Predicting pathologic complete response in locally advanced rectal cancer patients after neoadjuvant therapy: a machine learning model using XGBoost View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-06-15

AUTHORS

Xijie Chen, Wenhui Wang, Junguo Chen, Liang Xu, Xiaosheng He, Ping Lan, Jiancong Hu, Lei Lian

ABSTRACT

PurposeWatch and wait strategy is a safe and effective alternative to surgery in patients with locally advanced rectal cancer (LARC) who have achieved pathological complete response (pCR) after neoadjuvant therapy (NAT); present restaging methods do not meet clinical needs. This study aimed to construct a machine learning (ML) model to predict pCR preoperatively.MethodsLARC patients who received NAT were included to generate an extreme gradient boosting-based ML model to predict pCR. The group was divided into a training set and a tuning set at a 7:3 ratio. The SHapley Additive exPlanations value was used to quantify feature importance. The ML model was compared with a nomogram model developed using independent risk factors identified by conventional multivariate logistic regression analysis.ResultsCompared with the nomogram model, our ML model improved the area under the receiver operating characteristics from 0.72 to 0.95, sensitivity from 43 to 82.2%, and specificity from 87.1 to 91.6% in the training set, the same trend applied to the tuning set. Neoadjuvant radiotherapy, preoperative carbohydrate antigen 125 (CA125), CA199, carcinoembryonic antigen level, and depth of tumor invasion were significant in predicting pCR in both models.ConclusionOur ML model is a potential alternative to the existing assessment tools to conduct triage treatment for patients and provides reference for clinicians in tailoring individual treatment: the watch and wait strategy is used to avoid surgical trauma in pCR patients, and non-pCR patients receive surgical treatment to avoid missing the optimal operation time window. More... »

PAGES

1621-1634

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00384-022-04157-z

DOI

http://dx.doi.org/10.1007/s00384-022-04157-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1148689802

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/35704090


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chemoradiotherapy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Machine Learning", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoadjuvant Therapy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rectal Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Treatment Outcome", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China", 
          "id": "http://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China", 
            "Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Xijie", 
        "id": "sg:person.015550741305.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015550741305.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Information and Data Centre, Guangzhou First People\u2019s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Information and Data Centre, Guangzhou First People\u2019s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Wenhui", 
        "id": "sg:person.010655745326.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010655745326.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China", 
          "id": "http://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China", 
            "Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Junguo", 
        "id": "sg:person.015346077231.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015346077231.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China", 
          "id": "http://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China", 
            "Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Liang", 
        "id": "sg:person.014550516631.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014550516631.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China", 
          "id": "http://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China", 
            "Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Xiaosheng", 
        "id": "sg:person.0646522407.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646522407.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China", 
          "id": "http://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China", 
            "Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lan", 
        "givenName": "Ping", 
        "id": "sg:person.01037007774.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037007774.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Network Management, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China", 
          "id": "http://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China", 
            "Department of Endoscopic Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China", 
            "Department of Network Management, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Jiancong", 
        "id": "sg:person.0673430532.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673430532.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China", 
          "id": "http://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China", 
            "Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lian", 
        "givenName": "Lei", 
        "id": "sg:person.01122543602.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122543602.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00330-021-08144-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1140041122", 
          "https://doi.org/10.1007/s00330-021-08144-w"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-021-22188-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1136651658", 
          "https://doi.org/10.1038/s41467-021-22188-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12885-018-4997-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110062686", 
          "https://doi.org/10.1186/s12885-018-4997-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-020-06835-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1126387299", 
          "https://doi.org/10.1007/s00330-020-06835-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00432-020-03248-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1127763554", 
          "https://doi.org/10.1007/s00432-020-03248-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1245/s10434-014-3988-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024957058", 
          "https://doi.org/10.1245/s10434-014-3988-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-020-69345-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1129683262", 
          "https://doi.org/10.1038/s41598-020-69345-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-06-15", 
    "datePublishedReg": "2022-06-15", 
    "description": "PurposeWatch and wait strategy is a safe and effective alternative to surgery in patients with locally advanced rectal cancer (LARC) who have achieved pathological complete response (pCR) after neoadjuvant therapy (NAT); present restaging methods do not meet clinical needs. This study aimed to construct a machine learning (ML) model to predict pCR preoperatively.MethodsLARC patients who received NAT were included to generate an extreme gradient boosting-based ML model to predict pCR. The group was divided into a training set and a tuning set at a 7:3 ratio. The SHapley Additive exPlanations value was used to quantify feature importance. The ML model was compared with a nomogram model developed using independent risk factors identified by conventional multivariate logistic regression analysis.ResultsCompared with the nomogram model, our ML model improved the area under the receiver operating characteristics from 0.72 to 0.95, sensitivity from 43 to 82.2%, and specificity from 87.1 to 91.6% in the training set, the same trend applied to the tuning set. Neoadjuvant radiotherapy, preoperative carbohydrate antigen 125 (CA125), CA199, carcinoembryonic antigen level, and depth of tumor invasion were significant in predicting pCR in both models.ConclusionOur ML model is a potential alternative to the existing assessment tools to conduct triage treatment for patients and provides reference for clinicians in tailoring individual treatment: the watch and wait strategy is used to avoid surgical trauma in pCR patients, and non-pCR patients receive surgical treatment to avoid missing the optimal operation time window.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00384-022-04157-z", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8368467", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8887074", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1096381", 
        "issn": [
          "0179-1958", 
          "1432-1262"
        ], 
        "name": "International Journal of Colorectal Disease", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "37"
      }
    ], 
    "keywords": [
      "pathological complete response", 
      "neoadjuvant therapy", 
      "complete response", 
      "nomogram model", 
      "conventional multivariate logistic regression analysis", 
      "advanced rectal cancer patients", 
      "multivariate logistic regression analysis", 
      "independent risk factor", 
      "carcinoembryonic antigen level", 
      "non-pCR patients", 
      "pathologic complete response", 
      "advanced rectal cancer", 
      "rectal cancer patients", 
      "logistic regression analysis", 
      "carbohydrate antigen 125", 
      "neoadjuvant radiotherapy", 
      "rectal cancer", 
      "surgical treatment", 
      "antigen levels", 
      "surgical trauma", 
      "cancer patients", 
      "risk factors", 
      "antigen 125", 
      "patients", 
      "tumor invasion", 
      "clinical need", 
      "individual treatment", 
      "regression analysis", 
      "therapy", 
      "treatment", 
      "effective alternative", 
      "assessment tool", 
      "SHapley Additive exPlanations (SHAP) values", 
      "explanation values", 
      "surgery", 
      "CA199", 
      "radiotherapy", 
      "ResultsCompared", 
      "cancer", 
      "clinicians", 
      "trauma", 
      "response", 
      "invasion", 
      "potential alternative", 
      "group", 
      "specificity", 
      "time window", 
      "factors", 
      "levels", 
      "strategies", 
      "study", 
      "alternative", 
      "sensitivity", 
      "same trend", 
      "need", 
      "training set", 
      "model", 
      "ML models", 
      "ratio", 
      "receiver", 
      "importance", 
      "analysis", 
      "area", 
      "watch", 
      "trends", 
      "feature importance", 
      "characteristics", 
      "tool", 
      "values", 
      "reference", 
      "method", 
      "window", 
      "tuning set", 
      "XGBoost", 
      "set", 
      "depth", 
      "machine", 
      "operation time window", 
      "tuning"
    ], 
    "name": "Predicting pathologic complete response in locally advanced rectal cancer patients after neoadjuvant therapy: a machine learning model using XGBoost", 
    "pagination": "1621-1634", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1148689802"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00384-022-04157-z"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "35704090"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00384-022-04157-z", 
      "https://app.dimensions.ai/details/publication/pub.1148689802"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_933.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00384-022-04157-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00384-022-04157-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00384-022-04157-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00384-022-04157-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00384-022-04157-z'


 

This table displays all metadata directly associated to this object as RDF triples.

260 TRIPLES      21 PREDICATES      118 URIs      103 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00384-022-04157-z schema:about N56a70b67a3e6465a8ca7252461932c4f
2 N7c5cb2c9713242eaabd537a9d89a8358
3 N85bc007c162f46719697c025ce4b52ff
4 N9e8c06b3b04247efb15f8b7a9bcec9c8
5 Nad2769c62f774d72a4b74e36a6e434a1
6 Nb2cf24472e3f4be3aae5e184adac90b4
7 Nc07cfc37e53549568277742399445aaa
8 anzsrc-for:11
9 anzsrc-for:1112
10 schema:author Ndd01cfd37b554532b020089a7ff3a72b
11 schema:citation sg:pub.10.1007/s00330-020-06835-4
12 sg:pub.10.1007/s00330-021-08144-w
13 sg:pub.10.1007/s00432-020-03248-0
14 sg:pub.10.1038/s41467-021-22188-y
15 sg:pub.10.1038/s41598-020-69345-9
16 sg:pub.10.1186/s12885-018-4997-y
17 sg:pub.10.1245/s10434-014-3988-8
18 schema:datePublished 2022-06-15
19 schema:datePublishedReg 2022-06-15
20 schema:description PurposeWatch and wait strategy is a safe and effective alternative to surgery in patients with locally advanced rectal cancer (LARC) who have achieved pathological complete response (pCR) after neoadjuvant therapy (NAT); present restaging methods do not meet clinical needs. This study aimed to construct a machine learning (ML) model to predict pCR preoperatively.MethodsLARC patients who received NAT were included to generate an extreme gradient boosting-based ML model to predict pCR. The group was divided into a training set and a tuning set at a 7:3 ratio. The SHapley Additive exPlanations value was used to quantify feature importance. The ML model was compared with a nomogram model developed using independent risk factors identified by conventional multivariate logistic regression analysis.ResultsCompared with the nomogram model, our ML model improved the area under the receiver operating characteristics from 0.72 to 0.95, sensitivity from 43 to 82.2%, and specificity from 87.1 to 91.6% in the training set, the same trend applied to the tuning set. Neoadjuvant radiotherapy, preoperative carbohydrate antigen 125 (CA125), CA199, carcinoembryonic antigen level, and depth of tumor invasion were significant in predicting pCR in both models.ConclusionOur ML model is a potential alternative to the existing assessment tools to conduct triage treatment for patients and provides reference for clinicians in tailoring individual treatment: the watch and wait strategy is used to avoid surgical trauma in pCR patients, and non-pCR patients receive surgical treatment to avoid missing the optimal operation time window.
21 schema:genre article
22 schema:isAccessibleForFree true
23 schema:isPartOf Neb0cff1c9689417f8cb1997b58a50fa8
24 Neffa2ee7d878482dbf778b46069157eb
25 sg:journal.1096381
26 schema:keywords CA199
27 ML models
28 ResultsCompared
29 SHapley Additive exPlanations (SHAP) values
30 XGBoost
31 advanced rectal cancer
32 advanced rectal cancer patients
33 alternative
34 analysis
35 antigen 125
36 antigen levels
37 area
38 assessment tool
39 cancer
40 cancer patients
41 carbohydrate antigen 125
42 carcinoembryonic antigen level
43 characteristics
44 clinical need
45 clinicians
46 complete response
47 conventional multivariate logistic regression analysis
48 depth
49 effective alternative
50 explanation values
51 factors
52 feature importance
53 group
54 importance
55 independent risk factor
56 individual treatment
57 invasion
58 levels
59 logistic regression analysis
60 machine
61 method
62 model
63 multivariate logistic regression analysis
64 need
65 neoadjuvant radiotherapy
66 neoadjuvant therapy
67 nomogram model
68 non-pCR patients
69 operation time window
70 pathologic complete response
71 pathological complete response
72 patients
73 potential alternative
74 radiotherapy
75 ratio
76 receiver
77 rectal cancer
78 rectal cancer patients
79 reference
80 regression analysis
81 response
82 risk factors
83 same trend
84 sensitivity
85 set
86 specificity
87 strategies
88 study
89 surgery
90 surgical trauma
91 surgical treatment
92 therapy
93 time window
94 tool
95 training set
96 trauma
97 treatment
98 trends
99 tumor invasion
100 tuning
101 tuning set
102 values
103 watch
104 window
105 schema:name Predicting pathologic complete response in locally advanced rectal cancer patients after neoadjuvant therapy: a machine learning model using XGBoost
106 schema:pagination 1621-1634
107 schema:productId Nafa81f1a92e249b095a88ef7f2821308
108 Nc0840a01c9924c11a4dfc2d1f5a61183
109 Nd9be02b0b5054f0c8f7f74b642543a65
110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1148689802
111 https://doi.org/10.1007/s00384-022-04157-z
112 schema:sdDatePublished 2022-10-01T06:50
113 schema:sdLicense https://scigraph.springernature.com/explorer/license/
114 schema:sdPublisher N7702a220494e4ae49a6253d2669f4411
115 schema:url https://doi.org/10.1007/s00384-022-04157-z
116 sgo:license sg:explorer/license/
117 sgo:sdDataset articles
118 rdf:type schema:ScholarlyArticle
119 N25aa35ceac804a89a162b84625ac12a7 rdf:first sg:person.014550516631.52
120 rdf:rest Nf52b5135b6d5433e8ad203ada69a9ba8
121 N3113ba9680e940589661f5d7eea3f699 rdf:first sg:person.015346077231.39
122 rdf:rest N25aa35ceac804a89a162b84625ac12a7
123 N3aeadf7377564bfea0612f42e5e3f009 rdf:first sg:person.010655745326.49
124 rdf:rest N3113ba9680e940589661f5d7eea3f699
125 N55f926f2ea4a43f8ad1ae23e5437e4ed rdf:first sg:person.01037007774.70
126 rdf:rest N81a5392858ec4d749d1c3ebccb4b8ca9
127 N56a70b67a3e6465a8ca7252461932c4f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Rectal Neoplasms
129 rdf:type schema:DefinedTerm
130 N7702a220494e4ae49a6253d2669f4411 schema:name Springer Nature - SN SciGraph project
131 rdf:type schema:Organization
132 N7c5cb2c9713242eaabd537a9d89a8358 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Retrospective Studies
134 rdf:type schema:DefinedTerm
135 N81a5392858ec4d749d1c3ebccb4b8ca9 rdf:first sg:person.0673430532.50
136 rdf:rest N93e42c4845ae4983b9f0e0f1c4bca151
137 N85bc007c162f46719697c025ce4b52ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Chemoradiotherapy
139 rdf:type schema:DefinedTerm
140 N93e42c4845ae4983b9f0e0f1c4bca151 rdf:first sg:person.01122543602.31
141 rdf:rest rdf:nil
142 N9e8c06b3b04247efb15f8b7a9bcec9c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Humans
144 rdf:type schema:DefinedTerm
145 Nad2769c62f774d72a4b74e36a6e434a1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Machine Learning
147 rdf:type schema:DefinedTerm
148 Nafa81f1a92e249b095a88ef7f2821308 schema:name dimensions_id
149 schema:value pub.1148689802
150 rdf:type schema:PropertyValue
151 Nb2cf24472e3f4be3aae5e184adac90b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Treatment Outcome
153 rdf:type schema:DefinedTerm
154 Nc07cfc37e53549568277742399445aaa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Neoadjuvant Therapy
156 rdf:type schema:DefinedTerm
157 Nc0840a01c9924c11a4dfc2d1f5a61183 schema:name doi
158 schema:value 10.1007/s00384-022-04157-z
159 rdf:type schema:PropertyValue
160 Nd9be02b0b5054f0c8f7f74b642543a65 schema:name pubmed_id
161 schema:value 35704090
162 rdf:type schema:PropertyValue
163 Ndd01cfd37b554532b020089a7ff3a72b rdf:first sg:person.015550741305.56
164 rdf:rest N3aeadf7377564bfea0612f42e5e3f009
165 Neb0cff1c9689417f8cb1997b58a50fa8 schema:issueNumber 7
166 rdf:type schema:PublicationIssue
167 Neffa2ee7d878482dbf778b46069157eb schema:volumeNumber 37
168 rdf:type schema:PublicationVolume
169 Nf52b5135b6d5433e8ad203ada69a9ba8 rdf:first sg:person.0646522407.58
170 rdf:rest N55f926f2ea4a43f8ad1ae23e5437e4ed
171 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
172 schema:name Medical and Health Sciences
173 rdf:type schema:DefinedTerm
174 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
175 schema:name Oncology and Carcinogenesis
176 rdf:type schema:DefinedTerm
177 sg:grant.8368467 http://pending.schema.org/fundedItem sg:pub.10.1007/s00384-022-04157-z
178 rdf:type schema:MonetaryGrant
179 sg:grant.8887074 http://pending.schema.org/fundedItem sg:pub.10.1007/s00384-022-04157-z
180 rdf:type schema:MonetaryGrant
181 sg:journal.1096381 schema:issn 0179-1958
182 1432-1262
183 schema:name International Journal of Colorectal Disease
184 schema:publisher Springer Nature
185 rdf:type schema:Periodical
186 sg:person.01037007774.70 schema:affiliation grid-institutes:grid.12981.33
187 schema:familyName Lan
188 schema:givenName Ping
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037007774.70
190 rdf:type schema:Person
191 sg:person.010655745326.49 schema:affiliation grid-institutes:None
192 schema:familyName Wang
193 schema:givenName Wenhui
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010655745326.49
195 rdf:type schema:Person
196 sg:person.01122543602.31 schema:affiliation grid-institutes:grid.12981.33
197 schema:familyName Lian
198 schema:givenName Lei
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122543602.31
200 rdf:type schema:Person
201 sg:person.014550516631.52 schema:affiliation grid-institutes:grid.12981.33
202 schema:familyName Xu
203 schema:givenName Liang
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014550516631.52
205 rdf:type schema:Person
206 sg:person.015346077231.39 schema:affiliation grid-institutes:grid.12981.33
207 schema:familyName Chen
208 schema:givenName Junguo
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015346077231.39
210 rdf:type schema:Person
211 sg:person.015550741305.56 schema:affiliation grid-institutes:grid.12981.33
212 schema:familyName Chen
213 schema:givenName Xijie
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015550741305.56
215 rdf:type schema:Person
216 sg:person.0646522407.58 schema:affiliation grid-institutes:grid.12981.33
217 schema:familyName He
218 schema:givenName Xiaosheng
219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646522407.58
220 rdf:type schema:Person
221 sg:person.0673430532.50 schema:affiliation grid-institutes:grid.12981.33
222 schema:familyName Hu
223 schema:givenName Jiancong
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673430532.50
225 rdf:type schema:Person
226 sg:pub.10.1007/s00330-020-06835-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1126387299
227 https://doi.org/10.1007/s00330-020-06835-4
228 rdf:type schema:CreativeWork
229 sg:pub.10.1007/s00330-021-08144-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1140041122
230 https://doi.org/10.1007/s00330-021-08144-w
231 rdf:type schema:CreativeWork
232 sg:pub.10.1007/s00432-020-03248-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1127763554
233 https://doi.org/10.1007/s00432-020-03248-0
234 rdf:type schema:CreativeWork
235 sg:pub.10.1038/s41467-021-22188-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1136651658
236 https://doi.org/10.1038/s41467-021-22188-y
237 rdf:type schema:CreativeWork
238 sg:pub.10.1038/s41598-020-69345-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1129683262
239 https://doi.org/10.1038/s41598-020-69345-9
240 rdf:type schema:CreativeWork
241 sg:pub.10.1186/s12885-018-4997-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1110062686
242 https://doi.org/10.1186/s12885-018-4997-y
243 rdf:type schema:CreativeWork
244 sg:pub.10.1245/s10434-014-3988-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024957058
245 https://doi.org/10.1245/s10434-014-3988-8
246 rdf:type schema:CreativeWork
247 grid-institutes:None schema:alternateName Information and Data Centre, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
248 schema:name Information and Data Centre, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
249 rdf:type schema:Organization
250 grid-institutes:grid.12981.33 schema:alternateName Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
251 Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
252 Department of Network Management, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
253 Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
254 schema:name Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
255 Department of Endoscopic Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
256 Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
257 Department of Network Management, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
258 Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
259 Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
260 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...