Gender difference on the association between dietary patterns and metabolic syndrome in Korean population View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-10

AUTHORS

Y. Kang, J. Kim

ABSTRACT

PURPOSE: Dietary patterns are found to be associated with metabolic risk factors. We explored gender difference on the association between dietary patterns and the risk of metabolic syndrome (MetS) in the general Korean population. METHOD: A total of 13,410 Korean adults (aged ≥19 years, 5384 men and 8026 women) who participated in the fifth KNHANES were studied. Dietary intake was assessed by the 24-h recall method. MetS was defined by the joint interim statement of the International Diabetes Federation and the American Heart Association/National Heart, Lung, and Blood Institute. Multivariable-adjusted logistic regression analysis was performed to identify the relationship between dietary pattern and MetS and its components by gender. RESULTS: Three dietary patterns were derived using factor analysis by sex: traditional, Westernized, and healthy. The traditional pattern was positively associated with hypertriglyceridemia (P for trend = 0.0098), low high-density lipoprotein cholesterol (P for trend = 0.0007), elevated blood pressure (P for trend = 0.0328), and MetS (P for trend = 0.0003) in women only after adjusting for age, body mass index, socioeconomic status, and lifestyle factors. In contrast, the healthy pattern (HP) was negatively associated with abdominal obesity (P for trend = 0.0051) in women. For men, the HP was negatively associated with hypertriglyceridemia (P for trend = 0.0025) after adjustment for potential confounders. The Westernized pattern was not associated with MetS or its components in either men or women. CONCLUSION: There may be gender differences on the relationship between dietary patterns and metabolic risk factors in Korean population. More... »

PAGES

2321-2330

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00394-015-1127-3

DOI

http://dx.doi.org/10.1007/s00394-015-1127-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019856189

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26659071


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Asian Continental Ancestry Group", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Blood Pressure", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Mass Index", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Weight", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cross-Sectional Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diet, Western", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Energy Intake", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Exercise", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Healthy Diet", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hypertriglyceridemia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Life Style", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lipids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metabolic Syndrome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nutrition Assessment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nutrition Surveys", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Obesity, Abdominal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Republic of Korea", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sex Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Socioeconomic Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kyung Hee University", 
          "id": "https://www.grid.ac/institutes/grid.289247.2", 
          "name": [
            "Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, 17104, Yongin, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kang", 
        "givenName": "Y.", 
        "id": "sg:person.01356334023.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356334023.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyung Hee University", 
          "id": "https://www.grid.ac/institutes/grid.289247.2", 
          "name": [
            "Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, 17104, Yongin, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "J.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.nutres.2011.12.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001608966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7570/kjo.2012.21.2.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002570451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3945/ajcn.113.078048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004240484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jand.2013.07.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007880663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0007114508904372", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008325817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.109.192644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011029623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.aje.a009552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011820738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5551/jat.21_sup.1-s31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015694963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3945/jn.110.122671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018442398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/jhn.12098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018881920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/cen.12225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023078615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ejcn.2015.115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024333526", 
          "https://doi.org/10.1038/ejcn.2015.115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nutres.2014.06.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024827664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0007114514002633", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025013040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00394-014-0723-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028885175", 
          "https://doi.org/10.1007/s00394-014-0723-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ejcn.2014.77", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029642425", 
          "https://doi.org/10.1038/ejcn.2014.77"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ejcn.2014.77", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029642425", 
          "https://doi.org/10.1038/ejcn.2014.77"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jada.2011.10.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030338630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4162/nrp.2013.7.3.224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030708732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/dc10-0879", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036425718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/bjn20061867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037247547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.105.539528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039396981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2796.2010.02290.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039544761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1353/hub.2006.0017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043179084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.numecd.2010.02.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043972937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.metabol.2009.01.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047967029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/154.12.1150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050289890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.numecd.2012.02.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053519479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jn/135.4.843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077029897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ajcn/84.6.1489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077335289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078932545", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.aje.a112813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1080564119"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-10", 
    "datePublishedReg": "2016-10-01", 
    "description": "PURPOSE: Dietary patterns are found to be associated with metabolic risk factors. We explored gender difference on the association between dietary patterns and the risk of metabolic syndrome (MetS) in the general Korean population.\nMETHOD: A total of 13,410 Korean adults (aged \u226519\u00a0years, 5384 men and 8026 women) who participated in the fifth KNHANES were studied. Dietary intake was assessed by the 24-h recall method. MetS was defined by the joint interim statement of the International Diabetes Federation and the American Heart Association/National Heart, Lung, and Blood Institute. Multivariable-adjusted logistic regression analysis was performed to identify the relationship between dietary pattern and MetS and its components by gender.\nRESULTS: Three dietary patterns were derived using factor analysis by sex: traditional, Westernized, and healthy. The traditional pattern was positively associated with hypertriglyceridemia (P for trend\u00a0=\u00a00.0098), low high-density lipoprotein cholesterol (P for trend\u00a0=\u00a00.0007), elevated blood pressure (P for trend\u00a0=\u00a00.0328), and MetS (P for trend\u00a0=\u00a00.0003) in women only after adjusting for age, body mass index, socioeconomic status, and lifestyle factors. In contrast, the healthy pattern (HP) was negatively associated with abdominal obesity (P for trend\u00a0=\u00a00.0051) in women. For men, the HP was negatively associated with hypertriglyceridemia (P for trend\u00a0=\u00a00.0025) after adjustment for potential confounders. The Westernized pattern was not associated with MetS or its components in either men or women.\nCONCLUSION: There may be gender differences on the relationship between dietary patterns and metabolic risk factors in Korean population.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00394-015-1127-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1294989", 
        "issn": [
          "1436-6207", 
          "1435-1293"
        ], 
        "name": "European Journal of Nutrition", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "55"
      }
    ], 
    "name": "Gender difference on the association between dietary patterns and metabolic syndrome in Korean population", 
    "pagination": "2321-2330", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5e9b06fdf4e59ce7d1395e36eedbb2a875b4e5d63cf7f86082e25db1db20ba0a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26659071"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100888704"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00394-015-1127-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019856189"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00394-015-1127-3", 
      "https://app.dimensions.ai/details/publication/pub.1019856189"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00394-015-1127-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00394-015-1127-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00394-015-1127-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00394-015-1127-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00394-015-1127-3'


 

This table displays all metadata directly associated to this object as RDF triples.

274 TRIPLES      21 PREDICATES      86 URIs      47 LITERALS      35 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00394-015-1127-3 schema:about N02abe72e30264a809596a381f0488aff
2 N04da380391e7448f8d60d8e570d44d5c
3 N05ea98bfb2784c8c968c0a4b80df1fcc
4 N05fde125184b405899cb7c420871fa2e
5 N0a8d9a1f2c31499faeef3391caf128d4
6 N20b81db623034742a641ed088685d5f0
7 N2d99da39854842bba8262dbf61732d57
8 N38c17bd75f7142be9ea07ccc06837990
9 N5b3c35c4d252414e85b9e54f8f177f88
10 N6b0e4bc54e0949c7a1ecf301008bf042
11 N771da03e5f5f4a138331b29e8a78e375
12 N84443626762c48e1ad345e7cbc42bfa9
13 N84e4206f31424b7b99fcc4a34b5bfab5
14 N89a1fc29e25e4af8a9a35612e94772c0
15 N90eb5d3a89df49f3a2d5e828866b92f9
16 N93dee9463e144d8699813ca2cc78d020
17 N992ff776dfb84e74bb1c5ca4a44da5b9
18 Nb0cb8e0dd57542739233f1da5c649869
19 Nb4b9db3324204552bcc3deb0f56ee6f2
20 Nc3e33c7e14e844eaa4515db7df114b60
21 Nc569cf15b55a4eaf85354d59b49f1912
22 Nc6fd0e5900694c2ea70d3a902366a7bf
23 Ncbe8cef864504de7a4c34e49e488c0ba
24 Ncc6f5c5e90734583a98af3781121707f
25 Nf0702baf179c44a682600941cd6d9e61
26 Nfa71910e90d04be2adf989f47fa04f51
27 anzsrc-for:11
28 anzsrc-for:1102
29 schema:author N3698cd660a204d9a9974d2afce47c590
30 schema:citation sg:pub.10.1007/s00394-014-0723-y
31 sg:pub.10.1038/ejcn.2014.77
32 sg:pub.10.1038/ejcn.2015.115
33 https://app.dimensions.ai/details/publication/pub.1078932545
34 https://doi.org/10.1016/j.jada.2011.10.005
35 https://doi.org/10.1016/j.jand.2013.07.024
36 https://doi.org/10.1016/j.metabol.2009.01.008
37 https://doi.org/10.1016/j.numecd.2010.02.018
38 https://doi.org/10.1016/j.numecd.2012.02.005
39 https://doi.org/10.1016/j.nutres.2011.12.013
40 https://doi.org/10.1016/j.nutres.2014.06.012
41 https://doi.org/10.1017/bjn20061867
42 https://doi.org/10.1017/s0007114508904372
43 https://doi.org/10.1017/s0007114514002633
44 https://doi.org/10.1093/ajcn/84.6.1489
45 https://doi.org/10.1093/aje/154.12.1150
46 https://doi.org/10.1093/jn/135.4.843
47 https://doi.org/10.1093/oxfordjournals.aje.a009552
48 https://doi.org/10.1093/oxfordjournals.aje.a112813
49 https://doi.org/10.1111/cen.12225
50 https://doi.org/10.1111/j.1365-2796.2010.02290.x
51 https://doi.org/10.1111/jhn.12098
52 https://doi.org/10.1161/circulationaha.105.539528
53 https://doi.org/10.1161/circulationaha.109.192644
54 https://doi.org/10.1353/hub.2006.0017
55 https://doi.org/10.2337/dc10-0879
56 https://doi.org/10.3945/ajcn.113.078048
57 https://doi.org/10.3945/jn.110.122671
58 https://doi.org/10.4162/nrp.2013.7.3.224
59 https://doi.org/10.5551/jat.21_sup.1-s31
60 https://doi.org/10.7570/kjo.2012.21.2.108
61 schema:datePublished 2016-10
62 schema:datePublishedReg 2016-10-01
63 schema:description PURPOSE: Dietary patterns are found to be associated with metabolic risk factors. We explored gender difference on the association between dietary patterns and the risk of metabolic syndrome (MetS) in the general Korean population. METHOD: A total of 13,410 Korean adults (aged ≥19 years, 5384 men and 8026 women) who participated in the fifth KNHANES were studied. Dietary intake was assessed by the 24-h recall method. MetS was defined by the joint interim statement of the International Diabetes Federation and the American Heart Association/National Heart, Lung, and Blood Institute. Multivariable-adjusted logistic regression analysis was performed to identify the relationship between dietary pattern and MetS and its components by gender. RESULTS: Three dietary patterns were derived using factor analysis by sex: traditional, Westernized, and healthy. The traditional pattern was positively associated with hypertriglyceridemia (P for trend = 0.0098), low high-density lipoprotein cholesterol (P for trend = 0.0007), elevated blood pressure (P for trend = 0.0328), and MetS (P for trend = 0.0003) in women only after adjusting for age, body mass index, socioeconomic status, and lifestyle factors. In contrast, the healthy pattern (HP) was negatively associated with abdominal obesity (P for trend = 0.0051) in women. For men, the HP was negatively associated with hypertriglyceridemia (P for trend = 0.0025) after adjustment for potential confounders. The Westernized pattern was not associated with MetS or its components in either men or women. CONCLUSION: There may be gender differences on the relationship between dietary patterns and metabolic risk factors in Korean population.
64 schema:genre research_article
65 schema:inLanguage en
66 schema:isAccessibleForFree false
67 schema:isPartOf Na7b3380fdb894e46a73e27e56839590f
68 Nffe4c2b59f7e400f9c6ba7dd2f1c693b
69 sg:journal.1294989
70 schema:name Gender difference on the association between dietary patterns and metabolic syndrome in Korean population
71 schema:pagination 2321-2330
72 schema:productId N3b8e5f9677e34e46823ee7078e40ed08
73 N5e1dafc60d0c4b25b52b4188c57f11b6
74 N7a90f566a7274d95b3bd6f00b2ae2a56
75 N89e392375ca74b0d8dab822d3c4570fd
76 Ncc8e8e06bced42e8ac44c4a1f7eb25a1
77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019856189
78 https://doi.org/10.1007/s00394-015-1127-3
79 schema:sdDatePublished 2019-04-10T18:20
80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
81 schema:sdPublisher Nc3449d4fe14447eb8ca19035131d0352
82 schema:url http://link.springer.com/10.1007%2Fs00394-015-1127-3
83 sgo:license sg:explorer/license/
84 sgo:sdDataset articles
85 rdf:type schema:ScholarlyArticle
86 N02abe72e30264a809596a381f0488aff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Female
88 rdf:type schema:DefinedTerm
89 N04da380391e7448f8d60d8e570d44d5c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Asian Continental Ancestry Group
91 rdf:type schema:DefinedTerm
92 N05ea98bfb2784c8c968c0a4b80df1fcc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Cross-Sectional Studies
94 rdf:type schema:DefinedTerm
95 N05fde125184b405899cb7c420871fa2e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Middle Aged
97 rdf:type schema:DefinedTerm
98 N0a8d9a1f2c31499faeef3391caf128d4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Socioeconomic Factors
100 rdf:type schema:DefinedTerm
101 N20b81db623034742a641ed088685d5f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Aged
103 rdf:type schema:DefinedTerm
104 N29e957940feb42f49e7c677ec69440e2 schema:affiliation https://www.grid.ac/institutes/grid.289247.2
105 schema:familyName Kim
106 schema:givenName J.
107 rdf:type schema:Person
108 N2d99da39854842bba8262dbf61732d57 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Exercise
110 rdf:type schema:DefinedTerm
111 N3698cd660a204d9a9974d2afce47c590 rdf:first sg:person.01356334023.46
112 rdf:rest N939c536823064309950370060adab007
113 N38c17bd75f7142be9ea07ccc06837990 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Hypertriglyceridemia
115 rdf:type schema:DefinedTerm
116 N3b8e5f9677e34e46823ee7078e40ed08 schema:name pubmed_id
117 schema:value 26659071
118 rdf:type schema:PropertyValue
119 N5b3c35c4d252414e85b9e54f8f177f88 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Diet, Western
121 rdf:type schema:DefinedTerm
122 N5e1dafc60d0c4b25b52b4188c57f11b6 schema:name readcube_id
123 schema:value 5e9b06fdf4e59ce7d1395e36eedbb2a875b4e5d63cf7f86082e25db1db20ba0a
124 rdf:type schema:PropertyValue
125 N6b0e4bc54e0949c7a1ecf301008bf042 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Republic of Korea
127 rdf:type schema:DefinedTerm
128 N771da03e5f5f4a138331b29e8a78e375 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Risk Factors
130 rdf:type schema:DefinedTerm
131 N7a90f566a7274d95b3bd6f00b2ae2a56 schema:name doi
132 schema:value 10.1007/s00394-015-1127-3
133 rdf:type schema:PropertyValue
134 N84443626762c48e1ad345e7cbc42bfa9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Body Weight
136 rdf:type schema:DefinedTerm
137 N84e4206f31424b7b99fcc4a34b5bfab5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Energy Intake
139 rdf:type schema:DefinedTerm
140 N89a1fc29e25e4af8a9a35612e94772c0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Male
142 rdf:type schema:DefinedTerm
143 N89e392375ca74b0d8dab822d3c4570fd schema:name dimensions_id
144 schema:value pub.1019856189
145 rdf:type schema:PropertyValue
146 N90eb5d3a89df49f3a2d5e828866b92f9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Blood Pressure
148 rdf:type schema:DefinedTerm
149 N939c536823064309950370060adab007 rdf:first N29e957940feb42f49e7c677ec69440e2
150 rdf:rest rdf:nil
151 N93dee9463e144d8699813ca2cc78d020 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Healthy Diet
153 rdf:type schema:DefinedTerm
154 N992ff776dfb84e74bb1c5ca4a44da5b9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Sex Factors
156 rdf:type schema:DefinedTerm
157 Na7b3380fdb894e46a73e27e56839590f schema:volumeNumber 55
158 rdf:type schema:PublicationVolume
159 Nb0cb8e0dd57542739233f1da5c649869 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Humans
161 rdf:type schema:DefinedTerm
162 Nb4b9db3324204552bcc3deb0f56ee6f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Lipids
164 rdf:type schema:DefinedTerm
165 Nc3449d4fe14447eb8ca19035131d0352 schema:name Springer Nature - SN SciGraph project
166 rdf:type schema:Organization
167 Nc3e33c7e14e844eaa4515db7df114b60 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Obesity, Abdominal
169 rdf:type schema:DefinedTerm
170 Nc569cf15b55a4eaf85354d59b49f1912 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Body Mass Index
172 rdf:type schema:DefinedTerm
173 Nc6fd0e5900694c2ea70d3a902366a7bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Adult
175 rdf:type schema:DefinedTerm
176 Ncbe8cef864504de7a4c34e49e488c0ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Nutrition Surveys
178 rdf:type schema:DefinedTerm
179 Ncc6f5c5e90734583a98af3781121707f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Nutrition Assessment
181 rdf:type schema:DefinedTerm
182 Ncc8e8e06bced42e8ac44c4a1f7eb25a1 schema:name nlm_unique_id
183 schema:value 100888704
184 rdf:type schema:PropertyValue
185 Nf0702baf179c44a682600941cd6d9e61 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
186 schema:name Metabolic Syndrome
187 rdf:type schema:DefinedTerm
188 Nfa71910e90d04be2adf989f47fa04f51 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name Life Style
190 rdf:type schema:DefinedTerm
191 Nffe4c2b59f7e400f9c6ba7dd2f1c693b schema:issueNumber 7
192 rdf:type schema:PublicationIssue
193 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
194 schema:name Medical and Health Sciences
195 rdf:type schema:DefinedTerm
196 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
197 schema:name Cardiorespiratory Medicine and Haematology
198 rdf:type schema:DefinedTerm
199 sg:journal.1294989 schema:issn 1435-1293
200 1436-6207
201 schema:name European Journal of Nutrition
202 rdf:type schema:Periodical
203 sg:person.01356334023.46 schema:affiliation https://www.grid.ac/institutes/grid.289247.2
204 schema:familyName Kang
205 schema:givenName Y.
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356334023.46
207 rdf:type schema:Person
208 sg:pub.10.1007/s00394-014-0723-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1028885175
209 https://doi.org/10.1007/s00394-014-0723-y
210 rdf:type schema:CreativeWork
211 sg:pub.10.1038/ejcn.2014.77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029642425
212 https://doi.org/10.1038/ejcn.2014.77
213 rdf:type schema:CreativeWork
214 sg:pub.10.1038/ejcn.2015.115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024333526
215 https://doi.org/10.1038/ejcn.2015.115
216 rdf:type schema:CreativeWork
217 https://app.dimensions.ai/details/publication/pub.1078932545 schema:CreativeWork
218 https://doi.org/10.1016/j.jada.2011.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030338630
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/j.jand.2013.07.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007880663
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/j.metabol.2009.01.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047967029
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/j.numecd.2010.02.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043972937
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1016/j.numecd.2012.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053519479
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1016/j.nutres.2011.12.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001608966
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1016/j.nutres.2014.06.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024827664
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1017/bjn20061867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037247547
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1017/s0007114508904372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008325817
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1017/s0007114514002633 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025013040
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1093/ajcn/84.6.1489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077335289
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1093/aje/154.12.1150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050289890
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1093/jn/135.4.843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077029897
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1093/oxfordjournals.aje.a009552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011820738
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1093/oxfordjournals.aje.a112813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1080564119
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1111/cen.12225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023078615
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1111/j.1365-2796.2010.02290.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039544761
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1111/jhn.12098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018881920
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1161/circulationaha.105.539528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039396981
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1161/circulationaha.109.192644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011029623
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1353/hub.2006.0017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043179084
259 rdf:type schema:CreativeWork
260 https://doi.org/10.2337/dc10-0879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036425718
261 rdf:type schema:CreativeWork
262 https://doi.org/10.3945/ajcn.113.078048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004240484
263 rdf:type schema:CreativeWork
264 https://doi.org/10.3945/jn.110.122671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018442398
265 rdf:type schema:CreativeWork
266 https://doi.org/10.4162/nrp.2013.7.3.224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030708732
267 rdf:type schema:CreativeWork
268 https://doi.org/10.5551/jat.21_sup.1-s31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015694963
269 rdf:type schema:CreativeWork
270 https://doi.org/10.7570/kjo.2012.21.2.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002570451
271 rdf:type schema:CreativeWork
272 https://www.grid.ac/institutes/grid.289247.2 schema:alternateName Kyung Hee University
273 schema:name Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, 17104, Yongin, South Korea
274 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...