Elongational viscosity and brittle fracture of bidisperse blends of a high and several low molar mass polystyrenes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-10-22

AUTHORS

Manfred H. Wagner, Esmaeil Narimissa, Taisir Shahid

ABSTRACT

Elongational viscosity data of four well-characterized blends consisting of 10% mass fraction of monodisperse polystyrene PS-820k (molar mass of 820 kg/mol) and 90% matrix polystyrenes with a molar mass of 8.8, 23, 34, and 73 kg/mol, respectively, as reported by Shahid et al. Macromolecules 52: 2521–2530, 2019 are analyzed by the extended interchain pressure (EIP) model including the effects of finite chain extensibility and filament rupture. Except for the linear-viscoelastic contribution of the matrix, the elongational viscosity of the blends is mainly determined by the high molar mass component PS-820k at elongation rates when no stretching of the lower molar mass matrix chains is expected. The stretching of the long chains is shown to be widely independent of the molar mass of the matrix reaching from non-entangled oligomeric styrene (8.8 kg/mol) to well-entangled polystyrene (73kg/mol). Quantitative agreement between data and model can be obtained when taking the interaction of the long chains of PS-820k with the shorter matrix chains of PS-23k, PS-34k, and PS-73k into account. The interaction of long and short chains leads to additional entanglements along the long chains of PS-820k, which slow down relaxation of the long chains, as clearly seen in the linear-viscoelastic behavior. According to the EIP model, an increased number of entanglements also lead to enhanced interchain pressure, which limits maximal stretch. The reduced maximal stretch of the long chains due to entanglements of long chains with shorter matrix chains is quantified by introducing an effective polymer fraction of the long chains, which increases with the increasing length of the matrix chains resulting in the excellent agreement of experimental data and model predictions. More... »

PAGES

803-817

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00397-021-01304-1

DOI

http://dx.doi.org/10.1007/s00397-021-01304-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1142075098


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0913", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mechanical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Polymer Engineering/Polymer Physics, Berlin Institute of Technology (TU Berlin), Ernst-Reuter-Platz 1, 10587, Berlin, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6734.6", 
          "name": [
            "Polymer Engineering/Polymer Physics, Berlin Institute of Technology (TU Berlin), Ernst-Reuter-Platz 1, 10587, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wagner", 
        "givenName": "Manfred H.", 
        "id": "sg:person.014172661324.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014172661324.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dept. of Chemical Engineering, Guangdong Technion\u2013Israel Institute of Technology (GTIIT), 515063, Shantou, China", 
          "id": "http://www.grid.ac/institutes/grid.499254.7", 
          "name": [
            "Dept. of Chemical Engineering, Technion\u2013Israel Institute of Technology (IIT), Technion City, 32 000, Haifa, Israel", 
            "Dept. of Chemical Engineering, Guangdong Technion\u2013Israel Institute of Technology (GTIIT), 515063, Shantou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Narimissa", 
        "givenName": "Esmaeil", 
        "id": "sg:person.012001743455.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012001743455.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "DSM Materials Science Center, P.O. Box 18, NL-6160 MD, Geleen, The Netherlands", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Bio and Soft Matter, Institute on Condensed Matter and Nanoscience, Universit\u00e9 Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium", 
            "DSM Materials Science Center, P.O. Box 18, NL-6160 MD, Geleen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shahid", 
        "givenName": "Taisir", 
        "id": "sg:person.016356417601.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016356417601.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00397-005-0041-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015870381", 
          "https://doi.org/10.1007/s00397-005-0041-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00397-021-01261-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1135906197", 
          "https://doi.org/10.1007/s00397-021-01261-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00397-021-01277-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1138859454", 
          "https://doi.org/10.1007/s00397-021-01277-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00397-020-01215-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1128191030", 
          "https://doi.org/10.1007/s00397-020-01215-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01329306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016506343", 
          "https://doi.org/10.1007/bf01329306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00366640", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051196433", 
          "https://doi.org/10.1007/bf00366640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00397-016-0921-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039132038", 
          "https://doi.org/10.1007/s00397-016-0921-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00397-014-0791-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045706487", 
          "https://doi.org/10.1007/s00397-014-0791-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-10-22", 
    "datePublishedReg": "2021-10-22", 
    "description": "Elongational viscosity data of four well-characterized blends consisting of 10% mass fraction of monodisperse polystyrene PS-820k (molar mass of 820 kg/mol) and 90% matrix polystyrenes with a molar mass of 8.8, 23, 34, and 73 kg/mol, respectively, as reported by Shahid et al. Macromolecules 52: 2521\u20132530, 2019 are analyzed by the extended interchain pressure (EIP) model including the effects of finite chain extensibility and filament rupture. Except for the linear-viscoelastic contribution of the matrix, the elongational viscosity of the blends is mainly determined by the high molar mass component PS-820k at elongation rates when no stretching of the lower molar mass matrix chains is expected. The stretching of the long chains is shown to be widely independent of the molar mass of the matrix reaching from non-entangled oligomeric styrene (8.8 kg/mol) to well-entangled polystyrene (73kg/mol). Quantitative agreement between data and model can be obtained when taking the interaction of the long chains of PS-820k with the shorter matrix chains of PS-23k, PS-34k, and PS-73k into account. The interaction of long and short chains leads to additional entanglements along the long chains of PS-820k, which slow down relaxation of the long chains, as clearly seen in the linear-viscoelastic behavior. According to the EIP model, an increased number of entanglements also lead to enhanced interchain pressure, which limits maximal stretch. The reduced maximal stretch of the long chains due to entanglements of long chains with shorter matrix chains is quantified by introducing an effective polymer fraction of the long chains, which increases with the increasing length of the matrix chains resulting in the excellent agreement of experimental data and model predictions.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00397-021-01304-1", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1050722", 
        "issn": [
          "0035-4511", 
          "1435-1528"
        ], 
        "name": "Rheologica Acta", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "60"
      }
    ], 
    "keywords": [
      "shorter matrix chains", 
      "finite chain extensibility", 
      "matrix chains", 
      "quantitative agreement", 
      "number of entanglements", 
      "chain extensibility", 
      "elongational viscosity", 
      "additional entanglements", 
      "entanglement", 
      "maximal stretch", 
      "excellent agreement", 
      "experimental data", 
      "model predictions", 
      "elongational viscosity data", 
      "et al", 
      "pressure model", 
      "model", 
      "matrix", 
      "long chain", 
      "linear viscoelastic behavior", 
      "bidisperse blends", 
      "mass fraction", 
      "matrix polystyrene", 
      "extended interchain pressure (EIP) model", 
      "filament rupture", 
      "chain", 
      "agreement", 
      "relaxation", 
      "brittle fracture", 
      "viscosity data", 
      "data", 
      "blends", 
      "polystyrene", 
      "mass", 
      "al", 
      "viscosity", 
      "stretching", 
      "oligomeric styrene", 
      "interaction", 
      "account", 
      "short chains", 
      "number", 
      "interchain pressure", 
      "polymer fractions", 
      "prediction", 
      "fraction", 
      "molar mass", 
      "contribution", 
      "behavior", 
      "EIP model", 
      "length", 
      "mass polystyrenes", 
      "effect", 
      "extensibility", 
      "rupture", 
      "elongation rate", 
      "rate", 
      "styrene", 
      "pressure", 
      "stretch", 
      "fractures"
    ], 
    "name": "Elongational viscosity and brittle fracture of bidisperse blends of a high and several low molar mass polystyrenes", 
    "pagination": "803-817", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1142075098"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00397-021-01304-1"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00397-021-01304-1", 
      "https://app.dimensions.ai/details/publication/pub.1142075098"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_891.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00397-021-01304-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00397-021-01304-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00397-021-01304-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00397-021-01304-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00397-021-01304-1'


 

This table displays all metadata directly associated to this object as RDF triples.

181 TRIPLES      22 PREDICATES      96 URIs      78 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00397-021-01304-1 schema:about anzsrc-for:09
2 anzsrc-for:0904
3 anzsrc-for:0913
4 anzsrc-for:0915
5 schema:author N181f066e593641a5905008e354e044d3
6 schema:citation sg:pub.10.1007/bf00366640
7 sg:pub.10.1007/bf01329306
8 sg:pub.10.1007/s00397-005-0041-7
9 sg:pub.10.1007/s00397-014-0791-1
10 sg:pub.10.1007/s00397-016-0921-z
11 sg:pub.10.1007/s00397-020-01215-7
12 sg:pub.10.1007/s00397-021-01261-9
13 sg:pub.10.1007/s00397-021-01277-1
14 schema:datePublished 2021-10-22
15 schema:datePublishedReg 2021-10-22
16 schema:description Elongational viscosity data of four well-characterized blends consisting of 10% mass fraction of monodisperse polystyrene PS-820k (molar mass of 820 kg/mol) and 90% matrix polystyrenes with a molar mass of 8.8, 23, 34, and 73 kg/mol, respectively, as reported by Shahid et al. Macromolecules 52: 2521–2530, 2019 are analyzed by the extended interchain pressure (EIP) model including the effects of finite chain extensibility and filament rupture. Except for the linear-viscoelastic contribution of the matrix, the elongational viscosity of the blends is mainly determined by the high molar mass component PS-820k at elongation rates when no stretching of the lower molar mass matrix chains is expected. The stretching of the long chains is shown to be widely independent of the molar mass of the matrix reaching from non-entangled oligomeric styrene (8.8 kg/mol) to well-entangled polystyrene (73kg/mol). Quantitative agreement between data and model can be obtained when taking the interaction of the long chains of PS-820k with the shorter matrix chains of PS-23k, PS-34k, and PS-73k into account. The interaction of long and short chains leads to additional entanglements along the long chains of PS-820k, which slow down relaxation of the long chains, as clearly seen in the linear-viscoelastic behavior. According to the EIP model, an increased number of entanglements also lead to enhanced interchain pressure, which limits maximal stretch. The reduced maximal stretch of the long chains due to entanglements of long chains with shorter matrix chains is quantified by introducing an effective polymer fraction of the long chains, which increases with the increasing length of the matrix chains resulting in the excellent agreement of experimental data and model predictions.
17 schema:genre article
18 schema:inLanguage en
19 schema:isAccessibleForFree true
20 schema:isPartOf N417cdfe789cd4fd28498c3761ec4094e
21 N473e0b03943c4c9b889c2accc20ff63a
22 sg:journal.1050722
23 schema:keywords EIP model
24 account
25 additional entanglements
26 agreement
27 al
28 behavior
29 bidisperse blends
30 blends
31 brittle fracture
32 chain
33 chain extensibility
34 contribution
35 data
36 effect
37 elongation rate
38 elongational viscosity
39 elongational viscosity data
40 entanglement
41 et al
42 excellent agreement
43 experimental data
44 extended interchain pressure (EIP) model
45 extensibility
46 filament rupture
47 finite chain extensibility
48 fraction
49 fractures
50 interaction
51 interchain pressure
52 length
53 linear viscoelastic behavior
54 long chain
55 mass
56 mass fraction
57 mass polystyrenes
58 matrix
59 matrix chains
60 matrix polystyrene
61 maximal stretch
62 model
63 model predictions
64 molar mass
65 number
66 number of entanglements
67 oligomeric styrene
68 polymer fractions
69 polystyrene
70 prediction
71 pressure
72 pressure model
73 quantitative agreement
74 rate
75 relaxation
76 rupture
77 short chains
78 shorter matrix chains
79 stretch
80 stretching
81 styrene
82 viscosity
83 viscosity data
84 schema:name Elongational viscosity and brittle fracture of bidisperse blends of a high and several low molar mass polystyrenes
85 schema:pagination 803-817
86 schema:productId N3b9ec953612145719d2f2e639852484b
87 Nb0c65a9a42984df6bd63496a63d7f0c2
88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142075098
89 https://doi.org/10.1007/s00397-021-01304-1
90 schema:sdDatePublished 2022-05-20T07:38
91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
92 schema:sdPublisher N12b87b4bfdca4193ab52ac4a8a323aa2
93 schema:url https://doi.org/10.1007/s00397-021-01304-1
94 sgo:license sg:explorer/license/
95 sgo:sdDataset articles
96 rdf:type schema:ScholarlyArticle
97 N10877a82d4934af3b1f69f7d13dcf347 rdf:first sg:person.016356417601.31
98 rdf:rest rdf:nil
99 N12b87b4bfdca4193ab52ac4a8a323aa2 schema:name Springer Nature - SN SciGraph project
100 rdf:type schema:Organization
101 N181f066e593641a5905008e354e044d3 rdf:first sg:person.014172661324.79
102 rdf:rest Nda4aad13ac904564892f413270a867f2
103 N3b9ec953612145719d2f2e639852484b schema:name doi
104 schema:value 10.1007/s00397-021-01304-1
105 rdf:type schema:PropertyValue
106 N417cdfe789cd4fd28498c3761ec4094e schema:issueNumber 12
107 rdf:type schema:PublicationIssue
108 N473e0b03943c4c9b889c2accc20ff63a schema:volumeNumber 60
109 rdf:type schema:PublicationVolume
110 Nb0c65a9a42984df6bd63496a63d7f0c2 schema:name dimensions_id
111 schema:value pub.1142075098
112 rdf:type schema:PropertyValue
113 Nda4aad13ac904564892f413270a867f2 rdf:first sg:person.012001743455.31
114 rdf:rest N10877a82d4934af3b1f69f7d13dcf347
115 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
116 schema:name Engineering
117 rdf:type schema:DefinedTerm
118 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
119 schema:name Chemical Engineering
120 rdf:type schema:DefinedTerm
121 anzsrc-for:0913 schema:inDefinedTermSet anzsrc-for:
122 schema:name Mechanical Engineering
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
125 schema:name Interdisciplinary Engineering
126 rdf:type schema:DefinedTerm
127 sg:journal.1050722 schema:issn 0035-4511
128 1435-1528
129 schema:name Rheologica Acta
130 schema:publisher Springer Nature
131 rdf:type schema:Periodical
132 sg:person.012001743455.31 schema:affiliation grid-institutes:grid.499254.7
133 schema:familyName Narimissa
134 schema:givenName Esmaeil
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012001743455.31
136 rdf:type schema:Person
137 sg:person.014172661324.79 schema:affiliation grid-institutes:grid.6734.6
138 schema:familyName Wagner
139 schema:givenName Manfred H.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014172661324.79
141 rdf:type schema:Person
142 sg:person.016356417601.31 schema:affiliation grid-institutes:None
143 schema:familyName Shahid
144 schema:givenName Taisir
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016356417601.31
146 rdf:type schema:Person
147 sg:pub.10.1007/bf00366640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051196433
148 https://doi.org/10.1007/bf00366640
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/bf01329306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016506343
151 https://doi.org/10.1007/bf01329306
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s00397-005-0041-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015870381
154 https://doi.org/10.1007/s00397-005-0041-7
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/s00397-014-0791-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045706487
157 https://doi.org/10.1007/s00397-014-0791-1
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s00397-016-0921-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1039132038
160 https://doi.org/10.1007/s00397-016-0921-z
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/s00397-020-01215-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1128191030
163 https://doi.org/10.1007/s00397-020-01215-7
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/s00397-021-01261-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135906197
166 https://doi.org/10.1007/s00397-021-01261-9
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s00397-021-01277-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1138859454
169 https://doi.org/10.1007/s00397-021-01277-1
170 rdf:type schema:CreativeWork
171 grid-institutes:None schema:alternateName DSM Materials Science Center, P.O. Box 18, NL-6160 MD, Geleen, The Netherlands
172 schema:name Bio and Soft Matter, Institute on Condensed Matter and Nanoscience, Université Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium
173 DSM Materials Science Center, P.O. Box 18, NL-6160 MD, Geleen, The Netherlands
174 rdf:type schema:Organization
175 grid-institutes:grid.499254.7 schema:alternateName Dept. of Chemical Engineering, Guangdong Technion–Israel Institute of Technology (GTIIT), 515063, Shantou, China
176 schema:name Dept. of Chemical Engineering, Guangdong Technion–Israel Institute of Technology (GTIIT), 515063, Shantou, China
177 Dept. of Chemical Engineering, Technion–Israel Institute of Technology (IIT), Technion City, 32 000, Haifa, Israel
178 rdf:type schema:Organization
179 grid-institutes:grid.6734.6 schema:alternateName Polymer Engineering/Polymer Physics, Berlin Institute of Technology (TU Berlin), Ernst-Reuter-Platz 1, 10587, Berlin, Germany
180 schema:name Polymer Engineering/Polymer Physics, Berlin Institute of Technology (TU Berlin), Ernst-Reuter-Platz 1, 10587, Berlin, Germany
181 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...