Riboflavin depletion of intestinal cells in vitro leads to impaired energy generation and enhanced oxidative stress View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-11-06

AUTHORS

Eun-Sook Lee, Bernard M. Corfe, Hilary J. Powers

ABSTRACT

BackgroundRiboflavin is an essential component of the human diet, with an established role for its derivative cofactors in oxidative metabolism. Our previous in vivo data suggest that riboflavin may act as a signalling molecule in the intestinal lumen, regulating crypt development and cell turnover. Our in vitro studies in riboflavin-depleted intestinal cells in culture indicate that riboflavin depletion impairs normal mitosis.MethodsThe aim of the study was to establish an improved intestinal cell model of riboflavin depletion using the structural analogue of riboflavin, lumiflavin (7,8,10-trimethyl-isoalloxazine) and to determine effects on cell function. The study was conducted using three intestinal cell lines, Caco-2, HCT116 and HT29 cells.ResultsCell growth was inhibited in all three cell lines, in a lumiflavin concentration-dependent manner. Riboflavin depletion was confirmed through a significant decrease in intracellular riboflavin concentrations in Caco-2 and HT29 cell lines and a significant increase in the activation coefficient for the flavin adenine dinucleotide-dependent enzyme glutathione reductase. Riboflavin depletion led to a significant reduction in intracellular ATP concentration, and an enhanced generation of reactive oxygen species was also observed in response to riboflavin depletion, in all cell lines; effects were at least fivefold greater in Caco-2 cells than other cells. Riboflavin-depleted Caco-2 and HCT116 cells also showed an irreversible loss of proliferative potential.ConclusionsA model system of intracellular riboflavin depletion in intestinal epithelial cells has been developed. Riboflavin depletion induced by lumiflavin results in oxidative stress and a disruption of energy generation, which may contribute to observed effects on cell proliferation. More... »

PAGES

1513-1521

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00394-012-0458-6

DOI

http://dx.doi.org/10.1007/s00394-012-0458-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021747549

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23868757


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1111", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Nutrition and Dietetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biological Transport", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Caco-2 Cells", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Proliferation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Energy Metabolism", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Flavins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glutathione Reductase", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "HCT116 Cells", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "HT29 Cells", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Intestinal Mucosa", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Intestines", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oxidative Stress", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reactive Oxygen Species", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Riboflavin", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Human Nutrition Unit, Department of Oncology, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, UK", 
          "id": "http://www.grid.ac/institutes/grid.11835.3e", 
          "name": [
            "Human Nutrition Unit, Department of Oncology, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Eun-Sook", 
        "id": "sg:person.01226155403.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01226155403.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Molecular Gastroenterology Research Group, Academic Unit of Surgical Oncology, Department of Oncology, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, UK", 
          "id": "http://www.grid.ac/institutes/grid.11835.3e", 
          "name": [
            "Molecular Gastroenterology Research Group, Academic Unit of Surgical Oncology, Department of Oncology, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Corfe", 
        "givenName": "Bernard M.", 
        "id": "sg:person.01322020151.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322020151.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Human Nutrition Unit, Department of Oncology, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, UK", 
          "id": "http://www.grid.ac/institutes/grid.11835.3e", 
          "name": [
            "Human Nutrition Unit, Department of Oncology, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Powers", 
        "givenName": "Hilary J.", 
        "id": "sg:person.01262102673.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262102673.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10620-010-1374-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026754124", 
          "https://doi.org/10.1007/s10620-010-1374-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1016082829111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002619983", 
          "https://doi.org/10.1023/a:1016082829111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1023785200638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019185637", 
          "https://doi.org/10.1023/a:1023785200638"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-11-06", 
    "datePublishedReg": "2012-11-06", 
    "description": "BackgroundRiboflavin is an essential component of the human diet, with an established role for its derivative cofactors in oxidative metabolism. Our previous in vivo data suggest that riboflavin may act as a signalling molecule in the intestinal lumen, regulating crypt development and cell turnover. Our in vitro studies in riboflavin-depleted intestinal cells in culture indicate that riboflavin depletion impairs normal mitosis.MethodsThe aim of the study was to establish an improved intestinal cell model of riboflavin depletion using the structural analogue of riboflavin, lumiflavin (7,8,10-trimethyl-isoalloxazine) and to determine effects on cell function. The study was conducted using three intestinal cell lines, Caco-2, HCT116 and HT29 cells.ResultsCell growth was inhibited in all three cell lines, in a lumiflavin concentration-dependent manner. Riboflavin depletion was confirmed through a significant decrease in intracellular riboflavin concentrations in Caco-2 and HT29 cell lines and a significant increase in the activation coefficient for the flavin adenine dinucleotide-dependent enzyme glutathione reductase. Riboflavin depletion led to a significant reduction in intracellular ATP concentration, and an enhanced generation of reactive oxygen species was also observed in response to riboflavin depletion, in all cell lines; effects were at least fivefold greater in Caco-2 cells than other cells. Riboflavin-depleted Caco-2 and HCT116 cells also showed an irreversible loss of proliferative potential.ConclusionsA model system of intracellular riboflavin depletion in intestinal epithelial cells has been developed. Riboflavin depletion induced by lumiflavin results in oxidative stress and a disruption of energy generation, which may contribute to observed effects on cell proliferation.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00394-012-0458-6", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1294989", 
        "issn": [
          "1436-6207", 
          "1436-6215"
        ], 
        "name": "European Journal of Nutrition", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "52"
      }
    ], 
    "keywords": [
      "riboflavin depletion", 
      "Caco-2", 
      "cell lines", 
      "intestinal cells", 
      "oxidative stress", 
      "intestinal epithelial cells", 
      "intestinal cell line", 
      "intestinal cell model", 
      "concentration-dependent manner", 
      "Caco-2 cells", 
      "HT29 cell line", 
      "intestinal lumen", 
      "MethodsThe aim", 
      "cell function", 
      "reactive oxygen species", 
      "epithelial cells", 
      "oxidative metabolism", 
      "significant decrease", 
      "intracellular ATP concentration", 
      "HT29 cells", 
      "cell turnover", 
      "cell proliferation", 
      "HCT116 cells", 
      "significant increase", 
      "activation coefficient", 
      "significant reduction", 
      "proliferative potential", 
      "vivo data", 
      "riboflavin concentration", 
      "ResultsCell growth", 
      "oxygen species", 
      "cells", 
      "glutathione reductase", 
      "cell model", 
      "enhanced generation", 
      "ATP concentration", 
      "crypt development", 
      "riboflavin", 
      "irreversible loss", 
      "depletion", 
      "human diet", 
      "structural analogues", 
      "enzyme glutathione reductase", 
      "study", 
      "observed effects", 
      "diet", 
      "lumen", 
      "effect", 
      "vitro", 
      "proliferation", 
      "essential component", 
      "metabolism", 
      "HCT116", 
      "aim", 
      "concentration", 
      "lines", 
      "response", 
      "disruption", 
      "stress", 
      "decrease", 
      "model system", 
      "role", 
      "increase", 
      "reduction", 
      "loss", 
      "normal mitosis", 
      "turnover", 
      "culture", 
      "manner", 
      "BackgroundRiboflavin", 
      "reductase", 
      "analogues", 
      "function", 
      "data", 
      "cofactor", 
      "development", 
      "potential", 
      "mitosis", 
      "results", 
      "growth", 
      "generation", 
      "molecules", 
      "components", 
      "model", 
      "system", 
      "species", 
      "lumiflavin", 
      "coefficient", 
      "energy generation", 
      "derivative cofactors", 
      "riboflavin depletion impairs normal mitosis", 
      "depletion impairs normal mitosis", 
      "impairs normal mitosis", 
      "improved intestinal cell model", 
      "lumiflavin concentration-dependent manner", 
      "intracellular riboflavin concentrations", 
      "flavin adenine dinucleotide-dependent enzyme glutathione reductase", 
      "adenine dinucleotide-dependent enzyme glutathione reductase", 
      "dinucleotide-dependent enzyme glutathione reductase", 
      "ConclusionsA model system", 
      "intracellular riboflavin depletion", 
      "lumiflavin results"
    ], 
    "name": "Riboflavin depletion of intestinal cells in vitro leads to impaired energy generation and enhanced oxidative stress", 
    "pagination": "1513-1521", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021747549"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00394-012-0458-6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23868757"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00394-012-0458-6", 
      "https://app.dimensions.ai/details/publication/pub.1021747549"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_579.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00394-012-0458-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00394-012-0458-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00394-012-0458-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00394-012-0458-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00394-012-0458-6'


 

This table displays all metadata directly associated to this object as RDF triples.

248 TRIPLES      22 PREDICATES      145 URIs      134 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00394-012-0458-6 schema:about N066f8791eb4244df8f276b323ae592bc
2 N254c82c4b54047f39e539ec1a05b76f3
3 N277f0c542586415785a4c862ce6f7e89
4 N2aca2ccd635b4dcdba26a4d2153e2329
5 N52d3e42fa2f54c45a33121d00609b7ad
6 N59cb9c6956c840e6b7e6f56e240415fd
7 N5b506fd4726f4f9d8f3fe95f7b70debb
8 N69efacc351b349fca07e20cf52e4f225
9 N6bcc2a492bd749c8bbae66bab407b540
10 N6d7511b2153b4ec8a9bf8d636791513e
11 N8d4eb0b2fc5f439f943afed1f9e4e53d
12 N9377292ec74846c4b95e4741a3d26c80
13 Na64dd71d45204cb3868f810bad50162e
14 Ne9673707d7354a318fe92501bc214db1
15 anzsrc-for:11
16 anzsrc-for:1111
17 schema:author N39d660bb7c674e59912d0770badfc9f0
18 schema:citation sg:pub.10.1007/s10620-010-1374-3
19 sg:pub.10.1023/a:1016082829111
20 sg:pub.10.1023/a:1023785200638
21 schema:datePublished 2012-11-06
22 schema:datePublishedReg 2012-11-06
23 schema:description BackgroundRiboflavin is an essential component of the human diet, with an established role for its derivative cofactors in oxidative metabolism. Our previous in vivo data suggest that riboflavin may act as a signalling molecule in the intestinal lumen, regulating crypt development and cell turnover. Our in vitro studies in riboflavin-depleted intestinal cells in culture indicate that riboflavin depletion impairs normal mitosis.MethodsThe aim of the study was to establish an improved intestinal cell model of riboflavin depletion using the structural analogue of riboflavin, lumiflavin (7,8,10-trimethyl-isoalloxazine) and to determine effects on cell function. The study was conducted using three intestinal cell lines, Caco-2, HCT116 and HT29 cells.ResultsCell growth was inhibited in all three cell lines, in a lumiflavin concentration-dependent manner. Riboflavin depletion was confirmed through a significant decrease in intracellular riboflavin concentrations in Caco-2 and HT29 cell lines and a significant increase in the activation coefficient for the flavin adenine dinucleotide-dependent enzyme glutathione reductase. Riboflavin depletion led to a significant reduction in intracellular ATP concentration, and an enhanced generation of reactive oxygen species was also observed in response to riboflavin depletion, in all cell lines; effects were at least fivefold greater in Caco-2 cells than other cells. Riboflavin-depleted Caco-2 and HCT116 cells also showed an irreversible loss of proliferative potential.ConclusionsA model system of intracellular riboflavin depletion in intestinal epithelial cells has been developed. Riboflavin depletion induced by lumiflavin results in oxidative stress and a disruption of energy generation, which may contribute to observed effects on cell proliferation.
24 schema:genre article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf N3daa2f56d6c74badba9cf441f9c4d8c7
28 Na35653edcee6486784448574eb0aaa57
29 sg:journal.1294989
30 schema:keywords ATP concentration
31 BackgroundRiboflavin
32 Caco-2
33 Caco-2 cells
34 ConclusionsA model system
35 HCT116
36 HCT116 cells
37 HT29 cell line
38 HT29 cells
39 MethodsThe aim
40 ResultsCell growth
41 activation coefficient
42 adenine dinucleotide-dependent enzyme glutathione reductase
43 aim
44 analogues
45 cell function
46 cell lines
47 cell model
48 cell proliferation
49 cell turnover
50 cells
51 coefficient
52 cofactor
53 components
54 concentration
55 concentration-dependent manner
56 crypt development
57 culture
58 data
59 decrease
60 depletion
61 depletion impairs normal mitosis
62 derivative cofactors
63 development
64 diet
65 dinucleotide-dependent enzyme glutathione reductase
66 disruption
67 effect
68 energy generation
69 enhanced generation
70 enzyme glutathione reductase
71 epithelial cells
72 essential component
73 flavin adenine dinucleotide-dependent enzyme glutathione reductase
74 function
75 generation
76 glutathione reductase
77 growth
78 human diet
79 impairs normal mitosis
80 improved intestinal cell model
81 increase
82 intestinal cell line
83 intestinal cell model
84 intestinal cells
85 intestinal epithelial cells
86 intestinal lumen
87 intracellular ATP concentration
88 intracellular riboflavin concentrations
89 intracellular riboflavin depletion
90 irreversible loss
91 lines
92 loss
93 lumen
94 lumiflavin
95 lumiflavin concentration-dependent manner
96 lumiflavin results
97 manner
98 metabolism
99 mitosis
100 model
101 model system
102 molecules
103 normal mitosis
104 observed effects
105 oxidative metabolism
106 oxidative stress
107 oxygen species
108 potential
109 proliferation
110 proliferative potential
111 reactive oxygen species
112 reductase
113 reduction
114 response
115 results
116 riboflavin
117 riboflavin concentration
118 riboflavin depletion
119 riboflavin depletion impairs normal mitosis
120 role
121 significant decrease
122 significant increase
123 significant reduction
124 species
125 stress
126 structural analogues
127 study
128 system
129 turnover
130 vitro
131 vivo data
132 schema:name Riboflavin depletion of intestinal cells in vitro leads to impaired energy generation and enhanced oxidative stress
133 schema:pagination 1513-1521
134 schema:productId N12c1e8699494415c8d31c480137a21ca
135 N3a295ef947244b6294ebe11feefcde3f
136 Nba48197c7c2140a399d707a1dc2dfc82
137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021747549
138 https://doi.org/10.1007/s00394-012-0458-6
139 schema:sdDatePublished 2021-11-01T18:19
140 schema:sdLicense https://scigraph.springernature.com/explorer/license/
141 schema:sdPublisher N0d9609bdb2494720ab1fd8fd31b5189b
142 schema:url https://doi.org/10.1007/s00394-012-0458-6
143 sgo:license sg:explorer/license/
144 sgo:sdDataset articles
145 rdf:type schema:ScholarlyArticle
146 N066f8791eb4244df8f276b323ae592bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Energy Metabolism
148 rdf:type schema:DefinedTerm
149 N0d9609bdb2494720ab1fd8fd31b5189b schema:name Springer Nature - SN SciGraph project
150 rdf:type schema:Organization
151 N12c1e8699494415c8d31c480137a21ca schema:name pubmed_id
152 schema:value 23868757
153 rdf:type schema:PropertyValue
154 N1dd9fd02c6fc44ab96655612d3023310 rdf:first sg:person.01262102673.15
155 rdf:rest rdf:nil
156 N254c82c4b54047f39e539ec1a05b76f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Glutathione Reductase
158 rdf:type schema:DefinedTerm
159 N277f0c542586415785a4c862ce6f7e89 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Oxidative Stress
161 rdf:type schema:DefinedTerm
162 N2aca2ccd635b4dcdba26a4d2153e2329 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Flavins
164 rdf:type schema:DefinedTerm
165 N39d660bb7c674e59912d0770badfc9f0 rdf:first sg:person.01226155403.35
166 rdf:rest Na3cb22f977c4483da41616ca0cb38e6e
167 N3a295ef947244b6294ebe11feefcde3f schema:name doi
168 schema:value 10.1007/s00394-012-0458-6
169 rdf:type schema:PropertyValue
170 N3daa2f56d6c74badba9cf441f9c4d8c7 schema:issueNumber 5
171 rdf:type schema:PublicationIssue
172 N52d3e42fa2f54c45a33121d00609b7ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Riboflavin
174 rdf:type schema:DefinedTerm
175 N59cb9c6956c840e6b7e6f56e240415fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Caco-2 Cells
177 rdf:type schema:DefinedTerm
178 N5b506fd4726f4f9d8f3fe95f7b70debb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name HT29 Cells
180 rdf:type schema:DefinedTerm
181 N69efacc351b349fca07e20cf52e4f225 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Cell Proliferation
183 rdf:type schema:DefinedTerm
184 N6bcc2a492bd749c8bbae66bab407b540 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name HCT116 Cells
186 rdf:type schema:DefinedTerm
187 N6d7511b2153b4ec8a9bf8d636791513e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
188 schema:name Intestines
189 rdf:type schema:DefinedTerm
190 N8d4eb0b2fc5f439f943afed1f9e4e53d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
191 schema:name Biological Transport
192 rdf:type schema:DefinedTerm
193 N9377292ec74846c4b95e4741a3d26c80 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
194 schema:name Reactive Oxygen Species
195 rdf:type schema:DefinedTerm
196 Na35653edcee6486784448574eb0aaa57 schema:volumeNumber 52
197 rdf:type schema:PublicationVolume
198 Na3cb22f977c4483da41616ca0cb38e6e rdf:first sg:person.01322020151.91
199 rdf:rest N1dd9fd02c6fc44ab96655612d3023310
200 Na64dd71d45204cb3868f810bad50162e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
201 schema:name Humans
202 rdf:type schema:DefinedTerm
203 Nba48197c7c2140a399d707a1dc2dfc82 schema:name dimensions_id
204 schema:value pub.1021747549
205 rdf:type schema:PropertyValue
206 Ne9673707d7354a318fe92501bc214db1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
207 schema:name Intestinal Mucosa
208 rdf:type schema:DefinedTerm
209 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
210 schema:name Medical and Health Sciences
211 rdf:type schema:DefinedTerm
212 anzsrc-for:1111 schema:inDefinedTermSet anzsrc-for:
213 schema:name Nutrition and Dietetics
214 rdf:type schema:DefinedTerm
215 sg:journal.1294989 schema:issn 1436-6207
216 1436-6215
217 schema:name European Journal of Nutrition
218 schema:publisher Springer Nature
219 rdf:type schema:Periodical
220 sg:person.01226155403.35 schema:affiliation grid-institutes:grid.11835.3e
221 schema:familyName Lee
222 schema:givenName Eun-Sook
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01226155403.35
224 rdf:type schema:Person
225 sg:person.01262102673.15 schema:affiliation grid-institutes:grid.11835.3e
226 schema:familyName Powers
227 schema:givenName Hilary J.
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262102673.15
229 rdf:type schema:Person
230 sg:person.01322020151.91 schema:affiliation grid-institutes:grid.11835.3e
231 schema:familyName Corfe
232 schema:givenName Bernard M.
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322020151.91
234 rdf:type schema:Person
235 sg:pub.10.1007/s10620-010-1374-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026754124
236 https://doi.org/10.1007/s10620-010-1374-3
237 rdf:type schema:CreativeWork
238 sg:pub.10.1023/a:1016082829111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002619983
239 https://doi.org/10.1023/a:1016082829111
240 rdf:type schema:CreativeWork
241 sg:pub.10.1023/a:1023785200638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019185637
242 https://doi.org/10.1023/a:1023785200638
243 rdf:type schema:CreativeWork
244 grid-institutes:grid.11835.3e schema:alternateName Human Nutrition Unit, Department of Oncology, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, UK
245 Molecular Gastroenterology Research Group, Academic Unit of Surgical Oncology, Department of Oncology, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, UK
246 schema:name Human Nutrition Unit, Department of Oncology, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, UK
247 Molecular Gastroenterology Research Group, Academic Unit of Surgical Oncology, Department of Oncology, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, UK
248 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...