Yielding and rheopexy of aqueous xanthan gum solutions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-08-11

AUTHORS

Elie N’gouamba, Miryam Essadik, Julie Goyon, Thomas Oerther, Philippe Coussot

ABSTRACT

Xanthan gum (XG) is widely used in cosmetic and pharmaceutic products (creams, pastes) and in oil industry (drilling fluids) as a stabilizing and/or thickening agent. In literature, its rheological behavior is mainly presented as that of a shear-thinning or a yield stress fluid. Here, in order to clarify this rheological behavior, we study in detail the flow characteristics during continued flow under given conditions (i.e., controlled stress) for a mass concentration ranging from 0.2 to 5%. We are thus able to identify the apparent flow curve of the material after a short flow duration and the flow curve in steady state (i.e., after a long flow duration). The validity of this flow curve, determined from standard rheometry, is confirmed by magnetic resonance velocimetry. These materials start to exhibit a yield stress behavior beyond some critical xanthan or salt concentration. In that case, a significant increase (by a factor up to 5) of the apparent viscosity is observed during flow in some range of stresses, before reaching a steady state. This original rheopectic effect might be due, after some time of flow associated with deformation and reconfiguration of the XG molecules, to the progressive formation of intermolecular links such as hydrogen bonds and/or intermolecular association due to acetate residues. More... »

PAGES

653-660

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00397-021-01293-1

DOI

http://dx.doi.org/10.1007/s00397-021-01293-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1140351224


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0913", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mechanical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laboratoire Navier, ENPC-University Gustave Eiffel-CNRS, 77420, Champs-sur-Marne, France", 
          "id": "http://www.grid.ac/institutes/grid.463987.7", 
          "name": [
            "Laboratoire Navier, ENPC-University Gustave Eiffel-CNRS, 77420, Champs-sur-Marne, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "N\u2019gouamba", 
        "givenName": "Elie", 
        "id": "sg:person.016507605303.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016507605303.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire Navier, ENPC-University Gustave Eiffel-CNRS, 77420, Champs-sur-Marne, France", 
          "id": "http://www.grid.ac/institutes/grid.463987.7", 
          "name": [
            "Laboratoire Navier, ENPC-University Gustave Eiffel-CNRS, 77420, Champs-sur-Marne, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Essadik", 
        "givenName": "Miryam", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire Navier, ENPC-University Gustave Eiffel-CNRS, 77420, Champs-sur-Marne, France", 
          "id": "http://www.grid.ac/institutes/grid.463987.7", 
          "name": [
            "Laboratoire Navier, ENPC-University Gustave Eiffel-CNRS, 77420, Champs-sur-Marne, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goyon", 
        "givenName": "Julie", 
        "id": "sg:person.01100710331.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100710331.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bruker BioSpin GmbH, Silberstreifen 4, 76287, Rheinstetten, Germany", 
          "id": "http://www.grid.ac/institutes/grid.423218.e", 
          "name": [
            "Bruker BioSpin GmbH, Silberstreifen 4, 76287, Rheinstetten, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oerther", 
        "givenName": "Thomas", 
        "id": "sg:person.0606272075.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606272075.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire Navier, ENPC-University Gustave Eiffel-CNRS, 77420, Champs-sur-Marne, France", 
          "id": "http://www.grid.ac/institutes/grid.463987.7", 
          "name": [
            "Laboratoire Navier, ENPC-University Gustave Eiffel-CNRS, 77420, Champs-sur-Marne, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Coussot", 
        "givenName": "Philippe", 
        "id": "sg:person.01330462637.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330462637.18"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00397-019-01154-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1116997322", 
          "https://doi.org/10.1007/s00397-019-01154-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0023332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001254748", 
          "https://doi.org/10.1007/bfb0023332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02908257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012954542", 
          "https://doi.org/10.1007/bf02908257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11242-018-1011-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100770022", 
          "https://doi.org/10.1007/s11242-018-1011-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00397-017-1002-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084021455", 
          "https://doi.org/10.1007/s00397-017-1002-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-08-11", 
    "datePublishedReg": "2021-08-11", 
    "description": "Xanthan gum (XG) is widely used in cosmetic and pharmaceutic products (creams, pastes) and in oil industry (drilling fluids) as a stabilizing and/or thickening agent. In literature, its rheological behavior is mainly presented as that of a shear-thinning or a yield stress fluid. Here, in order to clarify this rheological behavior, we study in detail the flow characteristics during continued flow under given conditions (i.e., controlled stress) for a mass concentration ranging from 0.2 to 5%. We are thus able to identify the apparent flow curve of the material after a short flow duration and the flow curve in steady state (i.e., after a long flow duration). The validity of this flow curve, determined from standard rheometry, is confirmed by magnetic resonance velocimetry. These materials start to exhibit a yield stress behavior beyond some critical xanthan or salt concentration. In that case, a significant increase (by a factor up to 5) of the apparent viscosity is observed during flow in some range of stresses, before reaching a steady state. This original rheopectic effect might be due, after some time of flow associated with deformation and reconfiguration of the XG molecules, to the progressive formation of intermolecular links such as hydrogen bonds and/or intermolecular association due to acetate residues.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00397-021-01293-1", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1050722", 
        "issn": [
          "0035-4511", 
          "1435-1528"
        ], 
        "name": "Rheologica Acta", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "60"
      }
    ], 
    "keywords": [
      "xanthan gum", 
      "flow curves", 
      "rheological behavior", 
      "intermolecular links", 
      "hydrogen bonds", 
      "intermolecular association", 
      "aqueous xanthan gum solutions", 
      "magnetic resonance velocimetry", 
      "yield stress fluids", 
      "pharmaceutic products", 
      "yield stress behavior", 
      "XG molecules", 
      "xanthan gum solutions", 
      "standard rheometry", 
      "salt concentration", 
      "apparent flow curve", 
      "range of stresses", 
      "thickening agent", 
      "stress fluid", 
      "flow characteristics", 
      "stress behavior", 
      "gum solutions", 
      "time of flow", 
      "apparent viscosity", 
      "progressive formation", 
      "oil industry", 
      "steady state", 
      "bonds", 
      "mass concentration", 
      "short flow duration", 
      "flow", 
      "acetate residues", 
      "materials", 
      "molecules", 
      "flow duration", 
      "rheometry", 
      "xanthan", 
      "velocimetry", 
      "concentration", 
      "deformation", 
      "viscosity", 
      "behavior", 
      "gum", 
      "products", 
      "formation", 
      "residues", 
      "solution", 
      "curves", 
      "agents", 
      "state", 
      "fluid", 
      "range", 
      "reconfiguration", 
      "industry", 
      "stress", 
      "continued flow", 
      "characteristics", 
      "conditions", 
      "order", 
      "detail", 
      "increase", 
      "effect", 
      "time", 
      "validity", 
      "cases", 
      "significant increase", 
      "link", 
      "literature", 
      "duration", 
      "association", 
      "resonance velocimetry", 
      "critical xanthan", 
      "original rheopectic effect", 
      "rheopectic effect"
    ], 
    "name": "Yielding and rheopexy of aqueous xanthan gum solutions", 
    "pagination": "653-660", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1140351224"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00397-021-01293-1"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00397-021-01293-1", 
      "https://app.dimensions.ai/details/publication/pub.1140351224"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_883.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00397-021-01293-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00397-021-01293-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00397-021-01293-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00397-021-01293-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00397-021-01293-1'


 

This table displays all metadata directly associated to this object as RDF triples.

190 TRIPLES      22 PREDICATES      106 URIs      91 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00397-021-01293-1 schema:about anzsrc-for:09
2 anzsrc-for:0904
3 anzsrc-for:0913
4 anzsrc-for:0915
5 schema:author Nd8d27b7a16a143f3a41bcae149eeecf1
6 schema:citation sg:pub.10.1007/bf02908257
7 sg:pub.10.1007/bfb0023332
8 sg:pub.10.1007/s00397-017-1002-7
9 sg:pub.10.1007/s00397-019-01154-y
10 sg:pub.10.1007/s11242-018-1011-8
11 schema:datePublished 2021-08-11
12 schema:datePublishedReg 2021-08-11
13 schema:description Xanthan gum (XG) is widely used in cosmetic and pharmaceutic products (creams, pastes) and in oil industry (drilling fluids) as a stabilizing and/or thickening agent. In literature, its rheological behavior is mainly presented as that of a shear-thinning or a yield stress fluid. Here, in order to clarify this rheological behavior, we study in detail the flow characteristics during continued flow under given conditions (i.e., controlled stress) for a mass concentration ranging from 0.2 to 5%. We are thus able to identify the apparent flow curve of the material after a short flow duration and the flow curve in steady state (i.e., after a long flow duration). The validity of this flow curve, determined from standard rheometry, is confirmed by magnetic resonance velocimetry. These materials start to exhibit a yield stress behavior beyond some critical xanthan or salt concentration. In that case, a significant increase (by a factor up to 5) of the apparent viscosity is observed during flow in some range of stresses, before reaching a steady state. This original rheopectic effect might be due, after some time of flow associated with deformation and reconfiguration of the XG molecules, to the progressive formation of intermolecular links such as hydrogen bonds and/or intermolecular association due to acetate residues.
14 schema:genre article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N130cbe4869324f34b9a22c259427b48f
18 N13b5eb3409304528895f56734b780415
19 sg:journal.1050722
20 schema:keywords XG molecules
21 acetate residues
22 agents
23 apparent flow curve
24 apparent viscosity
25 aqueous xanthan gum solutions
26 association
27 behavior
28 bonds
29 cases
30 characteristics
31 concentration
32 conditions
33 continued flow
34 critical xanthan
35 curves
36 deformation
37 detail
38 duration
39 effect
40 flow
41 flow characteristics
42 flow curves
43 flow duration
44 fluid
45 formation
46 gum
47 gum solutions
48 hydrogen bonds
49 increase
50 industry
51 intermolecular association
52 intermolecular links
53 link
54 literature
55 magnetic resonance velocimetry
56 mass concentration
57 materials
58 molecules
59 oil industry
60 order
61 original rheopectic effect
62 pharmaceutic products
63 products
64 progressive formation
65 range
66 range of stresses
67 reconfiguration
68 residues
69 resonance velocimetry
70 rheological behavior
71 rheometry
72 rheopectic effect
73 salt concentration
74 short flow duration
75 significant increase
76 solution
77 standard rheometry
78 state
79 steady state
80 stress
81 stress behavior
82 stress fluid
83 thickening agent
84 time
85 time of flow
86 validity
87 velocimetry
88 viscosity
89 xanthan
90 xanthan gum
91 xanthan gum solutions
92 yield stress behavior
93 yield stress fluids
94 schema:name Yielding and rheopexy of aqueous xanthan gum solutions
95 schema:pagination 653-660
96 schema:productId N3f120a36b2a64c0588bc7a50c9cf8c11
97 Ne95c3f1f9c9a4fbab22e30ae9c33868b
98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1140351224
99 https://doi.org/10.1007/s00397-021-01293-1
100 schema:sdDatePublished 2022-01-01T18:57
101 schema:sdLicense https://scigraph.springernature.com/explorer/license/
102 schema:sdPublisher N22b61aaf3f6e45188af2897d4e49be87
103 schema:url https://doi.org/10.1007/s00397-021-01293-1
104 sgo:license sg:explorer/license/
105 sgo:sdDataset articles
106 rdf:type schema:ScholarlyArticle
107 N0cb6c5a089fc472c9511609545c9ae7e schema:affiliation grid-institutes:grid.463987.7
108 schema:familyName Essadik
109 schema:givenName Miryam
110 rdf:type schema:Person
111 N130cbe4869324f34b9a22c259427b48f schema:issueNumber 11
112 rdf:type schema:PublicationIssue
113 N13b5eb3409304528895f56734b780415 schema:volumeNumber 60
114 rdf:type schema:PublicationVolume
115 N22b61aaf3f6e45188af2897d4e49be87 schema:name Springer Nature - SN SciGraph project
116 rdf:type schema:Organization
117 N3f120a36b2a64c0588bc7a50c9cf8c11 schema:name dimensions_id
118 schema:value pub.1140351224
119 rdf:type schema:PropertyValue
120 Na9d8af0a7da140d4a1010f300414dd2b rdf:first N0cb6c5a089fc472c9511609545c9ae7e
121 rdf:rest Nd4c62b5047714ef4bc36379cda5cc1dd
122 Nd4c62b5047714ef4bc36379cda5cc1dd rdf:first sg:person.01100710331.46
123 rdf:rest Nf3af7692a6c448f08b188a9e61c3b62a
124 Nd8d27b7a16a143f3a41bcae149eeecf1 rdf:first sg:person.016507605303.79
125 rdf:rest Na9d8af0a7da140d4a1010f300414dd2b
126 Ne95c3f1f9c9a4fbab22e30ae9c33868b schema:name doi
127 schema:value 10.1007/s00397-021-01293-1
128 rdf:type schema:PropertyValue
129 Nea31107711b345d6929ff69cdb82e8b9 rdf:first sg:person.01330462637.18
130 rdf:rest rdf:nil
131 Nf3af7692a6c448f08b188a9e61c3b62a rdf:first sg:person.0606272075.55
132 rdf:rest Nea31107711b345d6929ff69cdb82e8b9
133 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
134 schema:name Engineering
135 rdf:type schema:DefinedTerm
136 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
137 schema:name Chemical Engineering
138 rdf:type schema:DefinedTerm
139 anzsrc-for:0913 schema:inDefinedTermSet anzsrc-for:
140 schema:name Mechanical Engineering
141 rdf:type schema:DefinedTerm
142 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
143 schema:name Interdisciplinary Engineering
144 rdf:type schema:DefinedTerm
145 sg:journal.1050722 schema:issn 0035-4511
146 1435-1528
147 schema:name Rheologica Acta
148 schema:publisher Springer Nature
149 rdf:type schema:Periodical
150 sg:person.01100710331.46 schema:affiliation grid-institutes:grid.463987.7
151 schema:familyName Goyon
152 schema:givenName Julie
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100710331.46
154 rdf:type schema:Person
155 sg:person.01330462637.18 schema:affiliation grid-institutes:grid.463987.7
156 schema:familyName Coussot
157 schema:givenName Philippe
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330462637.18
159 rdf:type schema:Person
160 sg:person.016507605303.79 schema:affiliation grid-institutes:grid.463987.7
161 schema:familyName N’gouamba
162 schema:givenName Elie
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016507605303.79
164 rdf:type schema:Person
165 sg:person.0606272075.55 schema:affiliation grid-institutes:grid.423218.e
166 schema:familyName Oerther
167 schema:givenName Thomas
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606272075.55
169 rdf:type schema:Person
170 sg:pub.10.1007/bf02908257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012954542
171 https://doi.org/10.1007/bf02908257
172 rdf:type schema:CreativeWork
173 sg:pub.10.1007/bfb0023332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001254748
174 https://doi.org/10.1007/bfb0023332
175 rdf:type schema:CreativeWork
176 sg:pub.10.1007/s00397-017-1002-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084021455
177 https://doi.org/10.1007/s00397-017-1002-7
178 rdf:type schema:CreativeWork
179 sg:pub.10.1007/s00397-019-01154-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1116997322
180 https://doi.org/10.1007/s00397-019-01154-y
181 rdf:type schema:CreativeWork
182 sg:pub.10.1007/s11242-018-1011-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100770022
183 https://doi.org/10.1007/s11242-018-1011-8
184 rdf:type schema:CreativeWork
185 grid-institutes:grid.423218.e schema:alternateName Bruker BioSpin GmbH, Silberstreifen 4, 76287, Rheinstetten, Germany
186 schema:name Bruker BioSpin GmbH, Silberstreifen 4, 76287, Rheinstetten, Germany
187 rdf:type schema:Organization
188 grid-institutes:grid.463987.7 schema:alternateName Laboratoire Navier, ENPC-University Gustave Eiffel-CNRS, 77420, Champs-sur-Marne, France
189 schema:name Laboratoire Navier, ENPC-University Gustave Eiffel-CNRS, 77420, Champs-sur-Marne, France
190 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...