Rheological behaviour of vitreous humour View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-02-07

AUTHORS

Andreia F. Silva, Manuel A. Alves, Mónica S. N. Oliveira

ABSTRACT

The vitreous humour (VH) is a complex biofluid that occupies a large portion of the eyeball between the lens and the retina, and exhibits non-Newtonian rheological properties that are key for its function in the eye. It is often possible to distinguish two different phases in VH, known as liquid and gel phases (Sebag J Eye 1: 254–262, 1987). In this work, we present a detailed rheological characterisation of the two phases of the VH under shear and extensional flow conditions. Healthy New Zealand rabbit eyes were used to measure the surface tension and the shear and extensional rheological properties of VH in different phase conformations and at different times after dissection. The results show that VH liquid phase exhibits a surface tension of 47.8 mN/m, a shear thinning behaviour reaching a viscosity plateau around 10−3 Pa s for shear rates above ~1000 s−1, and an average relaxation time of 9.7 ms in extensional flow. Interestingly, both VH phases present higher storage modulus than loss modulus, and the measurements performed with VH gel phase 4 ± 1 h after dissection exhibit the highest moduli values. The compliance measurements for the gel phase show a viscoelastic gel behaviour and that compliance values decrease substantially with time after dissection. Our results show that the two VH phases exhibit viscoelastic behaviour, but with distinct rheological characteristics, consistent with a gel phase mostly composed of collagen entangled by hyaluronan and a second phase mainly composed of hyaluronan in aqueous solution. More... »

PAGES

377-386

References to SciGraph publications

  • 2008-02-29. Adult vitreous structure and postnatal changes in EYE
  • 2014-10-30. Experimental Challenges of Shear Rheology: How to Avoid Bad Data in COMPLEX FLUIDS IN BIOLOGICAL SYSTEMS
  • 1994-02. Glucose concentration in the vitreous of nondiabetic and diabetic human eyes in GRAEFE'S ARCHIVE FOR CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY
  • 1993-05. Abnormalities of human vitreous structure in diabetes in GRAEFE'S ARCHIVE FOR CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY
  • 2007-03-23. Anomalous Viscosity Behavior in Aqueous Solutions of Hyaluronic Acid in POLYMER BULLETIN
  • 2002-07-10. Imaging vitreous in EYE
  • 1996-11. The biochemical structure of mammalian vitreous in EYE
  • 1987-03. Ageing of the vitreous in EYE
  • 1998. Handbook of Biomaterial Properties in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00397-017-0997-0

    DOI

    http://dx.doi.org/10.1007/s00397-017-0997-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1083698253


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0913", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mechanical Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Interdisciplinary Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "James Weir Fluids Laboratory, Department of Mechanical and Aerospace Engineering, University of Strathclyde, G1 1XJ, Glasgow, UK", 
              "id": "http://www.grid.ac/institutes/grid.11984.35", 
              "name": [
                "James Weir Fluids Laboratory, Department of Mechanical and Aerospace Engineering, University of Strathclyde, G1 1XJ, Glasgow, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Silva", 
            "givenName": "Andreia F.", 
            "id": "sg:person.013513251121.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013513251121.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Departamento de Engenharia Qu\u00edmica, CEFT, Faculdade de Engenharia, Universidade do Porto, 4200-465, Porto, Portugal", 
              "id": "http://www.grid.ac/institutes/grid.5808.5", 
              "name": [
                "Departamento de Engenharia Qu\u00edmica, CEFT, Faculdade de Engenharia, Universidade do Porto, 4200-465, Porto, Portugal"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Alves", 
            "givenName": "Manuel A.", 
            "id": "sg:person.01326131676.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326131676.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "James Weir Fluids Laboratory, Department of Mechanical and Aerospace Engineering, University of Strathclyde, G1 1XJ, Glasgow, UK", 
              "id": "http://www.grid.ac/institutes/grid.11984.35", 
              "name": [
                "James Weir Fluids Laboratory, Department of Mechanical and Aerospace Engineering, University of Strathclyde, G1 1XJ, Glasgow, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Oliveira", 
            "givenName": "M\u00f3nica S. N.", 
            "id": "sg:person.012725112572.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012725112572.52"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00919101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010806070", 
              "https://doi.org/10.1007/bf00919101"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/eye.1996.159", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043382253", 
              "https://doi.org/10.1038/eye.1996.159"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4939-2065-5_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033574218", 
              "https://doi.org/10.1007/978-1-4939-2065-5_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.eye.6700201", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052871580", 
              "https://doi.org/10.1038/sj.eye.6700201"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4615-5801-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014433055", 
              "https://doi.org/10.1007/978-1-4615-5801-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/eye.1987.45", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022674048", 
              "https://doi.org/10.1038/eye.1987.45"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/eye.2008.21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000800180", 
              "https://doi.org/10.1038/eye.2008.21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00289-007-0760-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027471301", 
              "https://doi.org/10.1007/s00289-007-0760-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00171666", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002920340", 
              "https://doi.org/10.1007/bf00171666"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-02-07", 
        "datePublishedReg": "2017-02-07", 
        "description": "The vitreous humour (VH) is a complex biofluid that occupies a large portion of the eyeball between the lens and the retina, and exhibits non-Newtonian rheological properties that are key for its function in the eye. It is often possible to distinguish two different phases in VH, known as liquid and gel phases (Sebag J Eye 1: 254\u2013262, 1987). In this work, we present a detailed rheological characterisation of the two phases of the VH under shear and extensional flow conditions. Healthy New Zealand rabbit eyes were used to measure the surface tension and the shear and extensional rheological properties of VH in different phase conformations and at different times after dissection. The results show that VH liquid phase exhibits a surface tension of 47.8\u00a0mN/m, a shear thinning behaviour reaching a viscosity plateau around 10\u22123\u00a0Pa\u00a0s for shear rates above ~1000\u00a0s\u22121, and an average relaxation time of 9.7\u00a0ms in extensional flow. Interestingly, both VH phases present higher storage modulus than loss modulus, and the measurements performed with VH gel phase 4\u2009\u00b1\u20091\u00a0h after dissection exhibit the highest moduli values. The compliance measurements for the gel phase show a viscoelastic gel behaviour and that compliance values decrease substantially with time after dissection. Our results show that the two VH phases exhibit viscoelastic behaviour, but with distinct rheological characteristics, consistent with a gel phase mostly composed of collagen entangled by hyaluronan and a second phase mainly composed of hyaluronan in aqueous solution.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00397-017-0997-0", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.9590710", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1050722", 
            "issn": [
              "0035-4511", 
              "1435-1528"
            ], 
            "name": "Rheologica Acta", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "56"
          }
        ], 
        "keywords": [
          "rheological properties", 
          "surface tension", 
          "non-Newtonian rheological properties", 
          "higher storage modulus", 
          "higher modulus values", 
          "shear thinning behavior", 
          "extensional rheological properties", 
          "extensional flow conditions", 
          "VH phases", 
          "storage modulus", 
          "viscoelastic behavior", 
          "modulus values", 
          "rheological characterisation", 
          "flow conditions", 
          "loss modulus", 
          "thinning behavior", 
          "extensional flow", 
          "rheological behavior", 
          "rheological characteristics", 
          "viscosity plateau", 
          "liquid phase", 
          "shear rate", 
          "distinct rheological characteristics", 
          "modulus", 
          "gel behavior", 
          "aqueous solution", 
          "gel phase", 
          "average relaxation time", 
          "compliance measurements", 
          "compliance values", 
          "phase", 
          "second phase", 
          "properties", 
          "behavior", 
          "relaxation time", 
          "measurements", 
          "complex biofluids", 
          "tension", 
          "different phases", 
          "liquid", 
          "flow", 
          "PA", 
          "solution", 
          "time", 
          "results", 
          "large portion", 
          "different times", 
          "characterisation", 
          "phase conformation", 
          "values", 
          "characteristics", 
          "conditions", 
          "work", 
          "ms", 
          "rate", 
          "portion", 
          "biofluids", 
          "function", 
          "New Zealand rabbit eyes", 
          "plateau", 
          "lens", 
          "vitreous humor", 
          "rabbit eyes", 
          "collagen", 
          "phase 4", 
          "eyeball", 
          "hyaluronan", 
          "eyes", 
          "conformation", 
          "dissection", 
          "retina", 
          "humor"
        ], 
        "name": "Rheological behaviour of vitreous humour", 
        "pagination": "377-386", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1083698253"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00397-017-0997-0"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00397-017-0997-0", 
          "https://app.dimensions.ai/details/publication/pub.1083698253"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:00", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_736.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00397-017-0997-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00397-017-0997-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00397-017-0997-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00397-017-0997-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00397-017-0997-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    192 TRIPLES      21 PREDICATES      107 URIs      88 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00397-017-0997-0 schema:about anzsrc-for:09
    2 anzsrc-for:0904
    3 anzsrc-for:0913
    4 anzsrc-for:0915
    5 schema:author N9cfdf917f8eb461badb4934767bb23f9
    6 schema:citation sg:pub.10.1007/978-1-4615-5801-9
    7 sg:pub.10.1007/978-1-4939-2065-5_6
    8 sg:pub.10.1007/bf00171666
    9 sg:pub.10.1007/bf00919101
    10 sg:pub.10.1007/s00289-007-0760-2
    11 sg:pub.10.1038/eye.1987.45
    12 sg:pub.10.1038/eye.1996.159
    13 sg:pub.10.1038/eye.2008.21
    14 sg:pub.10.1038/sj.eye.6700201
    15 schema:datePublished 2017-02-07
    16 schema:datePublishedReg 2017-02-07
    17 schema:description The vitreous humour (VH) is a complex biofluid that occupies a large portion of the eyeball between the lens and the retina, and exhibits non-Newtonian rheological properties that are key for its function in the eye. It is often possible to distinguish two different phases in VH, known as liquid and gel phases (Sebag J Eye 1: 254–262, 1987). In this work, we present a detailed rheological characterisation of the two phases of the VH under shear and extensional flow conditions. Healthy New Zealand rabbit eyes were used to measure the surface tension and the shear and extensional rheological properties of VH in different phase conformations and at different times after dissection. The results show that VH liquid phase exhibits a surface tension of 47.8 mN/m, a shear thinning behaviour reaching a viscosity plateau around 10−3 Pa s for shear rates above ~1000 s−1, and an average relaxation time of 9.7 ms in extensional flow. Interestingly, both VH phases present higher storage modulus than loss modulus, and the measurements performed with VH gel phase 4 ± 1 h after dissection exhibit the highest moduli values. The compliance measurements for the gel phase show a viscoelastic gel behaviour and that compliance values decrease substantially with time after dissection. Our results show that the two VH phases exhibit viscoelastic behaviour, but with distinct rheological characteristics, consistent with a gel phase mostly composed of collagen entangled by hyaluronan and a second phase mainly composed of hyaluronan in aqueous solution.
    18 schema:genre article
    19 schema:isAccessibleForFree true
    20 schema:isPartOf N1f13ea08d68d44ff93358dd762b35670
    21 Neaecba060e43484eb804d2576e8fc7a8
    22 sg:journal.1050722
    23 schema:keywords New Zealand rabbit eyes
    24 PA
    25 VH phases
    26 aqueous solution
    27 average relaxation time
    28 behavior
    29 biofluids
    30 characterisation
    31 characteristics
    32 collagen
    33 complex biofluids
    34 compliance measurements
    35 compliance values
    36 conditions
    37 conformation
    38 different phases
    39 different times
    40 dissection
    41 distinct rheological characteristics
    42 extensional flow
    43 extensional flow conditions
    44 extensional rheological properties
    45 eyeball
    46 eyes
    47 flow
    48 flow conditions
    49 function
    50 gel behavior
    51 gel phase
    52 higher modulus values
    53 higher storage modulus
    54 humor
    55 hyaluronan
    56 large portion
    57 lens
    58 liquid
    59 liquid phase
    60 loss modulus
    61 measurements
    62 modulus
    63 modulus values
    64 ms
    65 non-Newtonian rheological properties
    66 phase
    67 phase 4
    68 phase conformation
    69 plateau
    70 portion
    71 properties
    72 rabbit eyes
    73 rate
    74 relaxation time
    75 results
    76 retina
    77 rheological behavior
    78 rheological characterisation
    79 rheological characteristics
    80 rheological properties
    81 second phase
    82 shear rate
    83 shear thinning behavior
    84 solution
    85 storage modulus
    86 surface tension
    87 tension
    88 thinning behavior
    89 time
    90 values
    91 viscoelastic behavior
    92 viscosity plateau
    93 vitreous humor
    94 work
    95 schema:name Rheological behaviour of vitreous humour
    96 schema:pagination 377-386
    97 schema:productId N935faa805d1b4f6594ab4661770aa5d5
    98 Nc36ccec0147a472c865b3074387a728d
    99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083698253
    100 https://doi.org/10.1007/s00397-017-0997-0
    101 schema:sdDatePublished 2022-09-02T16:00
    102 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    103 schema:sdPublisher Nb6c9ee92114a446f883444928ffe5e95
    104 schema:url https://doi.org/10.1007/s00397-017-0997-0
    105 sgo:license sg:explorer/license/
    106 sgo:sdDataset articles
    107 rdf:type schema:ScholarlyArticle
    108 N1f13ea08d68d44ff93358dd762b35670 schema:volumeNumber 56
    109 rdf:type schema:PublicationVolume
    110 N3b24c3ee329d4db18d6b89617e54b9d3 rdf:first sg:person.012725112572.52
    111 rdf:rest rdf:nil
    112 N935faa805d1b4f6594ab4661770aa5d5 schema:name doi
    113 schema:value 10.1007/s00397-017-0997-0
    114 rdf:type schema:PropertyValue
    115 N9cfdf917f8eb461badb4934767bb23f9 rdf:first sg:person.013513251121.43
    116 rdf:rest Nf6fdd51cb261469a981dd909c10ce201
    117 Nb6c9ee92114a446f883444928ffe5e95 schema:name Springer Nature - SN SciGraph project
    118 rdf:type schema:Organization
    119 Nc36ccec0147a472c865b3074387a728d schema:name dimensions_id
    120 schema:value pub.1083698253
    121 rdf:type schema:PropertyValue
    122 Neaecba060e43484eb804d2576e8fc7a8 schema:issueNumber 4
    123 rdf:type schema:PublicationIssue
    124 Nf6fdd51cb261469a981dd909c10ce201 rdf:first sg:person.01326131676.76
    125 rdf:rest N3b24c3ee329d4db18d6b89617e54b9d3
    126 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    127 schema:name Engineering
    128 rdf:type schema:DefinedTerm
    129 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
    130 schema:name Chemical Engineering
    131 rdf:type schema:DefinedTerm
    132 anzsrc-for:0913 schema:inDefinedTermSet anzsrc-for:
    133 schema:name Mechanical Engineering
    134 rdf:type schema:DefinedTerm
    135 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
    136 schema:name Interdisciplinary Engineering
    137 rdf:type schema:DefinedTerm
    138 sg:grant.9590710 http://pending.schema.org/fundedItem sg:pub.10.1007/s00397-017-0997-0
    139 rdf:type schema:MonetaryGrant
    140 sg:journal.1050722 schema:issn 0035-4511
    141 1435-1528
    142 schema:name Rheologica Acta
    143 schema:publisher Springer Nature
    144 rdf:type schema:Periodical
    145 sg:person.012725112572.52 schema:affiliation grid-institutes:grid.11984.35
    146 schema:familyName Oliveira
    147 schema:givenName Mónica S. N.
    148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012725112572.52
    149 rdf:type schema:Person
    150 sg:person.01326131676.76 schema:affiliation grid-institutes:grid.5808.5
    151 schema:familyName Alves
    152 schema:givenName Manuel A.
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326131676.76
    154 rdf:type schema:Person
    155 sg:person.013513251121.43 schema:affiliation grid-institutes:grid.11984.35
    156 schema:familyName Silva
    157 schema:givenName Andreia F.
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013513251121.43
    159 rdf:type schema:Person
    160 sg:pub.10.1007/978-1-4615-5801-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014433055
    161 https://doi.org/10.1007/978-1-4615-5801-9
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/978-1-4939-2065-5_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033574218
    164 https://doi.org/10.1007/978-1-4939-2065-5_6
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/bf00171666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002920340
    167 https://doi.org/10.1007/bf00171666
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/bf00919101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010806070
    170 https://doi.org/10.1007/bf00919101
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/s00289-007-0760-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027471301
    173 https://doi.org/10.1007/s00289-007-0760-2
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1038/eye.1987.45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022674048
    176 https://doi.org/10.1038/eye.1987.45
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1038/eye.1996.159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043382253
    179 https://doi.org/10.1038/eye.1996.159
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1038/eye.2008.21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000800180
    182 https://doi.org/10.1038/eye.2008.21
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1038/sj.eye.6700201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052871580
    185 https://doi.org/10.1038/sj.eye.6700201
    186 rdf:type schema:CreativeWork
    187 grid-institutes:grid.11984.35 schema:alternateName James Weir Fluids Laboratory, Department of Mechanical and Aerospace Engineering, University of Strathclyde, G1 1XJ, Glasgow, UK
    188 schema:name James Weir Fluids Laboratory, Department of Mechanical and Aerospace Engineering, University of Strathclyde, G1 1XJ, Glasgow, UK
    189 rdf:type schema:Organization
    190 grid-institutes:grid.5808.5 schema:alternateName Departamento de Engenharia Química, CEFT, Faculdade de Engenharia, Universidade do Porto, 4200-465, Porto, Portugal
    191 schema:name Departamento de Engenharia Química, CEFT, Faculdade de Engenharia, Universidade do Porto, 4200-465, Porto, Portugal
    192 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...