Direct covalent modification of thermally exfoliated graphene forming functionalized graphene stably dispersible in water and poly(vinyl alcohol) View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-10

AUTHORS

Trung Dung Dao, Hyung-il Lee, Han Mo Jeong, Byung Kyu Kim

ABSTRACT

The syntheses of water-dispersible graphene via graphene oxide colloid dispersion and/or using functionalizations that disrupt the π-bond system of graphene or contaminate a graphene surface with big amounts of undesired impurities face some challenges in practical applications. Approaches based on thermally exfoliated graphene might be promising for many applications in which flat and perfect single-layer graphene is not mandatory and productivity is more than important. In this paper, for the first time, we report a simple and effective method to prepare water-dispersible graphene directly from thermally exfoliated graphene by covalent modification utilizing the inherent defects of graphene as active sites. That is, the epoxide groups on graphene were reacted with ethanolamine and then with n-butyl bromide to prepare the graphene decorated with cationic ammonium ions (alkylated graphene, AAG). Elemental analysis, thermogravimetry, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy demonstrated that the reactions have proceeded as designed. The Raman spectra showed that the π-electronic system of sp2-bonded carbons of the graphene was not damaged by the modification. The homogeneous colloidal dispersion of AAG in water remained stable for at least 6 months, showing that the wrinkled nature of the graphene as well as the electrostatic repulsion and steric hindrance between the graphene sheets caused by the bulky ammonium moieties on the graphene’s surface efficiently prevented the graphene from restacking and aggregating. The AAG dispersed stably in a poly(vinyl alcohol) matrix produced an extraordinarily high modulus increase of 236 % with just 1 phr (about 0.5 vol%) of AAG. More... »

PAGES

2365-2374

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00396-013-2984-z

DOI

http://dx.doi.org/10.1007/s00396-013-2984-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025231307


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Ulsan", 
          "id": "https://www.grid.ac/institutes/grid.267370.7", 
          "name": [
            "Department of Chemistry, Energy Harvest-Storage Research Center, University of Ulsan, 680-749, Ulsan, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dao", 
        "givenName": "Trung Dung", 
        "id": "sg:person.01235546622.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235546622.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Ulsan", 
          "id": "https://www.grid.ac/institutes/grid.267370.7", 
          "name": [
            "Department of Chemistry, Energy Harvest-Storage Research Center, University of Ulsan, 680-749, Ulsan, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Hyung-il", 
        "id": "sg:person.010317653043.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010317653043.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Ulsan", 
          "id": "https://www.grid.ac/institutes/grid.267370.7", 
          "name": [
            "Department of Chemistry, Energy Harvest-Storage Research Center, University of Ulsan, 680-749, Ulsan, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jeong", 
        "givenName": "Han Mo", 
        "id": "sg:person.0635005432.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635005432.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pusan National University", 
          "id": "https://www.grid.ac/institutes/grid.262229.f", 
          "name": [
            "Department of Polymer Science and Engineering, Pusan National University, 609-735, Busan, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Byung Kyu", 
        "id": "sg:person.011136263221.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011136263221.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1039/b815239j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003088282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/macp.201200029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003509847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl802262p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007264775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl802262p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007264775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2011.05.059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011587162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.progpolymsci.2010.07.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012577559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c1jm11662b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014792841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b512799h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016221609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2008.329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016244742", 
          "https://doi.org/10.1038/nnano.2008.329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la903265p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018873241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la903265p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018873241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1102896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019008412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja060680r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019941215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja060680r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019941215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.200901678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021262428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.200901678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021262428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2007.451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025138385", 
          "https://doi.org/10.1038/nnano.2007.451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.165428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025314354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.165428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025314354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/marc.200800754", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027526100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b905085j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031232684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b905085j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031232684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl080604h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031802198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl080604h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031802198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.polymer.2007.12.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032420401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.polymer.2009.05.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032572461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ma902862u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033870660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ma902862u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033870660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2009.58", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034387569", 
          "https://doi.org/10.1038/nnano.2009.58"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2009.58", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034387569", 
          "https://doi.org/10.1038/nnano.2009.58"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compositesa.2013.02.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034556782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b904935e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035053211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b904935e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035053211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2008.96", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035065688", 
          "https://doi.org/10.1038/nnano.2008.96"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13233-011-0801-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040855995", 
          "https://doi.org/10.1007/s13233-011-0801-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja800745y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042853946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja800745y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042853946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl802234n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046880484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl802234n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046880484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm0630800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048318969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm0630800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048318969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2jm30590a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050974945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm902182y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055417528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm902182y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055417528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp1008779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056075546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp1008779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056075546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn100883p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056222617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00222341003603701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058272288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00222349308215486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058274389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/096739111001800701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106864932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/096739111001800701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106864932"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-10", 
    "datePublishedReg": "2013-10-01", 
    "description": "The syntheses of water-dispersible graphene via graphene oxide colloid dispersion and/or using functionalizations that disrupt the \u03c0-bond system of graphene or contaminate a graphene surface with big amounts of undesired impurities face some challenges in practical applications. Approaches based on thermally exfoliated graphene might be promising for many applications in which flat and perfect single-layer graphene is not mandatory and productivity is more than important. In this paper, for the first time, we report a simple and effective method to prepare water-dispersible graphene directly from thermally exfoliated graphene by covalent modification utilizing the inherent defects of graphene as active sites. That is, the epoxide groups on graphene were reacted with ethanolamine and then with n-butyl bromide to prepare the graphene decorated with cationic ammonium ions (alkylated graphene, AAG). Elemental analysis, thermogravimetry, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy demonstrated that the reactions have proceeded as designed. The Raman spectra showed that the \u03c0-electronic system of sp2-bonded carbons of the graphene was not damaged by the modification. The homogeneous colloidal dispersion of AAG in water remained stable for at least 6 months, showing that the wrinkled nature of the graphene as well as the electrostatic repulsion and steric hindrance between the graphene sheets caused by the bulky ammonium moieties on the graphene\u2019s surface efficiently prevented the graphene from restacking and aggregating. The AAG dispersed stably in a poly(vinyl alcohol) matrix produced an extraordinarily high modulus increase of 236 % with just 1 phr (about 0.5 vol%) of AAG.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00396-013-2984-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1083512", 
        "issn": [
          "0303-402X", 
          "1435-1536"
        ], 
        "name": "Colloid and Polymer Science", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "291"
      }
    ], 
    "name": "Direct covalent modification of thermally exfoliated graphene forming functionalized graphene stably dispersible in water and poly(vinyl alcohol)", 
    "pagination": "2365-2374", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7833b4454f4dbda743459a3f70e72a3809c4569287d79f12ac069d0ae6a8af73"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00396-013-2984-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025231307"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00396-013-2984-z", 
      "https://app.dimensions.ai/details/publication/pub.1025231307"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000587.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00396-013-2984-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00396-013-2984-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00396-013-2984-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00396-013-2984-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00396-013-2984-z'


 

This table displays all metadata directly associated to this object as RDF triples.

195 TRIPLES      21 PREDICATES      62 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00396-013-2984-z schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N3739dcea6b3045499fa478a0ca56154f
4 schema:citation sg:pub.10.1007/s13233-011-0801-4
5 sg:pub.10.1038/nnano.2007.451
6 sg:pub.10.1038/nnano.2008.329
7 sg:pub.10.1038/nnano.2008.96
8 sg:pub.10.1038/nnano.2009.58
9 https://doi.org/10.1002/anie.200901678
10 https://doi.org/10.1002/macp.201200029
11 https://doi.org/10.1002/marc.200800754
12 https://doi.org/10.1016/j.carbon.2011.05.059
13 https://doi.org/10.1016/j.compositesa.2013.02.005
14 https://doi.org/10.1016/j.polymer.2007.12.024
15 https://doi.org/10.1016/j.polymer.2009.05.038
16 https://doi.org/10.1016/j.progpolymsci.2010.07.005
17 https://doi.org/10.1021/cm0630800
18 https://doi.org/10.1021/cm902182y
19 https://doi.org/10.1021/ja060680r
20 https://doi.org/10.1021/ja800745y
21 https://doi.org/10.1021/jp1008779
22 https://doi.org/10.1021/la903265p
23 https://doi.org/10.1021/ma902862u
24 https://doi.org/10.1021/nl080604h
25 https://doi.org/10.1021/nl802234n
26 https://doi.org/10.1021/nl802262p
27 https://doi.org/10.1021/nn100883p
28 https://doi.org/10.1039/b512799h
29 https://doi.org/10.1039/b815239j
30 https://doi.org/10.1039/b904935e
31 https://doi.org/10.1039/b905085j
32 https://doi.org/10.1039/c1jm11662b
33 https://doi.org/10.1039/c2jm30590a
34 https://doi.org/10.1080/00222341003603701
35 https://doi.org/10.1080/00222349308215486
36 https://doi.org/10.1103/physrevb.79.165428
37 https://doi.org/10.1126/science.1102896
38 https://doi.org/10.1177/096739111001800701
39 schema:datePublished 2013-10
40 schema:datePublishedReg 2013-10-01
41 schema:description The syntheses of water-dispersible graphene via graphene oxide colloid dispersion and/or using functionalizations that disrupt the π-bond system of graphene or contaminate a graphene surface with big amounts of undesired impurities face some challenges in practical applications. Approaches based on thermally exfoliated graphene might be promising for many applications in which flat and perfect single-layer graphene is not mandatory and productivity is more than important. In this paper, for the first time, we report a simple and effective method to prepare water-dispersible graphene directly from thermally exfoliated graphene by covalent modification utilizing the inherent defects of graphene as active sites. That is, the epoxide groups on graphene were reacted with ethanolamine and then with n-butyl bromide to prepare the graphene decorated with cationic ammonium ions (alkylated graphene, AAG). Elemental analysis, thermogravimetry, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy demonstrated that the reactions have proceeded as designed. The Raman spectra showed that the π-electronic system of sp2-bonded carbons of the graphene was not damaged by the modification. The homogeneous colloidal dispersion of AAG in water remained stable for at least 6 months, showing that the wrinkled nature of the graphene as well as the electrostatic repulsion and steric hindrance between the graphene sheets caused by the bulky ammonium moieties on the graphene’s surface efficiently prevented the graphene from restacking and aggregating. The AAG dispersed stably in a poly(vinyl alcohol) matrix produced an extraordinarily high modulus increase of 236 % with just 1 phr (about 0.5 vol%) of AAG.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree false
45 schema:isPartOf Nb6f4a2c62fa348d2850d2a12674f94fd
46 Nc1c20ef9973e4fc3b3a52173455fbc63
47 sg:journal.1083512
48 schema:name Direct covalent modification of thermally exfoliated graphene forming functionalized graphene stably dispersible in water and poly(vinyl alcohol)
49 schema:pagination 2365-2374
50 schema:productId N542d20bab46a4af59b2162a50bcaa953
51 N796e2506046346ccb82a18f403cc4b31
52 Nafa739df7bb3436983837185417c2845
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025231307
54 https://doi.org/10.1007/s00396-013-2984-z
55 schema:sdDatePublished 2019-04-10T16:53
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N453f9317e26545e08a03871fcb44fbea
58 schema:url http://link.springer.com/10.1007%2Fs00396-013-2984-z
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N2f36855a51554bbd98fe21942e32326f rdf:first sg:person.0635005432.08
63 rdf:rest N5433321616304837b3f0b8b636618ff6
64 N3739dcea6b3045499fa478a0ca56154f rdf:first sg:person.01235546622.87
65 rdf:rest N6668b1eab4404ee7b3e524d54b29b5d7
66 N453f9317e26545e08a03871fcb44fbea schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N542d20bab46a4af59b2162a50bcaa953 schema:name readcube_id
69 schema:value 7833b4454f4dbda743459a3f70e72a3809c4569287d79f12ac069d0ae6a8af73
70 rdf:type schema:PropertyValue
71 N5433321616304837b3f0b8b636618ff6 rdf:first sg:person.011136263221.45
72 rdf:rest rdf:nil
73 N6668b1eab4404ee7b3e524d54b29b5d7 rdf:first sg:person.010317653043.53
74 rdf:rest N2f36855a51554bbd98fe21942e32326f
75 N796e2506046346ccb82a18f403cc4b31 schema:name dimensions_id
76 schema:value pub.1025231307
77 rdf:type schema:PropertyValue
78 Nafa739df7bb3436983837185417c2845 schema:name doi
79 schema:value 10.1007/s00396-013-2984-z
80 rdf:type schema:PropertyValue
81 Nb6f4a2c62fa348d2850d2a12674f94fd schema:issueNumber 10
82 rdf:type schema:PublicationIssue
83 Nc1c20ef9973e4fc3b3a52173455fbc63 schema:volumeNumber 291
84 rdf:type schema:PublicationVolume
85 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
86 schema:name Chemical Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
89 schema:name Physical Chemistry (incl. Structural)
90 rdf:type schema:DefinedTerm
91 sg:journal.1083512 schema:issn 0303-402X
92 1435-1536
93 schema:name Colloid and Polymer Science
94 rdf:type schema:Periodical
95 sg:person.010317653043.53 schema:affiliation https://www.grid.ac/institutes/grid.267370.7
96 schema:familyName Lee
97 schema:givenName Hyung-il
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010317653043.53
99 rdf:type schema:Person
100 sg:person.011136263221.45 schema:affiliation https://www.grid.ac/institutes/grid.262229.f
101 schema:familyName Kim
102 schema:givenName Byung Kyu
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011136263221.45
104 rdf:type schema:Person
105 sg:person.01235546622.87 schema:affiliation https://www.grid.ac/institutes/grid.267370.7
106 schema:familyName Dao
107 schema:givenName Trung Dung
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235546622.87
109 rdf:type schema:Person
110 sg:person.0635005432.08 schema:affiliation https://www.grid.ac/institutes/grid.267370.7
111 schema:familyName Jeong
112 schema:givenName Han Mo
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635005432.08
114 rdf:type schema:Person
115 sg:pub.10.1007/s13233-011-0801-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040855995
116 https://doi.org/10.1007/s13233-011-0801-4
117 rdf:type schema:CreativeWork
118 sg:pub.10.1038/nnano.2007.451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025138385
119 https://doi.org/10.1038/nnano.2007.451
120 rdf:type schema:CreativeWork
121 sg:pub.10.1038/nnano.2008.329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016244742
122 https://doi.org/10.1038/nnano.2008.329
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/nnano.2008.96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035065688
125 https://doi.org/10.1038/nnano.2008.96
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/nnano.2009.58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034387569
128 https://doi.org/10.1038/nnano.2009.58
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1002/anie.200901678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021262428
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1002/macp.201200029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003509847
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1002/marc.200800754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027526100
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.carbon.2011.05.059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011587162
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.compositesa.2013.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034556782
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.polymer.2007.12.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032420401
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.polymer.2009.05.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032572461
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.progpolymsci.2010.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012577559
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1021/cm0630800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048318969
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1021/cm902182y schema:sameAs https://app.dimensions.ai/details/publication/pub.1055417528
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1021/ja060680r schema:sameAs https://app.dimensions.ai/details/publication/pub.1019941215
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1021/ja800745y schema:sameAs https://app.dimensions.ai/details/publication/pub.1042853946
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1021/jp1008779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056075546
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1021/la903265p schema:sameAs https://app.dimensions.ai/details/publication/pub.1018873241
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1021/ma902862u schema:sameAs https://app.dimensions.ai/details/publication/pub.1033870660
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1021/nl080604h schema:sameAs https://app.dimensions.ai/details/publication/pub.1031802198
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1021/nl802234n schema:sameAs https://app.dimensions.ai/details/publication/pub.1046880484
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1021/nl802262p schema:sameAs https://app.dimensions.ai/details/publication/pub.1007264775
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1021/nn100883p schema:sameAs https://app.dimensions.ai/details/publication/pub.1056222617
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1039/b512799h schema:sameAs https://app.dimensions.ai/details/publication/pub.1016221609
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1039/b815239j schema:sameAs https://app.dimensions.ai/details/publication/pub.1003088282
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1039/b904935e schema:sameAs https://app.dimensions.ai/details/publication/pub.1035053211
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1039/b905085j schema:sameAs https://app.dimensions.ai/details/publication/pub.1031232684
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1039/c1jm11662b schema:sameAs https://app.dimensions.ai/details/publication/pub.1014792841
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1039/c2jm30590a schema:sameAs https://app.dimensions.ai/details/publication/pub.1050974945
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1080/00222341003603701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058272288
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1080/00222349308215486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058274389
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/physrevb.79.165428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025314354
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1126/science.1102896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019008412
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1177/096739111001800701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106864932
189 rdf:type schema:CreativeWork
190 https://www.grid.ac/institutes/grid.262229.f schema:alternateName Pusan National University
191 schema:name Department of Polymer Science and Engineering, Pusan National University, 609-735, Busan, Korea
192 rdf:type schema:Organization
193 https://www.grid.ac/institutes/grid.267370.7 schema:alternateName University of Ulsan
194 schema:name Department of Chemistry, Energy Harvest-Storage Research Center, University of Ulsan, 680-749, Ulsan, Korea
195 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...