Gender difference on the association between dietary patterns and metabolic syndrome in Korean population View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-10

AUTHORS

Y. Kang, J. Kim

ABSTRACT

PURPOSE: Dietary patterns are found to be associated with metabolic risk factors. We explored gender difference on the association between dietary patterns and the risk of metabolic syndrome (MetS) in the general Korean population. METHOD: A total of 13,410 Korean adults (aged ≥19 years, 5384 men and 8026 women) who participated in the fifth KNHANES were studied. Dietary intake was assessed by the 24-h recall method. MetS was defined by the joint interim statement of the International Diabetes Federation and the American Heart Association/National Heart, Lung, and Blood Institute. Multivariable-adjusted logistic regression analysis was performed to identify the relationship between dietary pattern and MetS and its components by gender. RESULTS: Three dietary patterns were derived using factor analysis by sex: traditional, Westernized, and healthy. The traditional pattern was positively associated with hypertriglyceridemia (P for trend = 0.0098), low high-density lipoprotein cholesterol (P for trend = 0.0007), elevated blood pressure (P for trend = 0.0328), and MetS (P for trend = 0.0003) in women only after adjusting for age, body mass index, socioeconomic status, and lifestyle factors. In contrast, the healthy pattern (HP) was negatively associated with abdominal obesity (P for trend = 0.0051) in women. For men, the HP was negatively associated with hypertriglyceridemia (P for trend = 0.0025) after adjustment for potential confounders. The Westernized pattern was not associated with MetS or its components in either men or women. CONCLUSION: There may be gender differences on the relationship between dietary patterns and metabolic risk factors in Korean population. More... »

PAGES

2321-2330

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00394-015-1127-3

DOI

http://dx.doi.org/10.1007/s00394-015-1127-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019856189

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26659071


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Asian Continental Ancestry Group", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Blood Pressure", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Mass Index", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Weight", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cross-Sectional Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diet, Western", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Energy Intake", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Exercise", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Healthy Diet", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hypertriglyceridemia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Life Style", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lipids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metabolic Syndrome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nutrition Assessment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nutrition Surveys", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Obesity, Abdominal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Republic of Korea", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sex Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Socioeconomic Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kyung Hee University", 
          "id": "https://www.grid.ac/institutes/grid.289247.2", 
          "name": [
            "Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, 17104, Yongin, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kang", 
        "givenName": "Y.", 
        "id": "sg:person.01356334023.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356334023.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyung Hee University", 
          "id": "https://www.grid.ac/institutes/grid.289247.2", 
          "name": [
            "Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, 17104, Yongin, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "J.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.nutres.2011.12.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001608966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7570/kjo.2012.21.2.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002570451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3945/ajcn.113.078048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004240484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jand.2013.07.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007880663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0007114508904372", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008325817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.109.192644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011029623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.aje.a009552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011820738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5551/jat.21_sup.1-s31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015694963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3945/jn.110.122671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018442398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/jhn.12098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018881920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/cen.12225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023078615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ejcn.2015.115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024333526", 
          "https://doi.org/10.1038/ejcn.2015.115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nutres.2014.06.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024827664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0007114514002633", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025013040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00394-014-0723-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028885175", 
          "https://doi.org/10.1007/s00394-014-0723-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ejcn.2014.77", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029642425", 
          "https://doi.org/10.1038/ejcn.2014.77"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ejcn.2014.77", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029642425", 
          "https://doi.org/10.1038/ejcn.2014.77"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jada.2011.10.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030338630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4162/nrp.2013.7.3.224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030708732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/dc10-0879", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036425718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/bjn20061867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037247547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.105.539528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039396981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2796.2010.02290.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039544761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1353/hub.2006.0017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043179084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.numecd.2010.02.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043972937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.metabol.2009.01.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047967029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/154.12.1150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050289890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.numecd.2012.02.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053519479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jn/135.4.843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077029897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ajcn/84.6.1489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077335289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078932545", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.aje.a112813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1080564119"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-10", 
    "datePublishedReg": "2016-10-01", 
    "description": "PURPOSE: Dietary patterns are found to be associated with metabolic risk factors. We explored gender difference on the association between dietary patterns and the risk of metabolic syndrome (MetS) in the general Korean population.\nMETHOD: A total of 13,410 Korean adults (aged \u226519\u00a0years, 5384 men and 8026 women) who participated in the fifth KNHANES were studied. Dietary intake was assessed by the 24-h recall method. MetS was defined by the joint interim statement of the International Diabetes Federation and the American Heart Association/National Heart, Lung, and Blood Institute. Multivariable-adjusted logistic regression analysis was performed to identify the relationship between dietary pattern and MetS and its components by gender.\nRESULTS: Three dietary patterns were derived using factor analysis by sex: traditional, Westernized, and healthy. The traditional pattern was positively associated with hypertriglyceridemia (P for trend\u00a0=\u00a00.0098), low high-density lipoprotein cholesterol (P for trend\u00a0=\u00a00.0007), elevated blood pressure (P for trend\u00a0=\u00a00.0328), and MetS (P for trend\u00a0=\u00a00.0003) in women only after adjusting for age, body mass index, socioeconomic status, and lifestyle factors. In contrast, the healthy pattern (HP) was negatively associated with abdominal obesity (P for trend\u00a0=\u00a00.0051) in women. For men, the HP was negatively associated with hypertriglyceridemia (P for trend\u00a0=\u00a00.0025) after adjustment for potential confounders. The Westernized pattern was not associated with MetS or its components in either men or women.\nCONCLUSION: There may be gender differences on the relationship between dietary patterns and metabolic risk factors in Korean population.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00394-015-1127-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1294989", 
        "issn": [
          "1436-6207", 
          "1435-1293"
        ], 
        "name": "European Journal of Nutrition", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "55"
      }
    ], 
    "name": "Gender difference on the association between dietary patterns and metabolic syndrome in Korean population", 
    "pagination": "2321-2330", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5e9b06fdf4e59ce7d1395e36eedbb2a875b4e5d63cf7f86082e25db1db20ba0a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26659071"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100888704"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00394-015-1127-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019856189"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00394-015-1127-3", 
      "https://app.dimensions.ai/details/publication/pub.1019856189"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00394-015-1127-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00394-015-1127-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00394-015-1127-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00394-015-1127-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00394-015-1127-3'


 

This table displays all metadata directly associated to this object as RDF triples.

274 TRIPLES      21 PREDICATES      86 URIs      47 LITERALS      35 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00394-015-1127-3 schema:about N0309b0d6e990428b9512bc9e05bf0dba
2 N12cb2adc6a3c4837b14ef3767411eb70
3 N163cf765a356454e9db1a811b53cc46d
4 N174534cf545244c1a96fa87c393e1299
5 N20859facd2da47eaa52bc81bf1cebaba
6 N3b0d0af565154205877b8b7c135c607d
7 N44e8e4ae4a6b43bdb6d0e7a36544273c
8 N46d69ffa936b465386ad4774466abb14
9 N553fda4a9b28498eb3a769416593562a
10 N58d322b76cb94e44b4513cd3314d0ceb
11 N648c0398c1be4b109a2071beb60983ef
12 N67a64a2484864c098d1ecb7c5769400e
13 N6bd0c478785649c4bcd6edcd639c3fb0
14 N73161980f2a349eaa2d0cf66c36cb59d
15 N74e82310c48f42a5b1a10d8601d9c910
16 N84fb13dd33454569a6a65d2b7d86e2f6
17 N97d969eee89a4c61b31d7bf4553e71b4
18 Naade4e568e4049fbbc4a7c4e2677abd4
19 Naf7af3be9bfb4653a8208572c8f2de9b
20 Nb86d2fcde6cb447dbe14ebe5869eaf7a
21 Nbe960c06c7654fb4b6475390188df469
22 Ncb03568c131d4c04aefacbd80c3991a8
23 Nd9653faa0ae04e34a717b12cb10fb2f3
24 Ne405e608375d4f21a5a198fd0aaae250
25 Ne54e62a2b4cf45b3b676b0e3ac124e89
26 Neb7a620513e042308bf357a2d7e18a72
27 anzsrc-for:11
28 anzsrc-for:1102
29 schema:author N38cfdb754b884758af1809880a23751d
30 schema:citation sg:pub.10.1007/s00394-014-0723-y
31 sg:pub.10.1038/ejcn.2014.77
32 sg:pub.10.1038/ejcn.2015.115
33 https://app.dimensions.ai/details/publication/pub.1078932545
34 https://doi.org/10.1016/j.jada.2011.10.005
35 https://doi.org/10.1016/j.jand.2013.07.024
36 https://doi.org/10.1016/j.metabol.2009.01.008
37 https://doi.org/10.1016/j.numecd.2010.02.018
38 https://doi.org/10.1016/j.numecd.2012.02.005
39 https://doi.org/10.1016/j.nutres.2011.12.013
40 https://doi.org/10.1016/j.nutres.2014.06.012
41 https://doi.org/10.1017/bjn20061867
42 https://doi.org/10.1017/s0007114508904372
43 https://doi.org/10.1017/s0007114514002633
44 https://doi.org/10.1093/ajcn/84.6.1489
45 https://doi.org/10.1093/aje/154.12.1150
46 https://doi.org/10.1093/jn/135.4.843
47 https://doi.org/10.1093/oxfordjournals.aje.a009552
48 https://doi.org/10.1093/oxfordjournals.aje.a112813
49 https://doi.org/10.1111/cen.12225
50 https://doi.org/10.1111/j.1365-2796.2010.02290.x
51 https://doi.org/10.1111/jhn.12098
52 https://doi.org/10.1161/circulationaha.105.539528
53 https://doi.org/10.1161/circulationaha.109.192644
54 https://doi.org/10.1353/hub.2006.0017
55 https://doi.org/10.2337/dc10-0879
56 https://doi.org/10.3945/ajcn.113.078048
57 https://doi.org/10.3945/jn.110.122671
58 https://doi.org/10.4162/nrp.2013.7.3.224
59 https://doi.org/10.5551/jat.21_sup.1-s31
60 https://doi.org/10.7570/kjo.2012.21.2.108
61 schema:datePublished 2016-10
62 schema:datePublishedReg 2016-10-01
63 schema:description PURPOSE: Dietary patterns are found to be associated with metabolic risk factors. We explored gender difference on the association between dietary patterns and the risk of metabolic syndrome (MetS) in the general Korean population. METHOD: A total of 13,410 Korean adults (aged ≥19 years, 5384 men and 8026 women) who participated in the fifth KNHANES were studied. Dietary intake was assessed by the 24-h recall method. MetS was defined by the joint interim statement of the International Diabetes Federation and the American Heart Association/National Heart, Lung, and Blood Institute. Multivariable-adjusted logistic regression analysis was performed to identify the relationship between dietary pattern and MetS and its components by gender. RESULTS: Three dietary patterns were derived using factor analysis by sex: traditional, Westernized, and healthy. The traditional pattern was positively associated with hypertriglyceridemia (P for trend = 0.0098), low high-density lipoprotein cholesterol (P for trend = 0.0007), elevated blood pressure (P for trend = 0.0328), and MetS (P for trend = 0.0003) in women only after adjusting for age, body mass index, socioeconomic status, and lifestyle factors. In contrast, the healthy pattern (HP) was negatively associated with abdominal obesity (P for trend = 0.0051) in women. For men, the HP was negatively associated with hypertriglyceridemia (P for trend = 0.0025) after adjustment for potential confounders. The Westernized pattern was not associated with MetS or its components in either men or women. CONCLUSION: There may be gender differences on the relationship between dietary patterns and metabolic risk factors in Korean population.
64 schema:genre research_article
65 schema:inLanguage en
66 schema:isAccessibleForFree false
67 schema:isPartOf Nb3341420b8394235958fdd8524034a61
68 Ne98b3d203cc3450bb0bbede51cb35669
69 sg:journal.1294989
70 schema:name Gender difference on the association between dietary patterns and metabolic syndrome in Korean population
71 schema:pagination 2321-2330
72 schema:productId N2dcac76e73454c77ae5bf7bf74b326f6
73 N3a9e6c2fece445459cf2b524a2498655
74 N6092c80c8b8d406abbe6ba356c33feff
75 N8cc165796ea14edf999d5f772357c483
76 Nc269506872b0493c96c8018e80c27d8b
77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019856189
78 https://doi.org/10.1007/s00394-015-1127-3
79 schema:sdDatePublished 2019-04-10T18:20
80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
81 schema:sdPublisher Ne8541bf049dc47989b7bb8fba66a886b
82 schema:url http://link.springer.com/10.1007%2Fs00394-015-1127-3
83 sgo:license sg:explorer/license/
84 sgo:sdDataset articles
85 rdf:type schema:ScholarlyArticle
86 N0309b0d6e990428b9512bc9e05bf0dba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Body Mass Index
88 rdf:type schema:DefinedTerm
89 N12cb2adc6a3c4837b14ef3767411eb70 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Cross-Sectional Studies
91 rdf:type schema:DefinedTerm
92 N163cf765a356454e9db1a811b53cc46d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Sex Factors
94 rdf:type schema:DefinedTerm
95 N174534cf545244c1a96fa87c393e1299 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Female
97 rdf:type schema:DefinedTerm
98 N20859facd2da47eaa52bc81bf1cebaba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Socioeconomic Factors
100 rdf:type schema:DefinedTerm
101 N2dcac76e73454c77ae5bf7bf74b326f6 schema:name readcube_id
102 schema:value 5e9b06fdf4e59ce7d1395e36eedbb2a875b4e5d63cf7f86082e25db1db20ba0a
103 rdf:type schema:PropertyValue
104 N38cfdb754b884758af1809880a23751d rdf:first sg:person.01356334023.46
105 rdf:rest N4edffda8c59c4be49cdf7dcaf3ff3ddd
106 N3a9e6c2fece445459cf2b524a2498655 schema:name pubmed_id
107 schema:value 26659071
108 rdf:type schema:PropertyValue
109 N3b0d0af565154205877b8b7c135c607d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Middle Aged
111 rdf:type schema:DefinedTerm
112 N3e1d58be23134c819030375da7ec158c schema:affiliation https://www.grid.ac/institutes/grid.289247.2
113 schema:familyName Kim
114 schema:givenName J.
115 rdf:type schema:Person
116 N44e8e4ae4a6b43bdb6d0e7a36544273c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Aged
118 rdf:type schema:DefinedTerm
119 N46d69ffa936b465386ad4774466abb14 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Energy Intake
121 rdf:type schema:DefinedTerm
122 N4edffda8c59c4be49cdf7dcaf3ff3ddd rdf:first N3e1d58be23134c819030375da7ec158c
123 rdf:rest rdf:nil
124 N553fda4a9b28498eb3a769416593562a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Lipids
126 rdf:type schema:DefinedTerm
127 N58d322b76cb94e44b4513cd3314d0ceb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Metabolic Syndrome
129 rdf:type schema:DefinedTerm
130 N6092c80c8b8d406abbe6ba356c33feff schema:name doi
131 schema:value 10.1007/s00394-015-1127-3
132 rdf:type schema:PropertyValue
133 N648c0398c1be4b109a2071beb60983ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Hypertriglyceridemia
135 rdf:type schema:DefinedTerm
136 N67a64a2484864c098d1ecb7c5769400e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Obesity, Abdominal
138 rdf:type schema:DefinedTerm
139 N6bd0c478785649c4bcd6edcd639c3fb0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Adult
141 rdf:type schema:DefinedTerm
142 N73161980f2a349eaa2d0cf66c36cb59d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Exercise
144 rdf:type schema:DefinedTerm
145 N74e82310c48f42a5b1a10d8601d9c910 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Life Style
147 rdf:type schema:DefinedTerm
148 N84fb13dd33454569a6a65d2b7d86e2f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Male
150 rdf:type schema:DefinedTerm
151 N8cc165796ea14edf999d5f772357c483 schema:name nlm_unique_id
152 schema:value 100888704
153 rdf:type schema:PropertyValue
154 N97d969eee89a4c61b31d7bf4553e71b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Asian Continental Ancestry Group
156 rdf:type schema:DefinedTerm
157 Naade4e568e4049fbbc4a7c4e2677abd4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Body Weight
159 rdf:type schema:DefinedTerm
160 Naf7af3be9bfb4653a8208572c8f2de9b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Humans
162 rdf:type schema:DefinedTerm
163 Nb3341420b8394235958fdd8524034a61 schema:issueNumber 7
164 rdf:type schema:PublicationIssue
165 Nb86d2fcde6cb447dbe14ebe5869eaf7a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Blood Pressure
167 rdf:type schema:DefinedTerm
168 Nbe960c06c7654fb4b6475390188df469 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Nutrition Surveys
170 rdf:type schema:DefinedTerm
171 Nc269506872b0493c96c8018e80c27d8b schema:name dimensions_id
172 schema:value pub.1019856189
173 rdf:type schema:PropertyValue
174 Ncb03568c131d4c04aefacbd80c3991a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Republic of Korea
176 rdf:type schema:DefinedTerm
177 Nd9653faa0ae04e34a717b12cb10fb2f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Risk Factors
179 rdf:type schema:DefinedTerm
180 Ne405e608375d4f21a5a198fd0aaae250 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Diet, Western
182 rdf:type schema:DefinedTerm
183 Ne54e62a2b4cf45b3b676b0e3ac124e89 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Healthy Diet
185 rdf:type schema:DefinedTerm
186 Ne8541bf049dc47989b7bb8fba66a886b schema:name Springer Nature - SN SciGraph project
187 rdf:type schema:Organization
188 Ne98b3d203cc3450bb0bbede51cb35669 schema:volumeNumber 55
189 rdf:type schema:PublicationVolume
190 Neb7a620513e042308bf357a2d7e18a72 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
191 schema:name Nutrition Assessment
192 rdf:type schema:DefinedTerm
193 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
194 schema:name Medical and Health Sciences
195 rdf:type schema:DefinedTerm
196 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
197 schema:name Cardiorespiratory Medicine and Haematology
198 rdf:type schema:DefinedTerm
199 sg:journal.1294989 schema:issn 1435-1293
200 1436-6207
201 schema:name European Journal of Nutrition
202 rdf:type schema:Periodical
203 sg:person.01356334023.46 schema:affiliation https://www.grid.ac/institutes/grid.289247.2
204 schema:familyName Kang
205 schema:givenName Y.
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356334023.46
207 rdf:type schema:Person
208 sg:pub.10.1007/s00394-014-0723-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1028885175
209 https://doi.org/10.1007/s00394-014-0723-y
210 rdf:type schema:CreativeWork
211 sg:pub.10.1038/ejcn.2014.77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029642425
212 https://doi.org/10.1038/ejcn.2014.77
213 rdf:type schema:CreativeWork
214 sg:pub.10.1038/ejcn.2015.115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024333526
215 https://doi.org/10.1038/ejcn.2015.115
216 rdf:type schema:CreativeWork
217 https://app.dimensions.ai/details/publication/pub.1078932545 schema:CreativeWork
218 https://doi.org/10.1016/j.jada.2011.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030338630
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/j.jand.2013.07.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007880663
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/j.metabol.2009.01.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047967029
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/j.numecd.2010.02.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043972937
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1016/j.numecd.2012.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053519479
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1016/j.nutres.2011.12.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001608966
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1016/j.nutres.2014.06.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024827664
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1017/bjn20061867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037247547
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1017/s0007114508904372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008325817
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1017/s0007114514002633 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025013040
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1093/ajcn/84.6.1489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077335289
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1093/aje/154.12.1150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050289890
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1093/jn/135.4.843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077029897
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1093/oxfordjournals.aje.a009552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011820738
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1093/oxfordjournals.aje.a112813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1080564119
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1111/cen.12225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023078615
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1111/j.1365-2796.2010.02290.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039544761
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1111/jhn.12098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018881920
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1161/circulationaha.105.539528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039396981
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1161/circulationaha.109.192644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011029623
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1353/hub.2006.0017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043179084
259 rdf:type schema:CreativeWork
260 https://doi.org/10.2337/dc10-0879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036425718
261 rdf:type schema:CreativeWork
262 https://doi.org/10.3945/ajcn.113.078048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004240484
263 rdf:type schema:CreativeWork
264 https://doi.org/10.3945/jn.110.122671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018442398
265 rdf:type schema:CreativeWork
266 https://doi.org/10.4162/nrp.2013.7.3.224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030708732
267 rdf:type schema:CreativeWork
268 https://doi.org/10.5551/jat.21_sup.1-s31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015694963
269 rdf:type schema:CreativeWork
270 https://doi.org/10.7570/kjo.2012.21.2.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002570451
271 rdf:type schema:CreativeWork
272 https://www.grid.ac/institutes/grid.289247.2 schema:alternateName Kyung Hee University
273 schema:name Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, 17104, Yongin, South Korea
274 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...