Elongational viscosity and brittle fracture of bidisperse blends of a high and several low molar mass polystyrenes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-10-22

AUTHORS

Manfred H. Wagner, Esmaeil Narimissa, Taisir Shahid

ABSTRACT

Elongational viscosity data of four well-characterized blends consisting of 10% mass fraction of monodisperse polystyrene PS-820k (molar mass of 820 kg/mol) and 90% matrix polystyrenes with a molar mass of 8.8, 23, 34, and 73 kg/mol, respectively, as reported by Shahid et al. Macromolecules 52: 2521–2530, 2019 are analyzed by the extended interchain pressure (EIP) model including the effects of finite chain extensibility and filament rupture. Except for the linear-viscoelastic contribution of the matrix, the elongational viscosity of the blends is mainly determined by the high molar mass component PS-820k at elongation rates when no stretching of the lower molar mass matrix chains is expected. The stretching of the long chains is shown to be widely independent of the molar mass of the matrix reaching from non-entangled oligomeric styrene (8.8 kg/mol) to well-entangled polystyrene (73kg/mol). Quantitative agreement between data and model can be obtained when taking the interaction of the long chains of PS-820k with the shorter matrix chains of PS-23k, PS-34k, and PS-73k into account. The interaction of long and short chains leads to additional entanglements along the long chains of PS-820k, which slow down relaxation of the long chains, as clearly seen in the linear-viscoelastic behavior. According to the EIP model, an increased number of entanglements also lead to enhanced interchain pressure, which limits maximal stretch. The reduced maximal stretch of the long chains due to entanglements of long chains with shorter matrix chains is quantified by introducing an effective polymer fraction of the long chains, which increases with the increasing length of the matrix chains resulting in the excellent agreement of experimental data and model predictions. More... »

PAGES

803-817

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00397-021-01304-1

DOI

http://dx.doi.org/10.1007/s00397-021-01304-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1142075098


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0913", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mechanical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Polymer Engineering/Polymer Physics, Berlin Institute of Technology (TU Berlin), Ernst-Reuter-Platz 1, 10587, Berlin, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6734.6", 
          "name": [
            "Polymer Engineering/Polymer Physics, Berlin Institute of Technology (TU Berlin), Ernst-Reuter-Platz 1, 10587, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wagner", 
        "givenName": "Manfred H.", 
        "id": "sg:person.014172661324.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014172661324.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dept. of Chemical Engineering, Guangdong Technion\u2013Israel Institute of Technology (GTIIT), 515063, Shantou, China", 
          "id": "http://www.grid.ac/institutes/grid.499254.7", 
          "name": [
            "Dept. of Chemical Engineering, Technion\u2013Israel Institute of Technology (IIT), Technion City, 32 000, Haifa, Israel", 
            "Dept. of Chemical Engineering, Guangdong Technion\u2013Israel Institute of Technology (GTIIT), 515063, Shantou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Narimissa", 
        "givenName": "Esmaeil", 
        "id": "sg:person.012001743455.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012001743455.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "DSM Materials Science Center, P.O. Box 18, NL-6160 MD, Geleen, The Netherlands", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Bio and Soft Matter, Institute on Condensed Matter and Nanoscience, Universit\u00e9 Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium", 
            "DSM Materials Science Center, P.O. Box 18, NL-6160 MD, Geleen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shahid", 
        "givenName": "Taisir", 
        "id": "sg:person.016356417601.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016356417601.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01329306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016506343", 
          "https://doi.org/10.1007/bf01329306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00397-016-0921-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039132038", 
          "https://doi.org/10.1007/s00397-016-0921-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00397-005-0041-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015870381", 
          "https://doi.org/10.1007/s00397-005-0041-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00397-020-01215-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1128191030", 
          "https://doi.org/10.1007/s00397-020-01215-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00366640", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051196433", 
          "https://doi.org/10.1007/bf00366640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00397-014-0791-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045706487", 
          "https://doi.org/10.1007/s00397-014-0791-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00397-021-01261-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1135906197", 
          "https://doi.org/10.1007/s00397-021-01261-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00397-021-01277-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1138859454", 
          "https://doi.org/10.1007/s00397-021-01277-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-10-22", 
    "datePublishedReg": "2021-10-22", 
    "description": "Elongational viscosity data of four well-characterized blends consisting of 10% mass fraction of monodisperse polystyrene PS-820k (molar mass of 820 kg/mol) and 90% matrix polystyrenes with a molar mass of 8.8, 23, 34, and 73 kg/mol, respectively, as reported by Shahid et al. Macromolecules 52: 2521\u20132530, 2019 are analyzed by the extended interchain pressure (EIP) model including the effects of finite chain extensibility and filament rupture. Except for the linear-viscoelastic contribution of the matrix, the elongational viscosity of the blends is mainly determined by the high molar mass component PS-820k at elongation rates when no stretching of the lower molar mass matrix chains is expected. The stretching of the long chains is shown to be widely independent of the molar mass of the matrix reaching from non-entangled oligomeric styrene (8.8 kg/mol) to well-entangled polystyrene (73kg/mol). Quantitative agreement between data and model can be obtained when taking the interaction of the long chains of PS-820k with the shorter matrix chains of PS-23k, PS-34k, and PS-73k into account. The interaction of long and short chains leads to additional entanglements along the long chains of PS-820k, which slow down relaxation of the long chains, as clearly seen in the linear-viscoelastic behavior. According to the EIP model, an increased number of entanglements also lead to enhanced interchain pressure, which limits maximal stretch. The reduced maximal stretch of the long chains due to entanglements of long chains with shorter matrix chains is quantified by introducing an effective polymer fraction of the long chains, which increases with the increasing length of the matrix chains resulting in the excellent agreement of experimental data and model predictions.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00397-021-01304-1", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1050722", 
        "issn": [
          "0035-4511", 
          "1435-1528"
        ], 
        "name": "Rheologica Acta", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "60"
      }
    ], 
    "keywords": [
      "elongational viscosity data", 
      "matrix chains", 
      "quantitative agreement", 
      "number of entanglements", 
      "finite chain extensibility", 
      "chain extensibility", 
      "elongational viscosity", 
      "additional entanglement", 
      "entanglement", 
      "maximal stretch", 
      "excellent agreement", 
      "experimental data", 
      "model predictions", 
      "matrix polystyrene", 
      "et al", 
      "pressure model", 
      "model", 
      "matrix", 
      "long chain", 
      "oligomeric styrene", 
      "linear viscoelastic behavior", 
      "mass fraction", 
      "filament rupture", 
      "chain", 
      "agreement", 
      "relaxation", 
      "brittle fracture", 
      "viscosity data", 
      "data", 
      "blends", 
      "polystyrene", 
      "mass", 
      "al", 
      "viscosity", 
      "stretching", 
      "interaction", 
      "account", 
      "short chains", 
      "number", 
      "interchain pressure", 
      "prediction", 
      "fraction", 
      "molar mass", 
      "contribution", 
      "behavior", 
      "EIP model", 
      "polymer fractions", 
      "length", 
      "bidisperse blends", 
      "mass polystyrenes", 
      "effect", 
      "extensibility", 
      "rupture", 
      "elongation rate", 
      "rate", 
      "styrene", 
      "pressure", 
      "stretch", 
      "fractures", 
      "monodisperse polystyrene PS-820k", 
      "polystyrene PS-820k", 
      "PS-820k", 
      "Shahid et al", 
      "extended interchain pressure (EIP) model", 
      "interchain pressure (EIP) model", 
      "linear-viscoelastic contribution", 
      "high molar mass component PS-820k", 
      "molar mass component PS-820k", 
      "mass component PS-820k", 
      "component PS-820k", 
      "lower molar mass matrix chains", 
      "molar mass matrix chains", 
      "mass matrix chains", 
      "non-entangled oligomeric styrene", 
      "shorter matrix chains", 
      "PS-23k", 
      "PS-34k", 
      "PS-73k", 
      "enhanced interchain pressure", 
      "effective polymer fraction", 
      "low molar mass polystyrenes", 
      "molar mass polystyrenes"
    ], 
    "name": "Elongational viscosity and brittle fracture of bidisperse blends of a high and several low molar mass polystyrenes", 
    "pagination": "803-817", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1142075098"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00397-021-01304-1"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00397-021-01304-1", 
      "https://app.dimensions.ai/details/publication/pub.1142075098"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T19:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_889.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00397-021-01304-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00397-021-01304-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00397-021-01304-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00397-021-01304-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00397-021-01304-1'


 

This table displays all metadata directly associated to this object as RDF triples.

202 TRIPLES      22 PREDICATES      117 URIs      99 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00397-021-01304-1 schema:about anzsrc-for:09
2 anzsrc-for:0904
3 anzsrc-for:0913
4 anzsrc-for:0915
5 schema:author N32db27a088ed4453bfc91feadae094c3
6 schema:citation sg:pub.10.1007/bf00366640
7 sg:pub.10.1007/bf01329306
8 sg:pub.10.1007/s00397-005-0041-7
9 sg:pub.10.1007/s00397-014-0791-1
10 sg:pub.10.1007/s00397-016-0921-z
11 sg:pub.10.1007/s00397-020-01215-7
12 sg:pub.10.1007/s00397-021-01261-9
13 sg:pub.10.1007/s00397-021-01277-1
14 schema:datePublished 2021-10-22
15 schema:datePublishedReg 2021-10-22
16 schema:description Elongational viscosity data of four well-characterized blends consisting of 10% mass fraction of monodisperse polystyrene PS-820k (molar mass of 820 kg/mol) and 90% matrix polystyrenes with a molar mass of 8.8, 23, 34, and 73 kg/mol, respectively, as reported by Shahid et al. Macromolecules 52: 2521–2530, 2019 are analyzed by the extended interchain pressure (EIP) model including the effects of finite chain extensibility and filament rupture. Except for the linear-viscoelastic contribution of the matrix, the elongational viscosity of the blends is mainly determined by the high molar mass component PS-820k at elongation rates when no stretching of the lower molar mass matrix chains is expected. The stretching of the long chains is shown to be widely independent of the molar mass of the matrix reaching from non-entangled oligomeric styrene (8.8 kg/mol) to well-entangled polystyrene (73kg/mol). Quantitative agreement between data and model can be obtained when taking the interaction of the long chains of PS-820k with the shorter matrix chains of PS-23k, PS-34k, and PS-73k into account. The interaction of long and short chains leads to additional entanglements along the long chains of PS-820k, which slow down relaxation of the long chains, as clearly seen in the linear-viscoelastic behavior. According to the EIP model, an increased number of entanglements also lead to enhanced interchain pressure, which limits maximal stretch. The reduced maximal stretch of the long chains due to entanglements of long chains with shorter matrix chains is quantified by introducing an effective polymer fraction of the long chains, which increases with the increasing length of the matrix chains resulting in the excellent agreement of experimental data and model predictions.
17 schema:genre article
18 schema:inLanguage en
19 schema:isAccessibleForFree true
20 schema:isPartOf N659bbb0bc47e40a2b6520555e0d3accd
21 Nad97660661684b199163c85f9a7f0a63
22 sg:journal.1050722
23 schema:keywords EIP model
24 PS-23k
25 PS-34k
26 PS-73k
27 PS-820k
28 Shahid et al
29 account
30 additional entanglement
31 agreement
32 al
33 behavior
34 bidisperse blends
35 blends
36 brittle fracture
37 chain
38 chain extensibility
39 component PS-820k
40 contribution
41 data
42 effect
43 effective polymer fraction
44 elongation rate
45 elongational viscosity
46 elongational viscosity data
47 enhanced interchain pressure
48 entanglement
49 et al
50 excellent agreement
51 experimental data
52 extended interchain pressure (EIP) model
53 extensibility
54 filament rupture
55 finite chain extensibility
56 fraction
57 fractures
58 high molar mass component PS-820k
59 interaction
60 interchain pressure
61 interchain pressure (EIP) model
62 length
63 linear viscoelastic behavior
64 linear-viscoelastic contribution
65 long chain
66 low molar mass polystyrenes
67 lower molar mass matrix chains
68 mass
69 mass component PS-820k
70 mass fraction
71 mass matrix chains
72 mass polystyrenes
73 matrix
74 matrix chains
75 matrix polystyrene
76 maximal stretch
77 model
78 model predictions
79 molar mass
80 molar mass component PS-820k
81 molar mass matrix chains
82 molar mass polystyrenes
83 monodisperse polystyrene PS-820k
84 non-entangled oligomeric styrene
85 number
86 number of entanglements
87 oligomeric styrene
88 polymer fractions
89 polystyrene
90 polystyrene PS-820k
91 prediction
92 pressure
93 pressure model
94 quantitative agreement
95 rate
96 relaxation
97 rupture
98 short chains
99 shorter matrix chains
100 stretch
101 stretching
102 styrene
103 viscosity
104 viscosity data
105 schema:name Elongational viscosity and brittle fracture of bidisperse blends of a high and several low molar mass polystyrenes
106 schema:pagination 803-817
107 schema:productId N003aa4d45b234355baabe229f9cf8e22
108 Nf641c0755c7242fab719d7d40f937df3
109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142075098
110 https://doi.org/10.1007/s00397-021-01304-1
111 schema:sdDatePublished 2022-01-01T19:01
112 schema:sdLicense https://scigraph.springernature.com/explorer/license/
113 schema:sdPublisher Nac6d50c60a364b8aa956fd84fec055cd
114 schema:url https://doi.org/10.1007/s00397-021-01304-1
115 sgo:license sg:explorer/license/
116 sgo:sdDataset articles
117 rdf:type schema:ScholarlyArticle
118 N003aa4d45b234355baabe229f9cf8e22 schema:name dimensions_id
119 schema:value pub.1142075098
120 rdf:type schema:PropertyValue
121 N2b05cbba9e0b47bab8fcaa56d8f9b83b rdf:first sg:person.012001743455.31
122 rdf:rest Ned010d2e3b494467be217909618fd217
123 N32db27a088ed4453bfc91feadae094c3 rdf:first sg:person.014172661324.79
124 rdf:rest N2b05cbba9e0b47bab8fcaa56d8f9b83b
125 N659bbb0bc47e40a2b6520555e0d3accd schema:volumeNumber 60
126 rdf:type schema:PublicationVolume
127 Nac6d50c60a364b8aa956fd84fec055cd schema:name Springer Nature - SN SciGraph project
128 rdf:type schema:Organization
129 Nad97660661684b199163c85f9a7f0a63 schema:issueNumber 12
130 rdf:type schema:PublicationIssue
131 Ned010d2e3b494467be217909618fd217 rdf:first sg:person.016356417601.31
132 rdf:rest rdf:nil
133 Nf641c0755c7242fab719d7d40f937df3 schema:name doi
134 schema:value 10.1007/s00397-021-01304-1
135 rdf:type schema:PropertyValue
136 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
137 schema:name Engineering
138 rdf:type schema:DefinedTerm
139 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
140 schema:name Chemical Engineering
141 rdf:type schema:DefinedTerm
142 anzsrc-for:0913 schema:inDefinedTermSet anzsrc-for:
143 schema:name Mechanical Engineering
144 rdf:type schema:DefinedTerm
145 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
146 schema:name Interdisciplinary Engineering
147 rdf:type schema:DefinedTerm
148 sg:journal.1050722 schema:issn 0035-4511
149 1435-1528
150 schema:name Rheologica Acta
151 schema:publisher Springer Nature
152 rdf:type schema:Periodical
153 sg:person.012001743455.31 schema:affiliation grid-institutes:grid.499254.7
154 schema:familyName Narimissa
155 schema:givenName Esmaeil
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012001743455.31
157 rdf:type schema:Person
158 sg:person.014172661324.79 schema:affiliation grid-institutes:grid.6734.6
159 schema:familyName Wagner
160 schema:givenName Manfred H.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014172661324.79
162 rdf:type schema:Person
163 sg:person.016356417601.31 schema:affiliation grid-institutes:None
164 schema:familyName Shahid
165 schema:givenName Taisir
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016356417601.31
167 rdf:type schema:Person
168 sg:pub.10.1007/bf00366640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051196433
169 https://doi.org/10.1007/bf00366640
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/bf01329306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016506343
172 https://doi.org/10.1007/bf01329306
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/s00397-005-0041-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015870381
175 https://doi.org/10.1007/s00397-005-0041-7
176 rdf:type schema:CreativeWork
177 sg:pub.10.1007/s00397-014-0791-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045706487
178 https://doi.org/10.1007/s00397-014-0791-1
179 rdf:type schema:CreativeWork
180 sg:pub.10.1007/s00397-016-0921-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1039132038
181 https://doi.org/10.1007/s00397-016-0921-z
182 rdf:type schema:CreativeWork
183 sg:pub.10.1007/s00397-020-01215-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1128191030
184 https://doi.org/10.1007/s00397-020-01215-7
185 rdf:type schema:CreativeWork
186 sg:pub.10.1007/s00397-021-01261-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135906197
187 https://doi.org/10.1007/s00397-021-01261-9
188 rdf:type schema:CreativeWork
189 sg:pub.10.1007/s00397-021-01277-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1138859454
190 https://doi.org/10.1007/s00397-021-01277-1
191 rdf:type schema:CreativeWork
192 grid-institutes:None schema:alternateName DSM Materials Science Center, P.O. Box 18, NL-6160 MD, Geleen, The Netherlands
193 schema:name Bio and Soft Matter, Institute on Condensed Matter and Nanoscience, Université Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium
194 DSM Materials Science Center, P.O. Box 18, NL-6160 MD, Geleen, The Netherlands
195 rdf:type schema:Organization
196 grid-institutes:grid.499254.7 schema:alternateName Dept. of Chemical Engineering, Guangdong Technion–Israel Institute of Technology (GTIIT), 515063, Shantou, China
197 schema:name Dept. of Chemical Engineering, Guangdong Technion–Israel Institute of Technology (GTIIT), 515063, Shantou, China
198 Dept. of Chemical Engineering, Technion–Israel Institute of Technology (IIT), Technion City, 32 000, Haifa, Israel
199 rdf:type schema:Organization
200 grid-institutes:grid.6734.6 schema:alternateName Polymer Engineering/Polymer Physics, Berlin Institute of Technology (TU Berlin), Ernst-Reuter-Platz 1, 10587, Berlin, Germany
201 schema:name Polymer Engineering/Polymer Physics, Berlin Institute of Technology (TU Berlin), Ernst-Reuter-Platz 1, 10587, Berlin, Germany
202 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...