMA, Universit\u00e9 Laval, 1065 Avenue de la M\u00e9decine, G1V 0A6, Quebec, Canada", 
          "id": "http://www.grid.ac/institutes/grid.23856.3a", 
          "name": [
            "Department of Chemical Engineering and CERMA, Universit\u00e9 Laval, 1065 Avenue de la M\u00e9decine, G1V 0A6, Quebec, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rodrigue", 
        "givenName": "Denis", 
        "id": "sg:person.01060125511.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060125511.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00397-017-1046-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091881814", 
          "https://doi.org/10.1007/s00397-017-1046-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11029-010-9154-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026509273", 
          "https://doi.org/10.1007/s11029-010-9154-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1026029111723", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040357227", 
          "https://doi.org/10.1023/a:1026029111723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00419-014-0832-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051843615", 
          "https://doi.org/10.1007/s00419-014-0832-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12541-012-0099-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030963511", 
          "https://doi.org/10.1007/s12541-012-0099-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003970000158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014993559", 
          "https://doi.org/10.1007/s003970000158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-2114-9_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023582313", 
          "https://doi.org/10.1007/978-94-011-2114-9_4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-10-21", 
    "datePublishedReg": "2021-10-21", 
    "description": "The mechanical nonlinear visco-hyper-elastic behavior of elastomers via Fourier transform (FT) of the stress during cyclic sinusoidal strain controlled fatigue in tension/tension is investigated. FT allows to quantify the nonlinear contributions in the stress, changing due to ongoing fatigue, i.e., its deviation from a purely sinusoidal waveform via the intensities of the second (I2/1) and third (I3/1) normalized higher harmonics. Two commercial resins, ethylene\u2013vinyl-acetate (EVA) and poly(ethylene-co-octene), a polyolefin elastomer (POE), are used. The nonlinear contributions in the stress depend on the strain amplitude, so strain sweep tests with different deformation ratio R (ratio of the minimum (\u03b5min) over maximum (\u03b5max) strain, R\u2009=\u2009\u03b5min/ \u03b5max), are performed, to understand and predict the FT spectra at the beginning of each fatigue test. Linear and nonlinear mechanical parameters are compared to those computed via Neo-Hooke, Mooney-Rivlin, Ogden, and Arruda-Boyce models. A modified Neo-Hookean model is proposed to fit the nonlinear visco-hyper-elastic mechanical behavior, covering the nonlinear contributions detectable for large strain amplitudes (I2/1 or I3/1\u2009>\u200910\u22123), and the linear stress response (I2/1 and I3/1\u2009<\u200910\u22123) occurring at very large strain amplitudes and R ratios. Finally, changes in the visco-hyper-elastic material behavior due to fatigue are detected and quantified via FT, showing that I2/1 and I3/1 are more sensitive parameters towards fatigue than storage (E\u2019) and loss (E\u201d) moduli. The I2/1 intensity is found to decrease to a minimum before increasing fast at failure for time-dependent measurements. This I2/1 minimum can be correlated to changes of the hyper-elastic material behavior from strain softening to strain hardening, occurring in the high cycle fatigue regime after about 50% and 70% of the total fatigue lifetime for POE and EVA, respectively.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00397-021-01310-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1050722", 
        "issn": [
          "0035-4511", 
          "1435-1528"
        ], 
        "name": "Rheologica Acta", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "60"
      }
    ], 
    "keywords": [
      "large strain amplitudes", 
      "strain amplitude", 
      "polyolefin elastomer", 
      "mechanical behavior", 
      "material behavior", 
      "high cycle fatigue regime", 
      "Fourier transform", 
      "tension/tension", 
      "total fatigue lifetime", 
      "cycle fatigue regime", 
      "nonlinear mechanical behavior", 
      "neo-Hookean model", 
      "Arruda\u2013Boyce model", 
      "neo-Hooke", 
      "fatigue deformation", 
      "fatigue regime", 
      "fatigue lifetime", 
      "fatigue tests", 
      "nonlinear contributions", 
      "Mooney-Rivlin", 
      "mechanical parameters", 
      "sinusoidal waveform", 
      "sweep tests", 
      "loss modulus", 
      "sinusoidal strain", 
      "elastomers", 
      "commercial resins", 
      "time-dependent measurements", 
      "higher harmonics", 
      "ratio R", 
      "sensitive parameters", 
      "transform", 
      "fatigue", 
      "modulus", 
      "I3/1", 
      "deformation", 
      "behavior", 
      "stress", 
      "amplitude", 
      "harmonics", 
      "parameters", 
      "resin", 
      "waveforms", 
      "EVA", 
      "test", 
      "model", 
      "Ogden", 
      "storage", 
      "measurements", 
      "lifetime", 
      "tension", 
      "strains", 
      "regime", 
      "minimum", 
      "ratio", 
      "intensity", 
      "deviation", 
      "contribution", 
      "failure", 
      "spectra", 
      "changes", 
      "ongoing fatigue", 
      "acetate", 
      "response", 
      "beginning", 
      "FT spectra", 
      "stress response", 
      "mechanical nonlinear visco-hyper-elastic behavior", 
      "nonlinear visco-hyper-elastic behavior", 
      "visco-hyper-elastic behavior", 
      "cyclic sinusoidal strain", 
      "different deformation ratio R", 
      "deformation ratio R", 
      "nonlinear mechanical parameters", 
      "nonlinear visco-hyper-elastic mechanical behavior", 
      "visco-hyper-elastic mechanical behavior", 
      "linear stress response", 
      "visco-hyper-elastic material behavior", 
      "hyper-elastic material behavior", 
      "tension/tension fatigue deformation", 
      "tension fatigue deformation"
    ], 
    "name": "Nonlinear mechanical behavior of elastomers under tension/tension fatigue deformation as determined by Fourier transform", 
    "pagination": "787-801", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1142048544"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00397-021-01310-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00397-021-01310-3", 
      "https://app.dimensions.ai/details/publication/pub.1142048544"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T19:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_904.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00397-021-01310-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00397-021-01310-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00397-021-01310-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00397-021-01310-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00397-021-01310-3'


 

This table displays all metadata directly associated to this object as RDF triples.

191 TRIPLES      22 PREDICATES      113 URIs      98 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00397-021-01310-3 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N3fceafc1ac0b4ff2a76c615227411ac2
4 schema:citation sg:pub.10.1007/978-94-011-2114-9_4
5 sg:pub.10.1007/s00397-017-1046-8
6 sg:pub.10.1007/s003970000158
7 sg:pub.10.1007/s00419-014-0832-3
8 sg:pub.10.1007/s11029-010-9154-x
9 sg:pub.10.1007/s12541-012-0099-y
10 sg:pub.10.1023/a:1026029111723
11 schema:datePublished 2021-10-21
12 schema:datePublishedReg 2021-10-21
13 schema:description The mechanical nonlinear visco-hyper-elastic behavior of elastomers via Fourier transform (FT) of the stress during cyclic sinusoidal strain controlled fatigue in tension/tension is investigated. FT allows to quantify the nonlinear contributions in the stress, changing due to ongoing fatigue, i.e., its deviation from a purely sinusoidal waveform via the intensities of the second (I2/1) and third (I3/1) normalized higher harmonics. Two commercial resins, ethylene–vinyl-acetate (EVA) and poly(ethylene-co-octene), a polyolefin elastomer (POE), are used. The nonlinear contributions in the stress depend on the strain amplitude, so strain sweep tests with different deformation ratio R (ratio of the minimum (εmin) over maximum (εmax) strain, R = εmin/ εmax), are performed, to understand and predict the FT spectra at the beginning of each fatigue test. Linear and nonlinear mechanical parameters are compared to those computed via Neo-Hooke, Mooney-Rivlin, Ogden, and Arruda-Boyce models. A modified Neo-Hookean model is proposed to fit the nonlinear visco-hyper-elastic mechanical behavior, covering the nonlinear contributions detectable for large strain amplitudes (I2/1 or I3/1 > 10−3), and the linear stress response (I2/1 and I3/1 < 10−3) occurring at very large strain amplitudes and R ratios. Finally, changes in the visco-hyper-elastic material behavior due to fatigue are detected and quantified via FT, showing that I2/1 and I3/1 are more sensitive parameters towards fatigue than storage (E’) and loss (E”) moduli. The I2/1 intensity is found to decrease to a minimum before increasing fast at failure for time-dependent measurements. This I2/1 minimum can be correlated to changes of the hyper-elastic material behavior from strain softening to strain hardening, occurring in the high cycle fatigue regime after about 50% and 70% of the total fatigue lifetime for POE and EVA, respectively.
14 schema:genre article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N14d4071398a942c6a599869442824904
18 N5a87e9d52bf54df398656d07f6e12a09
19 sg:journal.1050722
20 schema:keywords Arruda–Boyce model
21 EVA
22 FT spectra
23 Fourier transform
24 I3/1
25 Mooney-Rivlin
26 Ogden
27 acetate
28 amplitude
29 beginning
30 behavior
31 changes
32 commercial resins
33 contribution
34 cycle fatigue regime
35 cyclic sinusoidal strain
36 deformation
37 deformation ratio R
38 deviation
39 different deformation ratio R
40 elastomers
41 failure
42 fatigue
43 fatigue deformation
44 fatigue lifetime
45 fatigue regime
46 fatigue tests
47 harmonics
48 high cycle fatigue regime
49 higher harmonics
50 hyper-elastic material behavior
51 intensity
52 large strain amplitudes
53 lifetime
54 linear stress response
55 loss modulus
56 material behavior
57 measurements
58 mechanical behavior
59 mechanical nonlinear visco-hyper-elastic behavior
60 mechanical parameters
61 minimum
62 model
63 modulus
64 neo-Hooke
65 neo-Hookean model
66 nonlinear contributions
67 nonlinear mechanical behavior
68 nonlinear mechanical parameters
69 nonlinear visco-hyper-elastic behavior
70 nonlinear visco-hyper-elastic mechanical behavior
71 ongoing fatigue
72 parameters
73 polyolefin elastomer
74 ratio
75 ratio R
76 regime
77 resin
78 response
79 sensitive parameters
80 sinusoidal strain
81 sinusoidal waveform
82 spectra
83 storage
84 strain amplitude
85 strains
86 stress
87 stress response
88 sweep tests
89 tension
90 tension fatigue deformation
91 tension/tension
92 tension/tension fatigue deformation
93 test
94 time-dependent measurements
95 total fatigue lifetime
96 transform
97 visco-hyper-elastic behavior
98 visco-hyper-elastic material behavior
99 visco-hyper-elastic mechanical behavior
100 waveforms
101 schema:name Nonlinear mechanical behavior of elastomers under tension/tension fatigue deformation as determined by Fourier transform
102 schema:pagination 787-801
103 schema:productId N4f9a535ccacf474aba01013a974fbeaf
104 N80bb35b16f3e4e1e967a733ff5b9960a
105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142048544
106 https://doi.org/10.1007/s00397-021-01310-3
107 schema:sdDatePublished 2022-01-01T19:00
108 schema:sdLicense https://scigraph.springernature.com/explorer/license/
109 schema:sdPublisher N670fb2cbc4c04a8c91faa48b2cc1bfa0
110 schema:url https://doi.org/10.1007/s00397-021-01310-3
111 sgo:license sg:explorer/license/
112 sgo:sdDataset articles
113 rdf:type schema:ScholarlyArticle
114 N14d4071398a942c6a599869442824904 schema:volumeNumber 60
115 rdf:type schema:PublicationVolume
116 N34a3b3688cd54e57823d581930f5c2e6 schema:affiliation grid-institutes:grid.23856.3a
117 schema:familyName Lyu
118 schema:givenName Shan
119 rdf:type schema:Person
120 N3fceafc1ac0b4ff2a76c615227411ac2 rdf:first sg:person.012045224665.21
121 rdf:rest Ndfa36b99cfb34ad98fa1d239424fbfa3
122 N4f9a535ccacf474aba01013a974fbeaf schema:name doi
123 schema:value 10.1007/s00397-021-01310-3
124 rdf:type schema:PropertyValue
125 N53d88c1c4260442587289e585083fd0a rdf:first sg:person.01102204065.09
126 rdf:rest N8118020f106e47c59e4fd494eb320599
127 N5a87e9d52bf54df398656d07f6e12a09 schema:issueNumber 12
128 rdf:type schema:PublicationIssue
129 N670fb2cbc4c04a8c91faa48b2cc1bfa0 schema:name Springer Nature - SN SciGraph project
130 rdf:type schema:Organization
131 N80bb35b16f3e4e1e967a733ff5b9960a schema:name dimensions_id
132 schema:value pub.1142048544
133 rdf:type schema:PropertyValue
134 N8118020f106e47c59e4fd494eb320599 rdf:first sg:person.01060125511.62
135 rdf:rest rdf:nil
136 Ndfa36b99cfb34ad98fa1d239424fbfa3 rdf:first N34a3b3688cd54e57823d581930f5c2e6
137 rdf:rest N53d88c1c4260442587289e585083fd0a
138 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
139 schema:name Engineering
140 rdf:type schema:DefinedTerm
141 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
142 schema:name Materials Engineering
143 rdf:type schema:DefinedTerm
144 sg:journal.1050722 schema:issn 0035-4511
145 1435-1528
146 schema:name Rheologica Acta
147 schema:publisher Springer Nature
148 rdf:type schema:Periodical
149 sg:person.01060125511.62 schema:affiliation grid-institutes:grid.23856.3a
150 schema:familyName Rodrigue
151 schema:givenName Denis
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060125511.62
153 rdf:type schema:Person
154 sg:person.01102204065.09 schema:affiliation grid-institutes:grid.7892.4
155 schema:familyName Wilhelm
156 schema:givenName Manfred
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102204065.09
158 rdf:type schema:Person
159 sg:person.012045224665.21 schema:affiliation grid-institutes:grid.7892.4
160 schema:familyName Hirschberg
161 schema:givenName Valerian
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012045224665.21
163 rdf:type schema:Person
164 sg:pub.10.1007/978-94-011-2114-9_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023582313
165 https://doi.org/10.1007/978-94-011-2114-9_4
166 rdf:type schema:CreativeWork
167 sg:pub.10.1007/s00397-017-1046-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091881814
168 https://doi.org/10.1007/s00397-017-1046-8
169 rdf:type schema:CreativeWork
170 sg:pub.10.1007/s003970000158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014993559
171 https://doi.org/10.1007/s003970000158
172 rdf:type schema:CreativeWork
173 sg:pub.10.1007/s00419-014-0832-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051843615
174 https://doi.org/10.1007/s00419-014-0832-3
175 rdf:type schema:CreativeWork
176 sg:pub.10.1007/s11029-010-9154-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026509273
177 https://doi.org/10.1007/s11029-010-9154-x
178 rdf:type schema:CreativeWork
179 sg:pub.10.1007/s12541-012-0099-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1030963511
180 https://doi.org/10.1007/s12541-012-0099-y
181 rdf:type schema:CreativeWork
182 sg:pub.10.1023/a:1026029111723 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040357227
183 https://doi.org/10.1023/a:1026029111723
184 rdf:type schema:CreativeWork
185 grid-institutes:grid.23856.3a schema:alternateName Department of Chemical Engineering and CERMA, Université Laval, 1065 Avenue de la Médecine, G1V 0A6, Quebec, Canada
186 schema:name Department of Chemical Engineering and CERMA, Université Laval, 1065 Avenue de la Médecine, G1V 0A6, Quebec, Canada
187 rdf:type schema:Organization
188 grid-institutes:grid.7892.4 schema:alternateName Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76131, Karlsruhe, Germany
189 schema:name Department of Chemical Engineering and CERMA, Université Laval, 1065 Avenue de la Médecine, G1V 0A6, Quebec, Canada
190 Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76131, Karlsruhe, Germany
191 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...