Second-order statistical bootstrap for the uncertainty quantification of time-temperature-superposition analysis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-21

AUTHORS

Amitesh Maiti

ABSTRACT

Time-temperature superposition (TTS), which for decades has been a powerful method for long-term prediction from accelerated aging data, involves rigid-shifting isotherms in logarithmic time to produce a single master prediction curve. For simple thermo-rheological properties that accurately follow the TTS principle, the shifts can be easily determined, even manually by the eye. However, for many properties of interest, where the principle is obeyed only approximately, or the data is noisy, it is imperative to develop objective shifting techniques along with reliable uncertainty bounds. This work analyzes in detail the method of arclength-minimization as an unsupervised algorithm to determining optimum shifts and demonstrates that the method is nearly unbiased for all practical datasets with a variety of noise distributions. Moreover, if averaged over with-replacement (bootstrap) resamples, the predicted shifts follow a normal distribution, a fact that can be used to construct confidence interval for the master curve through a second-order bootstrap procedure. More... »

PAGES

1-11

Journal

TITLE

Rheologica Acta

ISSUE

N/A

VOLUME

N/A

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00397-019-01138-y

DOI

http://dx.doi.org/10.1007/s00397-019-01138-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112918612


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Lawrence Livermore National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.250008.f", 
          "name": [
            "Lawrence Livermore National Laboratory, 94550, Livermore, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maiti", 
        "givenName": "Amitesh", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/srep24871", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000440483", 
          "https://doi.org/10.1038/srep24871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/3.2447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005055588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-3093(00)00099-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005893241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-013-3193-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009559684", 
          "https://doi.org/10.1007/s10973-013-3193-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781118938478.ch11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012851302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00396677", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015355103", 
          "https://doi.org/10.1007/bf00396677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00396677", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015355103", 
          "https://doi.org/10.1007/bf00396677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0141-3910(01)00118-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019751285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/ss/1177013815", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021018321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11043-008-9055-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021460462", 
          "https://doi.org/10.1007/s11043-008-9055-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.polymertesting.2011.09.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022507584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10443-006-9017-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025160821", 
          "https://doi.org/10.1007/s10443-006-9017-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10443-006-9017-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025160821", 
          "https://doi.org/10.1007/s10443-006-9017-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.polymdegradstab.2005.11.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029000387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-017-7564-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029840984", 
          "https://doi.org/10.1007/978-94-017-7564-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-017-7564-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029840984", 
          "https://doi.org/10.1007/978-94-017-7564-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11043-008-9048-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035520264", 
          "https://doi.org/10.1007/s11043-008-9048-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-012-6965-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039096867", 
          "https://doi.org/10.1007/s10853-012-6965-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00397-015-0898-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046637799", 
          "https://doi.org/10.1007/s00397-015-0898-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1295/polymj.26.981", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046755214", 
          "https://doi.org/10.1295/polymj.26.981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13367-011-0011-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047271627", 
          "https://doi.org/10.1007/s13367-011-0011-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.polymdegradstab.2010.07.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047823013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/polym5020751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050033942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.macromol.5b00532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055118423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja01619a008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055813183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/je0302203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055880369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/je0302203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055880369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1789956", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062074577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1122/1.3503529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062413290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2288890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069862891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3141/1630-04", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071037373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3141/1630-04", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071037373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3141/1630-04", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071037373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prep.201700186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092665419"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-21", 
    "datePublishedReg": "2019-03-21", 
    "description": "Time-temperature superposition (TTS), which for decades has been a powerful method for long-term prediction from accelerated aging data, involves rigid-shifting isotherms in logarithmic time to produce a single master prediction curve. For simple thermo-rheological properties that accurately follow the TTS principle, the shifts can be easily determined, even manually by the eye. However, for many properties of interest, where the principle is obeyed only approximately, or the data is noisy, it is imperative to develop objective shifting techniques along with reliable uncertainty bounds. This work analyzes in detail the method of arclength-minimization as an unsupervised algorithm to determining optimum shifts and demonstrates that the method is nearly unbiased for all practical datasets with a variety of noise distributions. Moreover, if averaged over with-replacement (bootstrap) resamples, the predicted shifts follow a normal distribution, a fact that can be used to construct confidence interval for the master curve through a second-order bootstrap procedure.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00397-019-01138-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1050722", 
        "issn": [
          "0035-4511", 
          "1435-1528"
        ], 
        "name": "Rheologica Acta", 
        "type": "Periodical"
      }
    ], 
    "name": "Second-order statistical bootstrap for the uncertainty quantification of time-temperature-superposition analysis", 
    "pagination": "1-11", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f7111bbffa4931e68f60fc920fcf646d1ccae06be8e78a7411a2a2b0ef9aaa32"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00397-019-01138-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112918612"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00397-019-01138-y", 
      "https://app.dimensions.ai/details/publication/pub.1112918612"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72862_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00397-019-01138-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00397-019-01138-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00397-019-01138-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00397-019-01138-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00397-019-01138-y'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      21 PREDICATES      52 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00397-019-01138-y schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N38c808ec2ad94268b4ab3af3bab0c296
4 schema:citation sg:pub.10.1007/978-94-017-7564-9
5 sg:pub.10.1007/bf00396677
6 sg:pub.10.1007/s00397-015-0898-z
7 sg:pub.10.1007/s10443-006-9017-8
8 sg:pub.10.1007/s10853-012-6965-2
9 sg:pub.10.1007/s10973-013-3193-1
10 sg:pub.10.1007/s11043-008-9048-7
11 sg:pub.10.1007/s11043-008-9055-8
12 sg:pub.10.1007/s13367-011-0011-9
13 sg:pub.10.1038/srep24871
14 sg:pub.10.1295/polymj.26.981
15 https://doi.org/10.1002/9781118938478.ch11
16 https://doi.org/10.1002/prep.201700186
17 https://doi.org/10.1016/j.polymdegradstab.2005.11.009
18 https://doi.org/10.1016/j.polymdegradstab.2010.07.038
19 https://doi.org/10.1016/j.polymertesting.2011.09.008
20 https://doi.org/10.1016/s0022-3093(00)00099-5
21 https://doi.org/10.1016/s0141-3910(01)00118-5
22 https://doi.org/10.1021/acs.macromol.5b00532
23 https://doi.org/10.1021/ja01619a008
24 https://doi.org/10.1021/je0302203
25 https://doi.org/10.1115/1.1789956
26 https://doi.org/10.1122/1.3503529
27 https://doi.org/10.1214/ss/1177013815
28 https://doi.org/10.2307/2288890
29 https://doi.org/10.2514/3.2447
30 https://doi.org/10.3141/1630-04
31 https://doi.org/10.3390/polym5020751
32 schema:datePublished 2019-03-21
33 schema:datePublishedReg 2019-03-21
34 schema:description Time-temperature superposition (TTS), which for decades has been a powerful method for long-term prediction from accelerated aging data, involves rigid-shifting isotherms in logarithmic time to produce a single master prediction curve. For simple thermo-rheological properties that accurately follow the TTS principle, the shifts can be easily determined, even manually by the eye. However, for many properties of interest, where the principle is obeyed only approximately, or the data is noisy, it is imperative to develop objective shifting techniques along with reliable uncertainty bounds. This work analyzes in detail the method of arclength-minimization as an unsupervised algorithm to determining optimum shifts and demonstrates that the method is nearly unbiased for all practical datasets with a variety of noise distributions. Moreover, if averaged over with-replacement (bootstrap) resamples, the predicted shifts follow a normal distribution, a fact that can be used to construct confidence interval for the master curve through a second-order bootstrap procedure.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf sg:journal.1050722
39 schema:name Second-order statistical bootstrap for the uncertainty quantification of time-temperature-superposition analysis
40 schema:pagination 1-11
41 schema:productId N4dd81084c02e4e5eae4ec0b812a8fcde
42 Nd2891affc3514eb9b2406749b60ec24f
43 Nf8093c2be7384e3ea43203b16b902927
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112918612
45 https://doi.org/10.1007/s00397-019-01138-y
46 schema:sdDatePublished 2019-04-11T12:54
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N8b6e613d00de4257833985076a7f32a2
49 schema:url https://link.springer.com/10.1007%2Fs00397-019-01138-y
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N38c808ec2ad94268b4ab3af3bab0c296 rdf:first N41b49270255b4cf0ac3c167bcf0e54f0
54 rdf:rest rdf:nil
55 N41b49270255b4cf0ac3c167bcf0e54f0 schema:affiliation https://www.grid.ac/institutes/grid.250008.f
56 schema:familyName Maiti
57 schema:givenName Amitesh
58 rdf:type schema:Person
59 N4dd81084c02e4e5eae4ec0b812a8fcde schema:name readcube_id
60 schema:value f7111bbffa4931e68f60fc920fcf646d1ccae06be8e78a7411a2a2b0ef9aaa32
61 rdf:type schema:PropertyValue
62 N8b6e613d00de4257833985076a7f32a2 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 Nd2891affc3514eb9b2406749b60ec24f schema:name dimensions_id
65 schema:value pub.1112918612
66 rdf:type schema:PropertyValue
67 Nf8093c2be7384e3ea43203b16b902927 schema:name doi
68 schema:value 10.1007/s00397-019-01138-y
69 rdf:type schema:PropertyValue
70 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
71 schema:name Mathematical Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
74 schema:name Statistics
75 rdf:type schema:DefinedTerm
76 sg:journal.1050722 schema:issn 0035-4511
77 1435-1528
78 schema:name Rheologica Acta
79 rdf:type schema:Periodical
80 sg:pub.10.1007/978-94-017-7564-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029840984
81 https://doi.org/10.1007/978-94-017-7564-9
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/bf00396677 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015355103
84 https://doi.org/10.1007/bf00396677
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/s00397-015-0898-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1046637799
87 https://doi.org/10.1007/s00397-015-0898-z
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/s10443-006-9017-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025160821
90 https://doi.org/10.1007/s10443-006-9017-8
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/s10853-012-6965-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039096867
93 https://doi.org/10.1007/s10853-012-6965-2
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/s10973-013-3193-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009559684
96 https://doi.org/10.1007/s10973-013-3193-1
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/s11043-008-9048-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035520264
99 https://doi.org/10.1007/s11043-008-9048-7
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/s11043-008-9055-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021460462
102 https://doi.org/10.1007/s11043-008-9055-8
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s13367-011-0011-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047271627
105 https://doi.org/10.1007/s13367-011-0011-9
106 rdf:type schema:CreativeWork
107 sg:pub.10.1038/srep24871 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000440483
108 https://doi.org/10.1038/srep24871
109 rdf:type schema:CreativeWork
110 sg:pub.10.1295/polymj.26.981 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046755214
111 https://doi.org/10.1295/polymj.26.981
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1002/9781118938478.ch11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012851302
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1002/prep.201700186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092665419
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.polymdegradstab.2005.11.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029000387
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.polymdegradstab.2010.07.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047823013
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.polymertesting.2011.09.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022507584
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/s0022-3093(00)00099-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005893241
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/s0141-3910(01)00118-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019751285
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1021/acs.macromol.5b00532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055118423
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1021/ja01619a008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055813183
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1021/je0302203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055880369
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1115/1.1789956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062074577
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1122/1.3503529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062413290
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1214/ss/1177013815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021018321
138 rdf:type schema:CreativeWork
139 https://doi.org/10.2307/2288890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069862891
140 rdf:type schema:CreativeWork
141 https://doi.org/10.2514/3.2447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005055588
142 rdf:type schema:CreativeWork
143 https://doi.org/10.3141/1630-04 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071037373
144 rdf:type schema:CreativeWork
145 https://doi.org/10.3390/polym5020751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050033942
146 rdf:type schema:CreativeWork
147 https://www.grid.ac/institutes/grid.250008.f schema:alternateName Lawrence Livermore National Laboratory
148 schema:name Lawrence Livermore National Laboratory, 94550, Livermore, CA, USA
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...