Elucidating the rheological implications of adding particles in blood View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-07-27

AUTHORS

Pavlos S. Stephanou

ABSTRACT

In the past few decades, nanotechnology has been employed to provide breakthroughs in the diagnosis and treatment of several diseases using drug-carrying particles (DCPs). In such an endeavor, the optimal design of DCPs is paramount, which necessitates the use of an accurate and trustworthy constitutive model in computational fluid dynamics (CFD) simulators. We herein introduce a continuum model for elaborating on the rheological implications of adding particles in blood. The model is developed using non-equilibrium thermodynamics to guarantee thermodynamic admissibility. Red blood cells are modeled as deformed droplets with a constant volume that are able to aggregate, whereas particles are considered rigid spheroids. The model predictions are compared favorably against rheological data for both spherical and non-spherical particles immersed in non-aggregating blood. It is expected that the use of this model will allow for the testing of DCPs in virtual patients and for their tailor-design in treating various diseases. Supplementary Information: The online version contains supplementary material available at 10.1007/s00397-021-01289-x. More... »

PAGES

1-14

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00397-021-01289-x

DOI

http://dx.doi.org/10.1007/s00397-021-01289-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1139931290

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/34334825


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering, Cyprus University of Technology, PO Box 50329, 3603 Limassol, Cyprus", 
          "id": "http://www.grid.ac/institutes/grid.15810.3d", 
          "name": [
            "Department of Chemical Engineering, Cyprus University of Technology, PO Box 50329, 3603 Limassol, Cyprus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stephanou", 
        "givenName": "Pavlos S.", 
        "id": "sg:person.01101653313.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101653313.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00397-002-0288-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034919918", 
          "https://doi.org/10.1007/s00397-002-0288-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01432034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009825473", 
          "https://doi.org/10.1007/bf01432034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10483-020-2609-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1125953757", 
          "https://doi.org/10.1007/s10483-020-2609-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-007-9423-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046733380", 
          "https://doi.org/10.1007/s10439-007-9423-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12668-018-0593-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111438813", 
          "https://doi.org/10.1007/s12668-018-0593-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10237-020-01407-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1136819935", 
          "https://doi.org/10.1007/s10237-020-01407-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00397-002-0256-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014310007", 
          "https://doi.org/10.1007/s00397-002-0256-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-005-8976-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027598637", 
          "https://doi.org/10.1007/s10439-005-8976-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00397-003-0341-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047500358", 
          "https://doi.org/10.1007/s00397-003-0341-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00397-005-0434-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050980409", 
          "https://doi.org/10.1007/s00397-005-0434-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41524-020-00366-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1129066679", 
          "https://doi.org/10.1038/s41524-020-00366-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41577-019-0269-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1124452295", 
          "https://doi.org/10.1038/s41577-019-0269-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-07-27", 
    "datePublishedReg": "2021-07-27", 
    "description": "In the past few decades, nanotechnology has been employed to provide breakthroughs in the diagnosis and treatment of several diseases using drug-carrying particles (DCPs). In such an endeavor, the optimal design of DCPs is paramount, which necessitates the use of an accurate and trustworthy constitutive model in computational fluid dynamics (CFD) simulators. We herein introduce a continuum model for elaborating on the rheological implications of adding particles in blood. The model is developed using non-equilibrium thermodynamics to guarantee thermodynamic admissibility. Red blood cells are modeled as deformed droplets with a constant volume that are able to aggregate, whereas particles are considered rigid spheroids. The model predictions are compared favorably against rheological data for both spherical and non-spherical particles immersed in non-aggregating blood. It is expected that the use of this model will allow for the testing of DCPs in virtual patients and for their tailor-design in treating various diseases.\nSupplementary Information: The online version contains supplementary material available at 10.1007/s00397-021-01289-x.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00397-021-01289-x", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1050722", 
        "issn": [
          "0035-4511", 
          "1435-1528"
        ], 
        "name": "Rheologica Acta", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "60"
      }
    ], 
    "keywords": [
      "drug-carrying particles", 
      "non-spherical particles", 
      "computational fluid dynamics simulator", 
      "constitutive model", 
      "deformed droplets", 
      "dynamic simulator", 
      "thermodynamic admissibility", 
      "optimal design", 
      "rheological data", 
      "rigid spheroids", 
      "non-equilibrium thermodynamics", 
      "continuum model", 
      "model predictions", 
      "particles", 
      "constant volume", 
      "rheological implications", 
      "droplets", 
      "simulator", 
      "model", 
      "materials", 
      "design", 
      "nanotechnology", 
      "prediction", 
      "thermodynamics", 
      "breakthrough", 
      "use", 
      "testing", 
      "volume", 
      "spheroids", 
      "Supplementary materials", 
      "data", 
      "version", 
      "decades", 
      "red blood cells", 
      "admissibility", 
      "online version", 
      "virtual patients", 
      "cells", 
      "treatment", 
      "endeavor", 
      "blood cells", 
      "implications", 
      "blood", 
      "diagnosis", 
      "disease", 
      "patients", 
      "trustworthy constitutive model", 
      "fluid dynamics (CFD) simulators", 
      "non-aggregating blood", 
      "testing of DCPs", 
      "s00397-021"
    ], 
    "name": "Elucidating the rheological implications of adding particles in blood", 
    "pagination": "1-14", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1139931290"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00397-021-01289-x"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "34334825"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00397-021-01289-x", 
      "https://app.dimensions.ai/details/publication/pub.1139931290"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T19:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_904.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00397-021-01289-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00397-021-01289-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00397-021-01289-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00397-021-01289-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00397-021-01289-x'


 

This table displays all metadata directly associated to this object as RDF triples.

161 TRIPLES      22 PREDICATES      89 URIs      69 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00397-021-01289-x schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N9219883ebb8245e499b128aee5931a90
4 schema:citation sg:pub.10.1007/bf01432034
5 sg:pub.10.1007/s00397-002-0256-9
6 sg:pub.10.1007/s00397-002-0288-1
7 sg:pub.10.1007/s00397-003-0341-8
8 sg:pub.10.1007/s00397-005-0434-7
9 sg:pub.10.1007/s10237-020-01407-3
10 sg:pub.10.1007/s10439-005-8976-5
11 sg:pub.10.1007/s10439-007-9423-6
12 sg:pub.10.1007/s10483-020-2609-6
13 sg:pub.10.1007/s12668-018-0593-5
14 sg:pub.10.1038/s41524-020-00366-8
15 sg:pub.10.1038/s41577-019-0269-6
16 schema:datePublished 2021-07-27
17 schema:datePublishedReg 2021-07-27
18 schema:description In the past few decades, nanotechnology has been employed to provide breakthroughs in the diagnosis and treatment of several diseases using drug-carrying particles (DCPs). In such an endeavor, the optimal design of DCPs is paramount, which necessitates the use of an accurate and trustworthy constitutive model in computational fluid dynamics (CFD) simulators. We herein introduce a continuum model for elaborating on the rheological implications of adding particles in blood. The model is developed using non-equilibrium thermodynamics to guarantee thermodynamic admissibility. Red blood cells are modeled as deformed droplets with a constant volume that are able to aggregate, whereas particles are considered rigid spheroids. The model predictions are compared favorably against rheological data for both spherical and non-spherical particles immersed in non-aggregating blood. It is expected that the use of this model will allow for the testing of DCPs in virtual patients and for their tailor-design in treating various diseases. Supplementary Information: The online version contains supplementary material available at 10.1007/s00397-021-01289-x.
19 schema:genre article
20 schema:inLanguage en
21 schema:isAccessibleForFree true
22 schema:isPartOf N31d38fca3e3e477bb0958feceec25547
23 N8b4186f44a634b9694cf2ba7ce973a1d
24 sg:journal.1050722
25 schema:keywords Supplementary materials
26 admissibility
27 blood
28 blood cells
29 breakthrough
30 cells
31 computational fluid dynamics simulator
32 constant volume
33 constitutive model
34 continuum model
35 data
36 decades
37 deformed droplets
38 design
39 diagnosis
40 disease
41 droplets
42 drug-carrying particles
43 dynamic simulator
44 endeavor
45 fluid dynamics (CFD) simulators
46 implications
47 materials
48 model
49 model predictions
50 nanotechnology
51 non-aggregating blood
52 non-equilibrium thermodynamics
53 non-spherical particles
54 online version
55 optimal design
56 particles
57 patients
58 prediction
59 red blood cells
60 rheological data
61 rheological implications
62 rigid spheroids
63 s00397-021
64 simulator
65 spheroids
66 testing
67 testing of DCPs
68 thermodynamic admissibility
69 thermodynamics
70 treatment
71 trustworthy constitutive model
72 use
73 version
74 virtual patients
75 volume
76 schema:name Elucidating the rheological implications of adding particles in blood
77 schema:pagination 1-14
78 schema:productId N14d1d293b8834ac68478c09ac5cbf3c7
79 N364a6d2ba4fe40a09d69c1279f46621f
80 Nf38597cb01b94979ab8461501cdac20a
81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139931290
82 https://doi.org/10.1007/s00397-021-01289-x
83 schema:sdDatePublished 2022-01-01T19:00
84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
85 schema:sdPublisher N28d19e5bc3774012906c6635aea07d93
86 schema:url https://doi.org/10.1007/s00397-021-01289-x
87 sgo:license sg:explorer/license/
88 sgo:sdDataset articles
89 rdf:type schema:ScholarlyArticle
90 N14d1d293b8834ac68478c09ac5cbf3c7 schema:name dimensions_id
91 schema:value pub.1139931290
92 rdf:type schema:PropertyValue
93 N28d19e5bc3774012906c6635aea07d93 schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 N31d38fca3e3e477bb0958feceec25547 schema:volumeNumber 60
96 rdf:type schema:PublicationVolume
97 N364a6d2ba4fe40a09d69c1279f46621f schema:name doi
98 schema:value 10.1007/s00397-021-01289-x
99 rdf:type schema:PropertyValue
100 N8b4186f44a634b9694cf2ba7ce973a1d schema:issueNumber 10
101 rdf:type schema:PublicationIssue
102 N9219883ebb8245e499b128aee5931a90 rdf:first sg:person.01101653313.22
103 rdf:rest rdf:nil
104 Nf38597cb01b94979ab8461501cdac20a schema:name pubmed_id
105 schema:value 34334825
106 rdf:type schema:PropertyValue
107 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
108 schema:name Engineering
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
111 schema:name Interdisciplinary Engineering
112 rdf:type schema:DefinedTerm
113 sg:journal.1050722 schema:issn 0035-4511
114 1435-1528
115 schema:name Rheologica Acta
116 schema:publisher Springer Nature
117 rdf:type schema:Periodical
118 sg:person.01101653313.22 schema:affiliation grid-institutes:grid.15810.3d
119 schema:familyName Stephanou
120 schema:givenName Pavlos S.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101653313.22
122 rdf:type schema:Person
123 sg:pub.10.1007/bf01432034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009825473
124 https://doi.org/10.1007/bf01432034
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s00397-002-0256-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014310007
127 https://doi.org/10.1007/s00397-002-0256-9
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s00397-002-0288-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034919918
130 https://doi.org/10.1007/s00397-002-0288-1
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s00397-003-0341-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047500358
133 https://doi.org/10.1007/s00397-003-0341-8
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s00397-005-0434-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050980409
136 https://doi.org/10.1007/s00397-005-0434-7
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s10237-020-01407-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1136819935
139 https://doi.org/10.1007/s10237-020-01407-3
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s10439-005-8976-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027598637
142 https://doi.org/10.1007/s10439-005-8976-5
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s10439-007-9423-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046733380
145 https://doi.org/10.1007/s10439-007-9423-6
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/s10483-020-2609-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125953757
148 https://doi.org/10.1007/s10483-020-2609-6
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/s12668-018-0593-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111438813
151 https://doi.org/10.1007/s12668-018-0593-5
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/s41524-020-00366-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1129066679
154 https://doi.org/10.1038/s41524-020-00366-8
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/s41577-019-0269-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124452295
157 https://doi.org/10.1038/s41577-019-0269-6
158 rdf:type schema:CreativeWork
159 grid-institutes:grid.15810.3d schema:alternateName Department of Chemical Engineering, Cyprus University of Technology, PO Box 50329, 3603 Limassol, Cyprus
160 schema:name Department of Chemical Engineering, Cyprus University of Technology, PO Box 50329, 3603 Limassol, Cyprus
161 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...