A novel summary report of colonoscopy: timeline visualization providing meaningful colonoscopy video information View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-05

AUTHORS

Minwoo Cho, Jee Hyun Kim, Hyoun Joong Kong, Kyoung Sup Hong, Sungwan Kim

ABSTRACT

PURPOSE: The colonoscopy adenoma detection rate depends largely on physician experience and skill, and overlooked colorectal adenomas could develop into cancer. This study assessed a system that detects polyps and summarizes meaningful information from colonoscopy videos. METHODS: One hundred thirteen consecutive patients had colonoscopy videos prospectively recorded at the Seoul National University Hospital. Informative video frames were extracted using a MATLAB support vector machine (SVM) model and classified as bleeding, polypectomy, tool, residue, thin wrinkle, folded wrinkle, or common. Thin wrinkle, folded wrinkle, and common frames were reanalyzed using SVM for polyp detection. The SVM model was applied hierarchically for effective classification and optimization of the SVM. RESULTS: The mean classification accuracy according to type was over 93%; sensitivity was over 87%. The mean sensitivity for polyp detection was 82.1%, and the positive predicted value (PPV) was 39.3%. Polyps detected using the system were larger (6.3 ± 6.4 vs. 4.9 ± 2.5 mm; P = 0.003) with a more pedunculated morphology (Yamada type III, 10.2 vs. 0%; P < 0.001; Yamada type IV, 2.8 vs. 0%; P < 0.001) than polyps missed by the system. There were no statistically significant differences in polyp distribution or histology between the groups. Informative frames and suspected polyps were presented on a timeline. This summary was evaluated using the system usability scale questionnaire; 89.3% of participants expressed positive opinions. CONCLUSIONS: We developed and verified a system to extract meaningful information from colonoscopy videos. Although further improvement and validation of the system is needed, the proposed system is useful for physicians and patients. More... »

PAGES

549-559

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00384-018-2980-3

DOI

http://dx.doi.org/10.1007/s00384-018-2980-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101381815

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29520455


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Colonic Polyps", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Colonoscopy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Research Report", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Support Vector Machine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Surveys and Questionnaires", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Video Recording", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Interdisciplinary Program for Bioengineering, Graduate School, Seoul National University, 08826, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cho", 
        "givenName": "Minwoo", 
        "id": "sg:person.0677101001.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677101001.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boramae Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.412479.d", 
          "name": [
            "Department of Gastroenterology, Seoul National University Boramae Medical Center, 07061, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Jee Hyun", 
        "id": "sg:person.012332532224.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012332532224.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Biomedical Engineering, Chungnam National University College of Medicine, 35015, Daejeon, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kong", 
        "givenName": "Hyoun Joong", 
        "id": "sg:person.01017134107.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017134107.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Gastroenterology, Mediplex Sejong Hospital, 20 Gyeyangmunhwa-ro, Gyeyang-gu, 21080, Incheon, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hong", 
        "givenName": "Kyoung Sup", 
        "id": "sg:person.01313037351.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313037351.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Biomedical Engineering, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea", 
            "Institute of Medical and Biological Engineering, Seoul National University, 08826, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Sungwan", 
        "id": "sg:person.01112430375.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112430375.19"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.media.2016.04.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001451283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gie.2006.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004435338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1052-5157(03)00058-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004768068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11042-016-4219-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006923922", 
          "https://doi.org/10.1007/s11042-016-4219-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11042-016-4219-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006923922", 
          "https://doi.org/10.1007/s11042-016-4219-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ajg.2011.125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007718323", 
          "https://doi.org/10.1038/ajg.2011.125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ajg.2011.125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007718323", 
          "https://doi.org/10.1038/ajg.2011.125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compbiomed.2005.09.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009187830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compbiomed.2005.09.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009187830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gie.2011.06.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011353253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gie.2005.08.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011602292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/gutjnl-2014-308076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011696641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/gutjnl-2011-300167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012436734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4258/hir.2016.22.4.299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012480916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4258/hir.2016.22.4.270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013383187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cgh.2013.07.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014651307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2168.2002.02120.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016156111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.770510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021112906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gie.2011.01.069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022358886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-72847-4_38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024908189", 
          "https://doi.org/10.1007/978-3-540-72847-4_38"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1067/mge.2002.121597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029605021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2012/846985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030474091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa1301969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033426756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000365006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035100046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-0029-1242458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035322968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1590/s0102-67202014000200006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036589456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gie.2015.06.058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036785677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compmedimag.2015.02.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039831711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2036.2006.03080.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041175992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40846-016-0138-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041822280", 
          "https://doi.org/10.1007/s40846-016-0138-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40846-016-0138-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041822280", 
          "https://doi.org/10.1007/s40846-016-0138-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5946/ce.2012.45.4.404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044039951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/his.12563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044693736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00535-012-0575-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045482781", 
          "https://doi.org/10.1007/s00535-012-0575-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gie.2007.07.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046497416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ajg.2009.249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046521678", 
          "https://doi.org/10.1038/ajg.2009.249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amepre.2014.09.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046674940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gie.2015.08.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047765011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/gastro/gou093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049746098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5124/jkma.2003.46.7.594", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051152209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm.3641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051292284", 
          "https://doi.org/10.1038/nm.3641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-0033-1358831", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057300412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-2001-14972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057408076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jbhi.2013.2285230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061276750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jbhi.2016.2637004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061277353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tase.2015.2395429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061515497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2016.2530141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061530120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2015.2434398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061696540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2015.2487997", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061696613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2016.2527736", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061696696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2196/publichealth.5810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069287104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.181.6.1811593", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069325847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4015/s1016237212002962", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071874202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077844442", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/117693510600200030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077902453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/117693510600200030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077902453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/postgradmedj-2016-134578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079396773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/postgradmedj-2016-134578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079396773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-52277-7_49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083913969", 
          "https://doi.org/10.1007/978-3-319-52277-7_49"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-59758-4_20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086389909", 
          "https://doi.org/10.1007/978-3-319-59758-4_20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ajg.2017.258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092088268", 
          "https://doi.org/10.1038/ajg.2017.258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ajg.2017.258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092088268", 
          "https://doi.org/10.1038/ajg.2017.258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4258/hir.2017.23.4.262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092694080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/acit-csi.2015.60", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093529814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isbi.2015.7163821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093845460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.2007.4379193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094166169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/sips.2015.7345001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095260203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iscc.2017.8024526", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095600719"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-05", 
    "datePublishedReg": "2018-05-01", 
    "description": "PURPOSE: The colonoscopy adenoma detection rate depends largely on physician experience and skill, and overlooked colorectal adenomas could develop into cancer. This study assessed a system that detects polyps and summarizes meaningful information from colonoscopy videos.\nMETHODS: One hundred thirteen consecutive patients had colonoscopy videos prospectively recorded at the Seoul National University Hospital. Informative video frames were extracted using a MATLAB support vector machine (SVM) model and classified as bleeding, polypectomy, tool, residue, thin wrinkle, folded wrinkle, or common. Thin wrinkle, folded wrinkle, and common frames were reanalyzed using SVM for polyp detection. The SVM model was applied hierarchically for effective classification and optimization of the SVM.\nRESULTS: The mean classification accuracy according to type was over 93%; sensitivity was over 87%. The mean sensitivity for polyp detection was 82.1%, and the positive predicted value (PPV) was 39.3%. Polyps detected using the system were larger (6.3\u2009\u00b1\u20096.4 vs. 4.9\u2009\u00b1\u20092.5\u00a0mm; P\u2009=\u20090.003) with a more pedunculated morphology (Yamada type III, 10.2 vs. 0%; P\u2009<\u20090.001; Yamada type IV, 2.8 vs. 0%; P\u2009<\u20090.001) than polyps missed by the system. There were no statistically significant differences in polyp distribution or histology between the groups. Informative frames and suspected polyps were presented on a timeline. This summary was evaluated using the system usability scale questionnaire; 89.3% of participants expressed positive opinions.\nCONCLUSIONS: We developed and verified a system to extract meaningful information from colonoscopy videos. Although further improvement and validation of the system is needed, the proposed system is useful for physicians and patients.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00384-018-2980-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1096381", 
        "issn": [
          "0179-1958", 
          "1432-1262"
        ], 
        "name": "International Journal of Colorectal Disease", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "33"
      }
    ], 
    "name": "A novel summary report of colonoscopy: timeline visualization providing meaningful colonoscopy video information", 
    "pagination": "549-559", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1ba14a989f603fa12bf470cf5c26f24dddcd5bb05d11ecf3bf151f559f094f73"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29520455"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8607899"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00384-018-2980-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101381815"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00384-018-2980-3", 
      "https://app.dimensions.ai/details/publication/pub.1101381815"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000354_0000000354/records_11701_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00384-018-2980-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00384-018-2980-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00384-018-2980-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00384-018-2980-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00384-018-2980-3'


 

This table displays all metadata directly associated to this object as RDF triples.

350 TRIPLES      21 PREDICATES      103 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00384-018-2980-3 schema:about N06508f23f06448879a9d6308fda934bd
2 N0d452ff874cb4166841bf7153775836a
3 N12316662b1b1407282c5aead6995fe85
4 N1bbf82933d444dc8abce95c83fb1cca2
5 N1d93ba8938b04767b82a8eeeec5606d1
6 N44bdeeae590e4ac3806a362d2b35bd89
7 N7084ec3308f54805a0cd6eb1e80cbb0b
8 N770566b22c3a46b6a5d8e112520ae742
9 N790084e3d39b410e89280bc78580c583
10 Nb73e686cc299431985a50b0e205fc972
11 Nc8f4b1f2a7b649efaf568848c4099d5a
12 Nde8df40e17924169b1993e92c56639a0
13 Ne338c113782748d9ad7462479e888f17
14 anzsrc-for:08
15 anzsrc-for:0801
16 schema:author N501a0fdbfd774c68b6690c86c13cd817
17 schema:citation sg:pub.10.1007/978-3-319-52277-7_49
18 sg:pub.10.1007/978-3-319-59758-4_20
19 sg:pub.10.1007/978-3-540-72847-4_38
20 sg:pub.10.1007/s00535-012-0575-2
21 sg:pub.10.1007/s11042-016-4219-z
22 sg:pub.10.1007/s40846-016-0138-8
23 sg:pub.10.1038/ajg.2009.249
24 sg:pub.10.1038/ajg.2011.125
25 sg:pub.10.1038/ajg.2017.258
26 sg:pub.10.1038/nm.3641
27 https://app.dimensions.ai/details/publication/pub.1077844442
28 https://doi.org/10.1016/j.amepre.2014.09.016
29 https://doi.org/10.1016/j.cgh.2013.07.036
30 https://doi.org/10.1016/j.compbiomed.2005.09.008
31 https://doi.org/10.1016/j.compmedimag.2015.02.007
32 https://doi.org/10.1016/j.gie.2005.08.048
33 https://doi.org/10.1016/j.gie.2006.02.002
34 https://doi.org/10.1016/j.gie.2007.07.036
35 https://doi.org/10.1016/j.gie.2011.01.069
36 https://doi.org/10.1016/j.gie.2011.06.032
37 https://doi.org/10.1016/j.gie.2015.06.058
38 https://doi.org/10.1016/j.gie.2015.08.004
39 https://doi.org/10.1016/j.media.2016.04.007
40 https://doi.org/10.1016/s1052-5157(03)00058-8
41 https://doi.org/10.1046/j.1365-2168.2002.02120.x
42 https://doi.org/10.1055/s-0029-1242458
43 https://doi.org/10.1055/s-0033-1358831
44 https://doi.org/10.1055/s-2001-14972
45 https://doi.org/10.1056/nejmoa1301969
46 https://doi.org/10.1067/mge.2002.121597
47 https://doi.org/10.1093/gastro/gou093
48 https://doi.org/10.1109/acit-csi.2015.60
49 https://doi.org/10.1109/icip.2007.4379193
50 https://doi.org/10.1109/isbi.2015.7163821
51 https://doi.org/10.1109/iscc.2017.8024526
52 https://doi.org/10.1109/jbhi.2013.2285230
53 https://doi.org/10.1109/jbhi.2016.2637004
54 https://doi.org/10.1109/sips.2015.7345001
55 https://doi.org/10.1109/tase.2015.2395429
56 https://doi.org/10.1109/tbme.2016.2530141
57 https://doi.org/10.1109/tmi.2015.2434398
58 https://doi.org/10.1109/tmi.2015.2487997
59 https://doi.org/10.1109/tmi.2016.2527736
60 https://doi.org/10.1111/his.12563
61 https://doi.org/10.1111/j.1365-2036.2006.03080.x
62 https://doi.org/10.1117/12.770510
63 https://doi.org/10.1136/gutjnl-2011-300167
64 https://doi.org/10.1136/gutjnl-2014-308076
65 https://doi.org/10.1136/postgradmedj-2016-134578
66 https://doi.org/10.1155/2012/846985
67 https://doi.org/10.1159/000365006
68 https://doi.org/10.1177/117693510600200030
69 https://doi.org/10.1590/s0102-67202014000200006
70 https://doi.org/10.2196/publichealth.5810
71 https://doi.org/10.2214/ajr.181.6.1811593
72 https://doi.org/10.4015/s1016237212002962
73 https://doi.org/10.4258/hir.2016.22.4.270
74 https://doi.org/10.4258/hir.2016.22.4.299
75 https://doi.org/10.4258/hir.2017.23.4.262
76 https://doi.org/10.5124/jkma.2003.46.7.594
77 https://doi.org/10.5946/ce.2012.45.4.404
78 schema:datePublished 2018-05
79 schema:datePublishedReg 2018-05-01
80 schema:description PURPOSE: The colonoscopy adenoma detection rate depends largely on physician experience and skill, and overlooked colorectal adenomas could develop into cancer. This study assessed a system that detects polyps and summarizes meaningful information from colonoscopy videos. METHODS: One hundred thirteen consecutive patients had colonoscopy videos prospectively recorded at the Seoul National University Hospital. Informative video frames were extracted using a MATLAB support vector machine (SVM) model and classified as bleeding, polypectomy, tool, residue, thin wrinkle, folded wrinkle, or common. Thin wrinkle, folded wrinkle, and common frames were reanalyzed using SVM for polyp detection. The SVM model was applied hierarchically for effective classification and optimization of the SVM. RESULTS: The mean classification accuracy according to type was over 93%; sensitivity was over 87%. The mean sensitivity for polyp detection was 82.1%, and the positive predicted value (PPV) was 39.3%. Polyps detected using the system were larger (6.3 ± 6.4 vs. 4.9 ± 2.5 mm; P = 0.003) with a more pedunculated morphology (Yamada type III, 10.2 vs. 0%; P < 0.001; Yamada type IV, 2.8 vs. 0%; P < 0.001) than polyps missed by the system. There were no statistically significant differences in polyp distribution or histology between the groups. Informative frames and suspected polyps were presented on a timeline. This summary was evaluated using the system usability scale questionnaire; 89.3% of participants expressed positive opinions. CONCLUSIONS: We developed and verified a system to extract meaningful information from colonoscopy videos. Although further improvement and validation of the system is needed, the proposed system is useful for physicians and patients.
81 schema:genre research_article
82 schema:inLanguage en
83 schema:isAccessibleForFree false
84 schema:isPartOf N21f886b8c7da410e959c4d4dd2971c9d
85 Ne03bfe043b884868b39b259c33adad61
86 sg:journal.1096381
87 schema:name A novel summary report of colonoscopy: timeline visualization providing meaningful colonoscopy video information
88 schema:pagination 549-559
89 schema:productId N07139b39736246ff95731da39d813aa9
90 N1ef8cf103a5c4e21ab9d0cfa1a1ccb9d
91 N2b1f819d934b45a48c272c05b04a5b4d
92 N3429059997e64725b3c2567e2dc8a9f9
93 N4e42a5e8b8b8494a9f782734446fbf46
94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101381815
95 https://doi.org/10.1007/s00384-018-2980-3
96 schema:sdDatePublished 2019-04-11T11:18
97 schema:sdLicense https://scigraph.springernature.com/explorer/license/
98 schema:sdPublisher Ncfdb65076253459b94c5e20915ea1693
99 schema:url https://link.springer.com/10.1007%2Fs00384-018-2980-3
100 sgo:license sg:explorer/license/
101 sgo:sdDataset articles
102 rdf:type schema:ScholarlyArticle
103 N06508f23f06448879a9d6308fda934bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Humans
105 rdf:type schema:DefinedTerm
106 N07139b39736246ff95731da39d813aa9 schema:name readcube_id
107 schema:value 1ba14a989f603fa12bf470cf5c26f24dddcd5bb05d11ecf3bf151f559f094f73
108 rdf:type schema:PropertyValue
109 N0d452ff874cb4166841bf7153775836a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Algorithms
111 rdf:type schema:DefinedTerm
112 N1028729d9edd48df9fe5e447d49caaf4 schema:name Department of Biomedical Engineering, Chungnam National University College of Medicine, 35015, Daejeon, South Korea
113 rdf:type schema:Organization
114 N12316662b1b1407282c5aead6995fe85 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Colonic Polyps
116 rdf:type schema:DefinedTerm
117 N1546ed697b554338bd66f755d456db0e schema:name Department of Gastroenterology, Mediplex Sejong Hospital, 20 Gyeyangmunhwa-ro, Gyeyang-gu, 21080, Incheon, South Korea
118 rdf:type schema:Organization
119 N1bbf82933d444dc8abce95c83fb1cca2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Research Report
121 rdf:type schema:DefinedTerm
122 N1d93ba8938b04767b82a8eeeec5606d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Male
124 rdf:type schema:DefinedTerm
125 N1ef8cf103a5c4e21ab9d0cfa1a1ccb9d schema:name pubmed_id
126 schema:value 29520455
127 rdf:type schema:PropertyValue
128 N21f886b8c7da410e959c4d4dd2971c9d schema:volumeNumber 33
129 rdf:type schema:PublicationVolume
130 N2b1f819d934b45a48c272c05b04a5b4d schema:name doi
131 schema:value 10.1007/s00384-018-2980-3
132 rdf:type schema:PropertyValue
133 N3429059997e64725b3c2567e2dc8a9f9 schema:name dimensions_id
134 schema:value pub.1101381815
135 rdf:type schema:PropertyValue
136 N44bdeeae590e4ac3806a362d2b35bd89 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Surveys and Questionnaires
138 rdf:type schema:DefinedTerm
139 N4e42a5e8b8b8494a9f782734446fbf46 schema:name nlm_unique_id
140 schema:value 8607899
141 rdf:type schema:PropertyValue
142 N501a0fdbfd774c68b6690c86c13cd817 rdf:first sg:person.0677101001.99
143 rdf:rest N8f69aa6806cc4f67bb7d3b74ed30dea3
144 N7084ec3308f54805a0cd6eb1e80cbb0b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Support Vector Machine
146 rdf:type schema:DefinedTerm
147 N770566b22c3a46b6a5d8e112520ae742 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Middle Aged
149 rdf:type schema:DefinedTerm
150 N790084e3d39b410e89280bc78580c583 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Female
152 rdf:type schema:DefinedTerm
153 N89c5283ab7b04a1f8cca13a91a1c1b88 rdf:first sg:person.01112430375.19
154 rdf:rest rdf:nil
155 N8f69aa6806cc4f67bb7d3b74ed30dea3 rdf:first sg:person.012332532224.22
156 rdf:rest Nb3889e2c5bb643e1b24fdf81c11719d8
157 Na37421ec798647a19800ad525821f825 rdf:first sg:person.01313037351.59
158 rdf:rest N89c5283ab7b04a1f8cca13a91a1c1b88
159 Nb3889e2c5bb643e1b24fdf81c11719d8 rdf:first sg:person.01017134107.77
160 rdf:rest Na37421ec798647a19800ad525821f825
161 Nb73e686cc299431985a50b0e205fc972 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Aged
163 rdf:type schema:DefinedTerm
164 Nc8f4b1f2a7b649efaf568848c4099d5a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Time Factors
166 rdf:type schema:DefinedTerm
167 Ncfdb65076253459b94c5e20915ea1693 schema:name Springer Nature - SN SciGraph project
168 rdf:type schema:Organization
169 Nde8df40e17924169b1993e92c56639a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Colonoscopy
171 rdf:type schema:DefinedTerm
172 Ne03bfe043b884868b39b259c33adad61 schema:issueNumber 5
173 rdf:type schema:PublicationIssue
174 Ne338c113782748d9ad7462479e888f17 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Video Recording
176 rdf:type schema:DefinedTerm
177 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
178 schema:name Information and Computing Sciences
179 rdf:type schema:DefinedTerm
180 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
181 schema:name Artificial Intelligence and Image Processing
182 rdf:type schema:DefinedTerm
183 sg:journal.1096381 schema:issn 0179-1958
184 1432-1262
185 schema:name International Journal of Colorectal Disease
186 rdf:type schema:Periodical
187 sg:person.01017134107.77 schema:affiliation N1028729d9edd48df9fe5e447d49caaf4
188 schema:familyName Kong
189 schema:givenName Hyoun Joong
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017134107.77
191 rdf:type schema:Person
192 sg:person.01112430375.19 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
193 schema:familyName Kim
194 schema:givenName Sungwan
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112430375.19
196 rdf:type schema:Person
197 sg:person.012332532224.22 schema:affiliation https://www.grid.ac/institutes/grid.412479.d
198 schema:familyName Kim
199 schema:givenName Jee Hyun
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012332532224.22
201 rdf:type schema:Person
202 sg:person.01313037351.59 schema:affiliation N1546ed697b554338bd66f755d456db0e
203 schema:familyName Hong
204 schema:givenName Kyoung Sup
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313037351.59
206 rdf:type schema:Person
207 sg:person.0677101001.99 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
208 schema:familyName Cho
209 schema:givenName Minwoo
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677101001.99
211 rdf:type schema:Person
212 sg:pub.10.1007/978-3-319-52277-7_49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083913969
213 https://doi.org/10.1007/978-3-319-52277-7_49
214 rdf:type schema:CreativeWork
215 sg:pub.10.1007/978-3-319-59758-4_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086389909
216 https://doi.org/10.1007/978-3-319-59758-4_20
217 rdf:type schema:CreativeWork
218 sg:pub.10.1007/978-3-540-72847-4_38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024908189
219 https://doi.org/10.1007/978-3-540-72847-4_38
220 rdf:type schema:CreativeWork
221 sg:pub.10.1007/s00535-012-0575-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045482781
222 https://doi.org/10.1007/s00535-012-0575-2
223 rdf:type schema:CreativeWork
224 sg:pub.10.1007/s11042-016-4219-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1006923922
225 https://doi.org/10.1007/s11042-016-4219-z
226 rdf:type schema:CreativeWork
227 sg:pub.10.1007/s40846-016-0138-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041822280
228 https://doi.org/10.1007/s40846-016-0138-8
229 rdf:type schema:CreativeWork
230 sg:pub.10.1038/ajg.2009.249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046521678
231 https://doi.org/10.1038/ajg.2009.249
232 rdf:type schema:CreativeWork
233 sg:pub.10.1038/ajg.2011.125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007718323
234 https://doi.org/10.1038/ajg.2011.125
235 rdf:type schema:CreativeWork
236 sg:pub.10.1038/ajg.2017.258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092088268
237 https://doi.org/10.1038/ajg.2017.258
238 rdf:type schema:CreativeWork
239 sg:pub.10.1038/nm.3641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051292284
240 https://doi.org/10.1038/nm.3641
241 rdf:type schema:CreativeWork
242 https://app.dimensions.ai/details/publication/pub.1077844442 schema:CreativeWork
243 https://doi.org/10.1016/j.amepre.2014.09.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046674940
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1016/j.cgh.2013.07.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014651307
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1016/j.compbiomed.2005.09.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009187830
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1016/j.compmedimag.2015.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039831711
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1016/j.gie.2005.08.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011602292
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1016/j.gie.2006.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004435338
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1016/j.gie.2007.07.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046497416
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1016/j.gie.2011.01.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022358886
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1016/j.gie.2011.06.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011353253
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1016/j.gie.2015.06.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036785677
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1016/j.gie.2015.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047765011
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1016/j.media.2016.04.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001451283
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1016/s1052-5157(03)00058-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004768068
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1046/j.1365-2168.2002.02120.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016156111
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1055/s-0029-1242458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035322968
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1055/s-0033-1358831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057300412
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1055/s-2001-14972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057408076
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1056/nejmoa1301969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033426756
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1067/mge.2002.121597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029605021
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1093/gastro/gou093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049746098
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1109/acit-csi.2015.60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093529814
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1109/icip.2007.4379193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094166169
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1109/isbi.2015.7163821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093845460
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1109/iscc.2017.8024526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095600719
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1109/jbhi.2013.2285230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061276750
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1109/jbhi.2016.2637004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061277353
294 rdf:type schema:CreativeWork
295 https://doi.org/10.1109/sips.2015.7345001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095260203
296 rdf:type schema:CreativeWork
297 https://doi.org/10.1109/tase.2015.2395429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061515497
298 rdf:type schema:CreativeWork
299 https://doi.org/10.1109/tbme.2016.2530141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061530120
300 rdf:type schema:CreativeWork
301 https://doi.org/10.1109/tmi.2015.2434398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061696540
302 rdf:type schema:CreativeWork
303 https://doi.org/10.1109/tmi.2015.2487997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061696613
304 rdf:type schema:CreativeWork
305 https://doi.org/10.1109/tmi.2016.2527736 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061696696
306 rdf:type schema:CreativeWork
307 https://doi.org/10.1111/his.12563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044693736
308 rdf:type schema:CreativeWork
309 https://doi.org/10.1111/j.1365-2036.2006.03080.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041175992
310 rdf:type schema:CreativeWork
311 https://doi.org/10.1117/12.770510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021112906
312 rdf:type schema:CreativeWork
313 https://doi.org/10.1136/gutjnl-2011-300167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012436734
314 rdf:type schema:CreativeWork
315 https://doi.org/10.1136/gutjnl-2014-308076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011696641
316 rdf:type schema:CreativeWork
317 https://doi.org/10.1136/postgradmedj-2016-134578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079396773
318 rdf:type schema:CreativeWork
319 https://doi.org/10.1155/2012/846985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030474091
320 rdf:type schema:CreativeWork
321 https://doi.org/10.1159/000365006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035100046
322 rdf:type schema:CreativeWork
323 https://doi.org/10.1177/117693510600200030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077902453
324 rdf:type schema:CreativeWork
325 https://doi.org/10.1590/s0102-67202014000200006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036589456
326 rdf:type schema:CreativeWork
327 https://doi.org/10.2196/publichealth.5810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069287104
328 rdf:type schema:CreativeWork
329 https://doi.org/10.2214/ajr.181.6.1811593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069325847
330 rdf:type schema:CreativeWork
331 https://doi.org/10.4015/s1016237212002962 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071874202
332 rdf:type schema:CreativeWork
333 https://doi.org/10.4258/hir.2016.22.4.270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013383187
334 rdf:type schema:CreativeWork
335 https://doi.org/10.4258/hir.2016.22.4.299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012480916
336 rdf:type schema:CreativeWork
337 https://doi.org/10.4258/hir.2017.23.4.262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092694080
338 rdf:type schema:CreativeWork
339 https://doi.org/10.5124/jkma.2003.46.7.594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051152209
340 rdf:type schema:CreativeWork
341 https://doi.org/10.5946/ce.2012.45.4.404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044039951
342 rdf:type schema:CreativeWork
343 https://www.grid.ac/institutes/grid.31501.36 schema:alternateName Seoul National University
344 schema:name Department of Biomedical Engineering, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea
345 Institute of Medical and Biological Engineering, Seoul National University, 08826, Seoul, South Korea
346 Interdisciplinary Program for Bioengineering, Graduate School, Seoul National University, 08826, Seoul, South Korea
347 rdf:type schema:Organization
348 https://www.grid.ac/institutes/grid.412479.d schema:alternateName Boramae Medical Center
349 schema:name Department of Gastroenterology, Seoul National University Boramae Medical Center, 07061, Seoul, South Korea
350 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...