The influence of polymer molecular-weight distributions on pulsed field gradient nuclear magnetic resonance self-diffusion experiments View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-05

AUTHORS

B. Håkansson, M. Nydén, O. Söderman

ABSTRACT

The influence of polymer molecular-weight distributions on the outcome of pulsed field gradient (PFG) NMR self-diffusion experiments has been considered. The self-diffusion coefficient, D, of monodisperse poly(ethylene oxide) (PEO) polymers has been determined in order to accurately determine the scaling behavior of D both with molecular weight and concentration. In order to investigate the influence of polydispersity on the PFG NMR signal, a model system consisting of ten reasonably monodisperse PEO polymers was made, and the PFG NMR signal intensities were recorded at a low total concentration. The data were analyzed using both inverse Laplace transformation and nonlinear least-squares fitting to a prescribed distribution function of D. Finally, the molecular-weight distribution was obtained by use of the values of the scaling parameters. We also present some model calculations used to investigate the sensitivity of the degree of polydispersity on the NMR signal decays. More... »

PAGES

399-405

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s003960050532

DOI

http://dx.doi.org/10.1007/s003960050532

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045318110


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Macromolecular and Materials Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Lund University", 
          "id": "https://www.grid.ac/institutes/grid.4514.4", 
          "name": [
            "Division of Physical Chemistry 1 Center for Chemistry and Chemical Engineering, Lund University P.O. Box 124, S-221 00 Lund, Sweden, SE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "H\u00e5kansson", 
        "givenName": "B.", 
        "id": "sg:person.012524123353.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012524123353.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Applied Surface Chemistry Chalmers University of Technology S-412 96 Gothenburg, Sweden, SE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nyd\u00e9n", 
        "givenName": "M.", 
        "id": "sg:person.01012110373.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012110373.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lund University", 
          "id": "https://www.grid.ac/institutes/grid.4514.4", 
          "name": [
            "Division of Physical Chemistry 1 Center for Chemistry and Chemical Engineering, Lund University P.O. Box 124, S-221 00 Lund, Sweden, SE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "S\u00f6derman", 
        "givenName": "O.", 
        "id": "sg:person.0655133332.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655133332.20"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.5860/choice.32-3315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073328465"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-05", 
    "datePublishedReg": "2000-05-01", 
    "description": "The influence of polymer molecular-weight distributions on the outcome of pulsed field gradient (PFG) NMR self-diffusion experiments has been considered. The self-diffusion coefficient, D, of monodisperse poly(ethylene oxide) (PEO) polymers has been determined in order to accurately determine the scaling behavior of D both with molecular weight and concentration. In order to investigate the influence of polydispersity on the PFG NMR signal, a model system consisting of ten reasonably monodisperse PEO polymers was made, and the PFG NMR signal intensities were recorded at a low total concentration. The data were analyzed using both inverse Laplace transformation and nonlinear least-squares fitting to a prescribed distribution function of D. Finally, the molecular-weight distribution was obtained by use of the values of the scaling parameters. We also present some model calculations used to investigate the sensitivity of the degree of polydispersity on the NMR signal decays.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s003960050532", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1083512", 
        "issn": [
          "0303-402X", 
          "1435-1536"
        ], 
        "name": "Colloid and Polymer Science", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "278"
      }
    ], 
    "name": "The influence of polymer molecular-weight distributions on pulsed field gradient nuclear magnetic resonance self-diffusion experiments", 
    "pagination": "399-405", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d7de2bd30d51b40d0736589d11998d0fb13de18635d3c39b224b18b02d90840d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s003960050532"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045318110"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s003960050532", 
      "https://app.dimensions.ai/details/publication/pub.1045318110"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000515.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs003960050532"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s003960050532'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s003960050532'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s003960050532'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s003960050532'


 

This table displays all metadata directly associated to this object as RDF triples.

80 TRIPLES      21 PREDICATES      28 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s003960050532 schema:about anzsrc-for:03
2 anzsrc-for:0303
3 schema:author Ncf8bebe3770a41ada73ef139f4d1dd5b
4 schema:citation https://doi.org/10.5860/choice.32-3315
5 schema:datePublished 2000-05
6 schema:datePublishedReg 2000-05-01
7 schema:description The influence of polymer molecular-weight distributions on the outcome of pulsed field gradient (PFG) NMR self-diffusion experiments has been considered. The self-diffusion coefficient, D, of monodisperse poly(ethylene oxide) (PEO) polymers has been determined in order to accurately determine the scaling behavior of D both with molecular weight and concentration. In order to investigate the influence of polydispersity on the PFG NMR signal, a model system consisting of ten reasonably monodisperse PEO polymers was made, and the PFG NMR signal intensities were recorded at a low total concentration. The data were analyzed using both inverse Laplace transformation and nonlinear least-squares fitting to a prescribed distribution function of D. Finally, the molecular-weight distribution was obtained by use of the values of the scaling parameters. We also present some model calculations used to investigate the sensitivity of the degree of polydispersity on the NMR signal decays.
8 schema:genre research_article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N051aa6802d6c4b9680d3e3bd71998b14
12 N8eca7e094ee5437ca77034800101fda6
13 sg:journal.1083512
14 schema:name The influence of polymer molecular-weight distributions on pulsed field gradient nuclear magnetic resonance self-diffusion experiments
15 schema:pagination 399-405
16 schema:productId N4daf4a83bfad409296bc62418e98fd10
17 Ncd2978b824d0451ca93316ff32deb3b1
18 Ne7f5630ee0a64339a49b323d5bc074d6
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045318110
20 https://doi.org/10.1007/s003960050532
21 schema:sdDatePublished 2019-04-11T00:17
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher Ndc636e98b41840a498e07be568109ab2
24 schema:url http://link.springer.com/10.1007%2Fs003960050532
25 sgo:license sg:explorer/license/
26 sgo:sdDataset articles
27 rdf:type schema:ScholarlyArticle
28 N051aa6802d6c4b9680d3e3bd71998b14 schema:volumeNumber 278
29 rdf:type schema:PublicationVolume
30 N1f14e896450c412084c4c69657e81c13 schema:name Department of Applied Surface Chemistry Chalmers University of Technology S-412 96 Gothenburg, Sweden, SE
31 rdf:type schema:Organization
32 N4daf4a83bfad409296bc62418e98fd10 schema:name readcube_id
33 schema:value d7de2bd30d51b40d0736589d11998d0fb13de18635d3c39b224b18b02d90840d
34 rdf:type schema:PropertyValue
35 N8eca7e094ee5437ca77034800101fda6 schema:issueNumber 5
36 rdf:type schema:PublicationIssue
37 Nc929f679d6c143ae9cc29f7d58f40b1e rdf:first sg:person.01012110373.12
38 rdf:rest Nf9c4f83628174149be4bf089a86423ee
39 Ncd2978b824d0451ca93316ff32deb3b1 schema:name dimensions_id
40 schema:value pub.1045318110
41 rdf:type schema:PropertyValue
42 Ncf8bebe3770a41ada73ef139f4d1dd5b rdf:first sg:person.012524123353.83
43 rdf:rest Nc929f679d6c143ae9cc29f7d58f40b1e
44 Ndc636e98b41840a498e07be568109ab2 schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 Ne7f5630ee0a64339a49b323d5bc074d6 schema:name doi
47 schema:value 10.1007/s003960050532
48 rdf:type schema:PropertyValue
49 Nf9c4f83628174149be4bf089a86423ee rdf:first sg:person.0655133332.20
50 rdf:rest rdf:nil
51 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
52 schema:name Chemical Sciences
53 rdf:type schema:DefinedTerm
54 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
55 schema:name Macromolecular and Materials Chemistry
56 rdf:type schema:DefinedTerm
57 sg:journal.1083512 schema:issn 0303-402X
58 1435-1536
59 schema:name Colloid and Polymer Science
60 rdf:type schema:Periodical
61 sg:person.01012110373.12 schema:affiliation N1f14e896450c412084c4c69657e81c13
62 schema:familyName Nydén
63 schema:givenName M.
64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012110373.12
65 rdf:type schema:Person
66 sg:person.012524123353.83 schema:affiliation https://www.grid.ac/institutes/grid.4514.4
67 schema:familyName Håkansson
68 schema:givenName B.
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012524123353.83
70 rdf:type schema:Person
71 sg:person.0655133332.20 schema:affiliation https://www.grid.ac/institutes/grid.4514.4
72 schema:familyName Söderman
73 schema:givenName O.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655133332.20
75 rdf:type schema:Person
76 https://doi.org/10.5860/choice.32-3315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073328465
77 rdf:type schema:CreativeWork
78 https://www.grid.ac/institutes/grid.4514.4 schema:alternateName Lund University
79 schema:name Division of Physical Chemistry 1 Center for Chemistry and Chemical Engineering, Lund University P.O. Box 124, S-221 00 Lund, Sweden, SE
80 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...