Pressure-driven pipe flow of semi-dilute and dense suspensions over permeable surfaces View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-09-15

AUTHORS

Changwoo Kang, Parisa Mirbod

ABSTRACT

We study pressure-driven suspensions of non-colloidal, non-Brownian, and rigid spheres in a Newtonian solvent where the pipe surface is replaced by porous media using numerical simulations. We examine various values of the permeability of the porous medium K, while we keep the porosity and the thickness of the porous layer constant to clarify the effect of the permeable wall on the suspension flows at bulk particle volume fractions 0.1 ≤ ϕb ≤ 0.5. In the limit of vanishing inertia, the rate of suspension flow decreases as the bulk volume fraction ϕb increases and it builds up as the permeability of the porous media increases. There are also two different regimes characterizing the dimensionless slip velocity normalized by both shear rate and penetration depth, namely, the strong permeability regime and the weak permeability regime. In the former, the solvent penetrates deeper and the streamwise velocity at the interface increases with the porous media permeability, while in the latter, the fluid cannot go through the porous media deeply and the variation of the slip velocity with the permeability is small. Our results might suggest a new passive technique to reduce drag by enhancing the rate of suspension flow in devices where the suspension transport is crucial. It might also offer basic insights for the extension to the flow of suspensions over and through complex porous media.Graphical abstract More... »

PAGES

711-718

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00397-021-01298-w

DOI

http://dx.doi.org/10.1007/s00397-021-01298-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1141139980


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, 54896, Jeonju-si, Jeollabuk-do, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.411545.0", 
          "name": [
            "Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor Street, 60607, Chicago, IL, USA", 
            "Department of Mechanical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, 54896, Jeonju-si, Jeollabuk-do, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kang", 
        "givenName": "Changwoo", 
        "id": "sg:person.010142672443.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010142672443.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor Street, 60607, Chicago, IL, USA", 
          "id": "http://www.grid.ac/institutes/grid.185648.6", 
          "name": [
            "Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor Street, 60607, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mirbod", 
        "givenName": "Parisa", 
        "id": "sg:person.01125737015.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125737015.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4613-9022-0_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043285129", 
          "https://doi.org/10.1007/978-1-4613-9022-0_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1002401829007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034075385", 
          "https://doi.org/10.1023/a:1002401829007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11242-008-9305-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020393206", 
          "https://doi.org/10.1007/s11242-008-9305-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02120313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037699269", 
          "https://doi.org/10.1007/bf02120313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-17141-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093156864", 
          "https://doi.org/10.1038/s41598-017-17141-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-09-15", 
    "datePublishedReg": "2021-09-15", 
    "description": "We study pressure-driven suspensions of non-colloidal, non-Brownian, and rigid spheres in a Newtonian solvent where the pipe surface is replaced by porous media using numerical simulations. We examine various values of the permeability of the porous medium K, while we keep the porosity and the thickness of the porous layer constant to clarify the effect of the permeable wall on the suspension flows at bulk particle volume fractions 0.1\u2009\u2264\u2009\u03d5b\u2009\u2264\u20090.5. In the limit of vanishing inertia, the rate of suspension flow decreases as the bulk volume fraction \u03d5b increases and it builds up as the permeability of the porous media increases. There are also two different regimes characterizing the dimensionless slip velocity normalized by both shear rate and penetration depth, namely, the strong permeability regime and the weak permeability regime. In the former, the solvent penetrates deeper and the streamwise velocity at the interface increases with the porous media permeability, while in the latter, the fluid cannot go through the porous media deeply and the variation of the slip velocity with the permeability is small. Our results might suggest a new passive technique to reduce drag by enhancing the rate of suspension flow in devices where the suspension transport is crucial. It might also offer basic insights for the extension to the flow of suspensions over and through complex porous media.Graphical abstract", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00397-021-01298-w", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7912173", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1050722", 
        "issn": [
          "0035-4511", 
          "1435-1528"
        ], 
        "name": "Rheologica Acta", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "60"
      }
    ], 
    "keywords": [
      "porous media", 
      "slip velocity", 
      "pressure-driven pipe flow", 
      "dimensionless slip velocity", 
      "permeability regimes", 
      "porous medium permeability", 
      "porous media increases", 
      "flow of suspensions", 
      "volume fractions 0.1", 
      "complex porous media", 
      "bulk volume fraction", 
      "pipe surface", 
      "pipe flow", 
      "streamwise velocity", 
      "permeable walls", 
      "porous layer", 
      "suspension flow", 
      "permeable surface", 
      "suspension transport", 
      "Newtonian solvent", 
      "volume fraction", 
      "medium permeability", 
      "passive techniques", 
      "interface increases", 
      "dense suspensions", 
      "numerical simulations", 
      "new passive technique", 
      "rigid sphere", 
      "shear rate", 
      "penetration depth", 
      "velocity", 
      "flow", 
      "permeability", 
      "surface", 
      "different regimes", 
      "suspension", 
      "medium increases", 
      "flow decreases", 
      "porosity", 
      "drag", 
      "thickness", 
      "regime", 
      "layer", 
      "simulations", 
      "inertia", 
      "devices", 
      "solvent", 
      "wall", 
      "fluid", 
      "depth", 
      "transport", 
      "increase", 
      "medium", 
      "Medium K", 
      "rate", 
      "technique", 
      "basic insights", 
      "limit", 
      "fraction", 
      "sphere", 
      "results", 
      "variation", 
      "values", 
      "effect", 
      "decrease", 
      "extension", 
      "insights", 
      "pressure-driven suspensions", 
      "porous medium K", 
      "bulk particle volume fractions 0.1", 
      "particle volume fractions 0.1", 
      "fractions 0.1", 
      "suspension flow decreases", 
      "strong permeability regime", 
      "weak permeability regime", 
      "Graphical abstract Pressure-driven pipe flow", 
      "abstract Pressure-driven pipe flow"
    ], 
    "name": "Pressure-driven pipe flow of semi-dilute and dense suspensions over permeable surfaces", 
    "pagination": "711-718", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1141139980"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00397-021-01298-w"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00397-021-01298-w", 
      "https://app.dimensions.ai/details/publication/pub.1141139980"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T19:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_918.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00397-021-01298-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00397-021-01298-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00397-021-01298-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00397-021-01298-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00397-021-01298-w'


 

This table displays all metadata directly associated to this object as RDF triples.

168 TRIPLES      22 PREDICATES      107 URIs      94 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00397-021-01298-w schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N2aa0f7f344c0402b904753e19bf6749c
4 schema:citation sg:pub.10.1007/978-1-4613-9022-0_5
5 sg:pub.10.1007/bf02120313
6 sg:pub.10.1007/s11242-008-9305-x
7 sg:pub.10.1023/a:1002401829007
8 sg:pub.10.1038/s41598-017-17141-3
9 schema:datePublished 2021-09-15
10 schema:datePublishedReg 2021-09-15
11 schema:description We study pressure-driven suspensions of non-colloidal, non-Brownian, and rigid spheres in a Newtonian solvent where the pipe surface is replaced by porous media using numerical simulations. We examine various values of the permeability of the porous medium K, while we keep the porosity and the thickness of the porous layer constant to clarify the effect of the permeable wall on the suspension flows at bulk particle volume fractions 0.1 ≤ ϕb ≤ 0.5. In the limit of vanishing inertia, the rate of suspension flow decreases as the bulk volume fraction ϕb increases and it builds up as the permeability of the porous media increases. There are also two different regimes characterizing the dimensionless slip velocity normalized by both shear rate and penetration depth, namely, the strong permeability regime and the weak permeability regime. In the former, the solvent penetrates deeper and the streamwise velocity at the interface increases with the porous media permeability, while in the latter, the fluid cannot go through the porous media deeply and the variation of the slip velocity with the permeability is small. Our results might suggest a new passive technique to reduce drag by enhancing the rate of suspension flow in devices where the suspension transport is crucial. It might also offer basic insights for the extension to the flow of suspensions over and through complex porous media.Graphical abstract
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N6cab80ceb73b44aeaf2a4e11fb3d80fe
16 Ne17560b41ada48e7ade6371bb419d1eb
17 sg:journal.1050722
18 schema:keywords Graphical abstract Pressure-driven pipe flow
19 Medium K
20 Newtonian solvent
21 abstract Pressure-driven pipe flow
22 basic insights
23 bulk particle volume fractions 0.1
24 bulk volume fraction
25 complex porous media
26 decrease
27 dense suspensions
28 depth
29 devices
30 different regimes
31 dimensionless slip velocity
32 drag
33 effect
34 extension
35 flow
36 flow decreases
37 flow of suspensions
38 fluid
39 fraction
40 fractions 0.1
41 increase
42 inertia
43 insights
44 interface increases
45 layer
46 limit
47 medium
48 medium increases
49 medium permeability
50 new passive technique
51 numerical simulations
52 particle volume fractions 0.1
53 passive techniques
54 penetration depth
55 permeability
56 permeability regimes
57 permeable surface
58 permeable walls
59 pipe flow
60 pipe surface
61 porosity
62 porous layer
63 porous media
64 porous media increases
65 porous medium K
66 porous medium permeability
67 pressure-driven pipe flow
68 pressure-driven suspensions
69 rate
70 regime
71 results
72 rigid sphere
73 shear rate
74 simulations
75 slip velocity
76 solvent
77 sphere
78 streamwise velocity
79 strong permeability regime
80 surface
81 suspension
82 suspension flow
83 suspension flow decreases
84 suspension transport
85 technique
86 thickness
87 transport
88 values
89 variation
90 velocity
91 volume fraction
92 volume fractions 0.1
93 wall
94 weak permeability regime
95 schema:name Pressure-driven pipe flow of semi-dilute and dense suspensions over permeable surfaces
96 schema:pagination 711-718
97 schema:productId N1068895833894414bb569806ae98502b
98 Nd254019c482f4f2996530e7c17c6b38a
99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141139980
100 https://doi.org/10.1007/s00397-021-01298-w
101 schema:sdDatePublished 2022-01-01T19:03
102 schema:sdLicense https://scigraph.springernature.com/explorer/license/
103 schema:sdPublisher Na6a50ee834954d09a400527214d1675d
104 schema:url https://doi.org/10.1007/s00397-021-01298-w
105 sgo:license sg:explorer/license/
106 sgo:sdDataset articles
107 rdf:type schema:ScholarlyArticle
108 N1068895833894414bb569806ae98502b schema:name dimensions_id
109 schema:value pub.1141139980
110 rdf:type schema:PropertyValue
111 N2aa0f7f344c0402b904753e19bf6749c rdf:first sg:person.010142672443.34
112 rdf:rest Na0f9a34921b240d3a977cb8ae1c3d1cf
113 N6cab80ceb73b44aeaf2a4e11fb3d80fe schema:issueNumber 11
114 rdf:type schema:PublicationIssue
115 Na0f9a34921b240d3a977cb8ae1c3d1cf rdf:first sg:person.01125737015.01
116 rdf:rest rdf:nil
117 Na6a50ee834954d09a400527214d1675d schema:name Springer Nature - SN SciGraph project
118 rdf:type schema:Organization
119 Nd254019c482f4f2996530e7c17c6b38a schema:name doi
120 schema:value 10.1007/s00397-021-01298-w
121 rdf:type schema:PropertyValue
122 Ne17560b41ada48e7ade6371bb419d1eb schema:volumeNumber 60
123 rdf:type schema:PublicationVolume
124 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
125 schema:name Engineering
126 rdf:type schema:DefinedTerm
127 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
128 schema:name Interdisciplinary Engineering
129 rdf:type schema:DefinedTerm
130 sg:grant.7912173 http://pending.schema.org/fundedItem sg:pub.10.1007/s00397-021-01298-w
131 rdf:type schema:MonetaryGrant
132 sg:journal.1050722 schema:issn 0035-4511
133 1435-1528
134 schema:name Rheologica Acta
135 schema:publisher Springer Nature
136 rdf:type schema:Periodical
137 sg:person.010142672443.34 schema:affiliation grid-institutes:grid.411545.0
138 schema:familyName Kang
139 schema:givenName Changwoo
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010142672443.34
141 rdf:type schema:Person
142 sg:person.01125737015.01 schema:affiliation grid-institutes:grid.185648.6
143 schema:familyName Mirbod
144 schema:givenName Parisa
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125737015.01
146 rdf:type schema:Person
147 sg:pub.10.1007/978-1-4613-9022-0_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043285129
148 https://doi.org/10.1007/978-1-4613-9022-0_5
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/bf02120313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037699269
151 https://doi.org/10.1007/bf02120313
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s11242-008-9305-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020393206
154 https://doi.org/10.1007/s11242-008-9305-x
155 rdf:type schema:CreativeWork
156 sg:pub.10.1023/a:1002401829007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034075385
157 https://doi.org/10.1023/a:1002401829007
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/s41598-017-17141-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093156864
160 https://doi.org/10.1038/s41598-017-17141-3
161 rdf:type schema:CreativeWork
162 grid-institutes:grid.185648.6 schema:alternateName Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor Street, 60607, Chicago, IL, USA
163 schema:name Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor Street, 60607, Chicago, IL, USA
164 rdf:type schema:Organization
165 grid-institutes:grid.411545.0 schema:alternateName Department of Mechanical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, 54896, Jeonju-si, Jeollabuk-do, Republic of Korea
166 schema:name Department of Mechanical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, 54896, Jeonju-si, Jeollabuk-do, Republic of Korea
167 Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor Street, 60607, Chicago, IL, USA
168 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...