Towards a universal shear correction factor in filament stretching rheometry View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-09-13

AUTHORS

F. P. A. van Berlo, R. Cardinaels, G. W. M. Peters, P. D. Anderson

ABSTRACT

Filament stretching rheometry is a prominent experimental method to determine rheological properties in extensional flow whereby the separating plates determine the extension rate. In literature, several correction factors that can compensate for the errors introduced by the shear contribution near the plates have been introduced and validated in the linear viscoelastic regime. In this work, a systematic analysis is conducted to determine if a material-independent correction factor can be found for non-linear viscoelastic polymers. To this end, a finite element model is presented to describe the flow and resulting stresses in the filament stretching rheometer. The model incorporates non-linear viscoelasticity and a radius-based controller for the plate speed is added to mimic the typical extensional flow in filament stretching rheometry. The model is validated by comparing force simulations with analytical solutions. The effects of the end-plates on the extensional flow and resulting force measurements are investigated, and a modification of the shear correction factor is proposed for the non-linear viscoelastic flow regime. This shows good agreement with simulations performed at multiple initial aspect ratios and strain rates and is shown to be valid for a range of polymers with non-linear rheological behaviour. More... »

PAGES

691-709

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00397-021-01299-9

DOI

http://dx.doi.org/10.1007/s00397-021-01299-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1141079165


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0913", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mechanical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, Polymer Technology, Eindhoven University of Technology, 5600, Eindhoven, MB, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.6852.9", 
          "name": [
            "Department of Mechanical Engineering, Polymer Technology, Eindhoven University of Technology, 5600, Eindhoven, MB, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Berlo", 
        "givenName": "F. P. A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, Polymer Technology, Eindhoven University of Technology, 5600, Eindhoven, MB, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.6852.9", 
          "name": [
            "Department of Mechanical Engineering, Polymer Technology, Eindhoven University of Technology, 5600, Eindhoven, MB, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cardinaels", 
        "givenName": "R.", 
        "id": "sg:person.014476470214.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014476470214.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, Polymer Technology, Eindhoven University of Technology, 5600, Eindhoven, MB, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.6852.9", 
          "name": [
            "Department of Mechanical Engineering, Polymer Technology, Eindhoven University of Technology, 5600, Eindhoven, MB, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peters", 
        "givenName": "G. W. M.", 
        "id": "sg:person.016526471602.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016526471602.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, Polymer Technology, Eindhoven University of Technology, 5600, Eindhoven, MB, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.6852.9", 
          "name": [
            "Department of Mechanical Engineering, Polymer Technology, Eindhoven University of Technology, 5600, Eindhoven, MB, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Anderson", 
        "givenName": "P. D.", 
        "id": "sg:person.012332301375.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012332301375.88"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00397-016-0921-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039132038", 
          "https://doi.org/10.1007/s00397-016-0921-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00397-010-0444-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044386415", 
          "https://doi.org/10.1007/s00397-010-0444-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00366669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021875924", 
          "https://doi.org/10.1007/bf00366669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01515903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043612875", 
          "https://doi.org/10.1007/bf01515903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00366670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014839013", 
          "https://doi.org/10.1007/bf00366670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00397-008-0309-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014799174", 
          "https://doi.org/10.1007/s00397-008-0309-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-09-13", 
    "datePublishedReg": "2021-09-13", 
    "description": "Filament stretching rheometry is a prominent experimental method to determine rheological properties in extensional flow whereby the separating plates determine the extension rate. In literature, several correction factors that can compensate for the errors introduced by the shear contribution near the plates have been introduced and validated in the linear viscoelastic regime. In this work, a systematic analysis is conducted to determine if a material-independent correction factor can be found for non-linear viscoelastic polymers. To this end, a finite element model is presented to describe the flow and resulting stresses in the filament stretching rheometer. The model incorporates non-linear viscoelasticity and a radius-based controller for the plate speed is added to mimic the typical extensional flow in filament stretching rheometry. The model is validated by comparing force simulations with analytical solutions. The effects of the end-plates on the extensional flow and resulting force measurements are investigated, and a modification of the shear correction factor is proposed for the non-linear viscoelastic flow regime. This shows good agreement with simulations performed at multiple initial aspect ratios and strain rates and is shown to be valid for a range of polymers with non-linear rheological behaviour.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00397-021-01299-9", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1050722", 
        "issn": [
          "0035-4511", 
          "1435-1528"
        ], 
        "name": "Rheologica Acta", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "60"
      }
    ], 
    "keywords": [
      "shear correction factor", 
      "extensional flow", 
      "non-linear rheological behavior", 
      "finite element model", 
      "initial aspect ratio", 
      "non-linear viscoelasticity", 
      "linear viscoelastic regime", 
      "correction factor", 
      "range of polymers", 
      "viscoelastic polymers", 
      "element model", 
      "shear contribution", 
      "viscoelastic regime", 
      "flow regime", 
      "aspect ratio", 
      "rheological behavior", 
      "rheological properties", 
      "analytical solution", 
      "force simulation", 
      "force measurements", 
      "rheometry", 
      "plate speed", 
      "good agreement", 
      "experimental methods", 
      "flow", 
      "simulations", 
      "polymers", 
      "plate", 
      "rheometer", 
      "controller", 
      "viscoelasticity", 
      "extension rate", 
      "speed", 
      "regime", 
      "model", 
      "properties", 
      "measurements", 
      "solution", 
      "stress", 
      "error", 
      "behavior", 
      "agreement", 
      "range", 
      "ratio", 
      "method", 
      "work", 
      "rate", 
      "systematic analysis", 
      "modification", 
      "effect", 
      "analysis", 
      "factors", 
      "contribution", 
      "end", 
      "literature", 
      "filament stretching rheometry", 
      "stretching rheometry", 
      "prominent experimental method", 
      "material-independent correction factor", 
      "non-linear viscoelastic polymers", 
      "radius-based controller", 
      "typical extensional flow", 
      "non-linear viscoelastic flow regime", 
      "viscoelastic flow regime", 
      "multiple initial aspect ratios", 
      "universal shear correction factor"
    ], 
    "name": "Towards a universal shear correction factor in filament stretching rheometry", 
    "pagination": "691-709", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1141079165"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00397-021-01299-9"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00397-021-01299-9", 
      "https://app.dimensions.ai/details/publication/pub.1141079165"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_883.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00397-021-01299-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00397-021-01299-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00397-021-01299-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00397-021-01299-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00397-021-01299-9'


 

This table displays all metadata directly associated to this object as RDF triples.

176 TRIPLES      22 PREDICATES      99 URIs      83 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00397-021-01299-9 schema:about anzsrc-for:09
2 anzsrc-for:0904
3 anzsrc-for:0913
4 anzsrc-for:0915
5 schema:author N604e9d76a35444229bb92cb15878ab2b
6 schema:citation sg:pub.10.1007/bf00366669
7 sg:pub.10.1007/bf00366670
8 sg:pub.10.1007/bf01515903
9 sg:pub.10.1007/s00397-008-0309-9
10 sg:pub.10.1007/s00397-010-0444-y
11 sg:pub.10.1007/s00397-016-0921-z
12 schema:datePublished 2021-09-13
13 schema:datePublishedReg 2021-09-13
14 schema:description Filament stretching rheometry is a prominent experimental method to determine rheological properties in extensional flow whereby the separating plates determine the extension rate. In literature, several correction factors that can compensate for the errors introduced by the shear contribution near the plates have been introduced and validated in the linear viscoelastic regime. In this work, a systematic analysis is conducted to determine if a material-independent correction factor can be found for non-linear viscoelastic polymers. To this end, a finite element model is presented to describe the flow and resulting stresses in the filament stretching rheometer. The model incorporates non-linear viscoelasticity and a radius-based controller for the plate speed is added to mimic the typical extensional flow in filament stretching rheometry. The model is validated by comparing force simulations with analytical solutions. The effects of the end-plates on the extensional flow and resulting force measurements are investigated, and a modification of the shear correction factor is proposed for the non-linear viscoelastic flow regime. This shows good agreement with simulations performed at multiple initial aspect ratios and strain rates and is shown to be valid for a range of polymers with non-linear rheological behaviour.
15 schema:genre article
16 schema:inLanguage en
17 schema:isAccessibleForFree true
18 schema:isPartOf N7ec0d88b682b4b33aac10f8b8f5bfac4
19 Nf799ac4049714b368ca6fc4cc2e5f7f2
20 sg:journal.1050722
21 schema:keywords agreement
22 analysis
23 analytical solution
24 aspect ratio
25 behavior
26 contribution
27 controller
28 correction factor
29 effect
30 element model
31 end
32 error
33 experimental methods
34 extension rate
35 extensional flow
36 factors
37 filament stretching rheometry
38 finite element model
39 flow
40 flow regime
41 force measurements
42 force simulation
43 good agreement
44 initial aspect ratio
45 linear viscoelastic regime
46 literature
47 material-independent correction factor
48 measurements
49 method
50 model
51 modification
52 multiple initial aspect ratios
53 non-linear rheological behavior
54 non-linear viscoelastic flow regime
55 non-linear viscoelastic polymers
56 non-linear viscoelasticity
57 plate
58 plate speed
59 polymers
60 prominent experimental method
61 properties
62 radius-based controller
63 range
64 range of polymers
65 rate
66 ratio
67 regime
68 rheological behavior
69 rheological properties
70 rheometer
71 rheometry
72 shear contribution
73 shear correction factor
74 simulations
75 solution
76 speed
77 stress
78 stretching rheometry
79 systematic analysis
80 typical extensional flow
81 universal shear correction factor
82 viscoelastic flow regime
83 viscoelastic polymers
84 viscoelastic regime
85 viscoelasticity
86 work
87 schema:name Towards a universal shear correction factor in filament stretching rheometry
88 schema:pagination 691-709
89 schema:productId N7d3df6de917d4a7cab1b43209378a8bc
90 Naea76279e49542538f89d6246d0e14fe
91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141079165
92 https://doi.org/10.1007/s00397-021-01299-9
93 schema:sdDatePublished 2022-01-01T18:57
94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
95 schema:sdPublisher Nf0a95d1b1b2b4f0f8c3415f6700fbd05
96 schema:url https://doi.org/10.1007/s00397-021-01299-9
97 sgo:license sg:explorer/license/
98 sgo:sdDataset articles
99 rdf:type schema:ScholarlyArticle
100 N271a64f1dd3b4ad884c5a73d5a429896 rdf:first sg:person.014476470214.33
101 rdf:rest N60ad4c20992546cdb3d8f587e8d9c92e
102 N604e9d76a35444229bb92cb15878ab2b rdf:first Nf6715f3d52cf4238983bb282d8ee2083
103 rdf:rest N271a64f1dd3b4ad884c5a73d5a429896
104 N60ad4c20992546cdb3d8f587e8d9c92e rdf:first sg:person.016526471602.78
105 rdf:rest N82db9537acac4badb02817fe68d69747
106 N7d3df6de917d4a7cab1b43209378a8bc schema:name doi
107 schema:value 10.1007/s00397-021-01299-9
108 rdf:type schema:PropertyValue
109 N7ec0d88b682b4b33aac10f8b8f5bfac4 schema:volumeNumber 60
110 rdf:type schema:PublicationVolume
111 N82db9537acac4badb02817fe68d69747 rdf:first sg:person.012332301375.88
112 rdf:rest rdf:nil
113 Naea76279e49542538f89d6246d0e14fe schema:name dimensions_id
114 schema:value pub.1141079165
115 rdf:type schema:PropertyValue
116 Nf0a95d1b1b2b4f0f8c3415f6700fbd05 schema:name Springer Nature - SN SciGraph project
117 rdf:type schema:Organization
118 Nf6715f3d52cf4238983bb282d8ee2083 schema:affiliation grid-institutes:grid.6852.9
119 schema:familyName van Berlo
120 schema:givenName F. P. A.
121 rdf:type schema:Person
122 Nf799ac4049714b368ca6fc4cc2e5f7f2 schema:issueNumber 11
123 rdf:type schema:PublicationIssue
124 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
125 schema:name Engineering
126 rdf:type schema:DefinedTerm
127 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
128 schema:name Chemical Engineering
129 rdf:type schema:DefinedTerm
130 anzsrc-for:0913 schema:inDefinedTermSet anzsrc-for:
131 schema:name Mechanical Engineering
132 rdf:type schema:DefinedTerm
133 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
134 schema:name Interdisciplinary Engineering
135 rdf:type schema:DefinedTerm
136 sg:journal.1050722 schema:issn 0035-4511
137 1435-1528
138 schema:name Rheologica Acta
139 schema:publisher Springer Nature
140 rdf:type schema:Periodical
141 sg:person.012332301375.88 schema:affiliation grid-institutes:grid.6852.9
142 schema:familyName Anderson
143 schema:givenName P. D.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012332301375.88
145 rdf:type schema:Person
146 sg:person.014476470214.33 schema:affiliation grid-institutes:grid.6852.9
147 schema:familyName Cardinaels
148 schema:givenName R.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014476470214.33
150 rdf:type schema:Person
151 sg:person.016526471602.78 schema:affiliation grid-institutes:grid.6852.9
152 schema:familyName Peters
153 schema:givenName G. W. M.
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016526471602.78
155 rdf:type schema:Person
156 sg:pub.10.1007/bf00366669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021875924
157 https://doi.org/10.1007/bf00366669
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/bf00366670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014839013
160 https://doi.org/10.1007/bf00366670
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/bf01515903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043612875
163 https://doi.org/10.1007/bf01515903
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/s00397-008-0309-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014799174
166 https://doi.org/10.1007/s00397-008-0309-9
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s00397-010-0444-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1044386415
169 https://doi.org/10.1007/s00397-010-0444-y
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/s00397-016-0921-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1039132038
172 https://doi.org/10.1007/s00397-016-0921-z
173 rdf:type schema:CreativeWork
174 grid-institutes:grid.6852.9 schema:alternateName Department of Mechanical Engineering, Polymer Technology, Eindhoven University of Technology, 5600, Eindhoven, MB, The Netherlands
175 schema:name Department of Mechanical Engineering, Polymer Technology, Eindhoven University of Technology, 5600, Eindhoven, MB, The Netherlands
176 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...