A novel summary report of colonoscopy: timeline visualization providing meaningful colonoscopy video information View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-05

AUTHORS

Minwoo Cho, Jee Hyun Kim, Hyoun Joong Kong, Kyoung Sup Hong, Sungwan Kim

ABSTRACT

PURPOSE: The colonoscopy adenoma detection rate depends largely on physician experience and skill, and overlooked colorectal adenomas could develop into cancer. This study assessed a system that detects polyps and summarizes meaningful information from colonoscopy videos. METHODS: One hundred thirteen consecutive patients had colonoscopy videos prospectively recorded at the Seoul National University Hospital. Informative video frames were extracted using a MATLAB support vector machine (SVM) model and classified as bleeding, polypectomy, tool, residue, thin wrinkle, folded wrinkle, or common. Thin wrinkle, folded wrinkle, and common frames were reanalyzed using SVM for polyp detection. The SVM model was applied hierarchically for effective classification and optimization of the SVM. RESULTS: The mean classification accuracy according to type was over 93%; sensitivity was over 87%. The mean sensitivity for polyp detection was 82.1%, and the positive predicted value (PPV) was 39.3%. Polyps detected using the system were larger (6.3 ± 6.4 vs. 4.9 ± 2.5 mm; P = 0.003) with a more pedunculated morphology (Yamada type III, 10.2 vs. 0%; P < 0.001; Yamada type IV, 2.8 vs. 0%; P < 0.001) than polyps missed by the system. There were no statistically significant differences in polyp distribution or histology between the groups. Informative frames and suspected polyps were presented on a timeline. This summary was evaluated using the system usability scale questionnaire; 89.3% of participants expressed positive opinions. CONCLUSIONS: We developed and verified a system to extract meaningful information from colonoscopy videos. Although further improvement and validation of the system is needed, the proposed system is useful for physicians and patients. More... »

PAGES

549-559

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00384-018-2980-3

DOI

http://dx.doi.org/10.1007/s00384-018-2980-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101381815

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29520455


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Colonic Polyps", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Colonoscopy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Research Report", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Support Vector Machine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Surveys and Questionnaires", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Video Recording", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Interdisciplinary Program for Bioengineering, Graduate School, Seoul National University, 08826, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cho", 
        "givenName": "Minwoo", 
        "id": "sg:person.0677101001.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677101001.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boramae Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.412479.d", 
          "name": [
            "Department of Gastroenterology, Seoul National University Boramae Medical Center, 07061, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Jee Hyun", 
        "id": "sg:person.012332532224.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012332532224.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Biomedical Engineering, Chungnam National University College of Medicine, 35015, Daejeon, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kong", 
        "givenName": "Hyoun Joong", 
        "id": "sg:person.01017134107.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017134107.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Gastroenterology, Mediplex Sejong Hospital, 20 Gyeyangmunhwa-ro, Gyeyang-gu, 21080, Incheon, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hong", 
        "givenName": "Kyoung Sup", 
        "id": "sg:person.01313037351.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313037351.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Biomedical Engineering, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea", 
            "Institute of Medical and Biological Engineering, Seoul National University, 08826, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Sungwan", 
        "id": "sg:person.01112430375.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112430375.19"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.media.2016.04.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001451283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gie.2006.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004435338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1052-5157(03)00058-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004768068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11042-016-4219-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006923922", 
          "https://doi.org/10.1007/s11042-016-4219-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11042-016-4219-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006923922", 
          "https://doi.org/10.1007/s11042-016-4219-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ajg.2011.125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007718323", 
          "https://doi.org/10.1038/ajg.2011.125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ajg.2011.125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007718323", 
          "https://doi.org/10.1038/ajg.2011.125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compbiomed.2005.09.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009187830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compbiomed.2005.09.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009187830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gie.2011.06.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011353253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gie.2005.08.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011602292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/gutjnl-2014-308076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011696641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/gutjnl-2011-300167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012436734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4258/hir.2016.22.4.299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012480916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4258/hir.2016.22.4.270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013383187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cgh.2013.07.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014651307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2168.2002.02120.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016156111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.770510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021112906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gie.2011.01.069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022358886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-72847-4_38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024908189", 
          "https://doi.org/10.1007/978-3-540-72847-4_38"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1067/mge.2002.121597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029605021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2012/846985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030474091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa1301969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033426756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000365006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035100046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-0029-1242458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035322968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1590/s0102-67202014000200006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036589456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gie.2015.06.058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036785677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compmedimag.2015.02.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039831711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2036.2006.03080.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041175992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40846-016-0138-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041822280", 
          "https://doi.org/10.1007/s40846-016-0138-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40846-016-0138-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041822280", 
          "https://doi.org/10.1007/s40846-016-0138-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5946/ce.2012.45.4.404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044039951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/his.12563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044693736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00535-012-0575-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045482781", 
          "https://doi.org/10.1007/s00535-012-0575-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gie.2007.07.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046497416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ajg.2009.249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046521678", 
          "https://doi.org/10.1038/ajg.2009.249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amepre.2014.09.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046674940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gie.2015.08.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047765011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/gastro/gou093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049746098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5124/jkma.2003.46.7.594", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051152209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm.3641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051292284", 
          "https://doi.org/10.1038/nm.3641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-0033-1358831", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057300412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-2001-14972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057408076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jbhi.2013.2285230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061276750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jbhi.2016.2637004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061277353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tase.2015.2395429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061515497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2016.2530141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061530120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2015.2434398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061696540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2015.2487997", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061696613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2016.2527736", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061696696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2196/publichealth.5810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069287104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.181.6.1811593", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069325847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4015/s1016237212002962", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071874202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077844442", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/117693510600200030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077902453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/117693510600200030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077902453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/postgradmedj-2016-134578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079396773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/postgradmedj-2016-134578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079396773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-52277-7_49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083913969", 
          "https://doi.org/10.1007/978-3-319-52277-7_49"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-59758-4_20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086389909", 
          "https://doi.org/10.1007/978-3-319-59758-4_20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ajg.2017.258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092088268", 
          "https://doi.org/10.1038/ajg.2017.258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ajg.2017.258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092088268", 
          "https://doi.org/10.1038/ajg.2017.258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4258/hir.2017.23.4.262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092694080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/acit-csi.2015.60", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093529814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isbi.2015.7163821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093845460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.2007.4379193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094166169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/sips.2015.7345001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095260203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iscc.2017.8024526", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095600719"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-05", 
    "datePublishedReg": "2018-05-01", 
    "description": "PURPOSE: The colonoscopy adenoma detection rate depends largely on physician experience and skill, and overlooked colorectal adenomas could develop into cancer. This study assessed a system that detects polyps and summarizes meaningful information from colonoscopy videos.\nMETHODS: One hundred thirteen consecutive patients had colonoscopy videos prospectively recorded at the Seoul National University Hospital. Informative video frames were extracted using a MATLAB support vector machine (SVM) model and classified as bleeding, polypectomy, tool, residue, thin wrinkle, folded wrinkle, or common. Thin wrinkle, folded wrinkle, and common frames were reanalyzed using SVM for polyp detection. The SVM model was applied hierarchically for effective classification and optimization of the SVM.\nRESULTS: The mean classification accuracy according to type was over 93%; sensitivity was over 87%. The mean sensitivity for polyp detection was 82.1%, and the positive predicted value (PPV) was 39.3%. Polyps detected using the system were larger (6.3\u2009\u00b1\u20096.4 vs. 4.9\u2009\u00b1\u20092.5\u00a0mm; P\u2009=\u20090.003) with a more pedunculated morphology (Yamada type III, 10.2 vs. 0%; P\u2009<\u20090.001; Yamada type IV, 2.8 vs. 0%; P\u2009<\u20090.001) than polyps missed by the system. There were no statistically significant differences in polyp distribution or histology between the groups. Informative frames and suspected polyps were presented on a timeline. This summary was evaluated using the system usability scale questionnaire; 89.3% of participants expressed positive opinions.\nCONCLUSIONS: We developed and verified a system to extract meaningful information from colonoscopy videos. Although further improvement and validation of the system is needed, the proposed system is useful for physicians and patients.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00384-018-2980-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1096381", 
        "issn": [
          "0179-1958", 
          "1432-1262"
        ], 
        "name": "International Journal of Colorectal Disease", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "33"
      }
    ], 
    "name": "A novel summary report of colonoscopy: timeline visualization providing meaningful colonoscopy video information", 
    "pagination": "549-559", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1ba14a989f603fa12bf470cf5c26f24dddcd5bb05d11ecf3bf151f559f094f73"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29520455"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8607899"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00384-018-2980-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101381815"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00384-018-2980-3", 
      "https://app.dimensions.ai/details/publication/pub.1101381815"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000354_0000000354/records_11701_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00384-018-2980-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00384-018-2980-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00384-018-2980-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00384-018-2980-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00384-018-2980-3'


 

This table displays all metadata directly associated to this object as RDF triples.

350 TRIPLES      21 PREDICATES      103 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00384-018-2980-3 schema:about N1ad5f93bb37c44f59047e9d10c2a2451
2 N31ba04c439194516973a371c70b3c367
3 N36b5480a28054cad812d5086c56fbe3d
4 N5e795416a9c14ba4aeb7a5cb246bc361
5 N6ef6051071c946ebb99e3be77d1f4a92
6 N8bc3f75424f14c059977091cec548f70
7 N9421f981cf2d46ab91beb7e1b87664c9
8 Na3d134dd80e74108bf0f992b00610c47
9 Naac209d83c8d4333aa6e2d77a2c54a73
10 Nbdd40ea395ce42da87721a8011dd10c1
11 Nd959623afb32423eb1fd1be80c06c362
12 Nf4877eb34dbb404b929efce880ca8c23
13 Nfd09c59a8bfe49718ba4d223a297ebc1
14 anzsrc-for:08
15 anzsrc-for:0801
16 schema:author N0ddcff689bdb4d77bbee74a2332c955c
17 schema:citation sg:pub.10.1007/978-3-319-52277-7_49
18 sg:pub.10.1007/978-3-319-59758-4_20
19 sg:pub.10.1007/978-3-540-72847-4_38
20 sg:pub.10.1007/s00535-012-0575-2
21 sg:pub.10.1007/s11042-016-4219-z
22 sg:pub.10.1007/s40846-016-0138-8
23 sg:pub.10.1038/ajg.2009.249
24 sg:pub.10.1038/ajg.2011.125
25 sg:pub.10.1038/ajg.2017.258
26 sg:pub.10.1038/nm.3641
27 https://app.dimensions.ai/details/publication/pub.1077844442
28 https://doi.org/10.1016/j.amepre.2014.09.016
29 https://doi.org/10.1016/j.cgh.2013.07.036
30 https://doi.org/10.1016/j.compbiomed.2005.09.008
31 https://doi.org/10.1016/j.compmedimag.2015.02.007
32 https://doi.org/10.1016/j.gie.2005.08.048
33 https://doi.org/10.1016/j.gie.2006.02.002
34 https://doi.org/10.1016/j.gie.2007.07.036
35 https://doi.org/10.1016/j.gie.2011.01.069
36 https://doi.org/10.1016/j.gie.2011.06.032
37 https://doi.org/10.1016/j.gie.2015.06.058
38 https://doi.org/10.1016/j.gie.2015.08.004
39 https://doi.org/10.1016/j.media.2016.04.007
40 https://doi.org/10.1016/s1052-5157(03)00058-8
41 https://doi.org/10.1046/j.1365-2168.2002.02120.x
42 https://doi.org/10.1055/s-0029-1242458
43 https://doi.org/10.1055/s-0033-1358831
44 https://doi.org/10.1055/s-2001-14972
45 https://doi.org/10.1056/nejmoa1301969
46 https://doi.org/10.1067/mge.2002.121597
47 https://doi.org/10.1093/gastro/gou093
48 https://doi.org/10.1109/acit-csi.2015.60
49 https://doi.org/10.1109/icip.2007.4379193
50 https://doi.org/10.1109/isbi.2015.7163821
51 https://doi.org/10.1109/iscc.2017.8024526
52 https://doi.org/10.1109/jbhi.2013.2285230
53 https://doi.org/10.1109/jbhi.2016.2637004
54 https://doi.org/10.1109/sips.2015.7345001
55 https://doi.org/10.1109/tase.2015.2395429
56 https://doi.org/10.1109/tbme.2016.2530141
57 https://doi.org/10.1109/tmi.2015.2434398
58 https://doi.org/10.1109/tmi.2015.2487997
59 https://doi.org/10.1109/tmi.2016.2527736
60 https://doi.org/10.1111/his.12563
61 https://doi.org/10.1111/j.1365-2036.2006.03080.x
62 https://doi.org/10.1117/12.770510
63 https://doi.org/10.1136/gutjnl-2011-300167
64 https://doi.org/10.1136/gutjnl-2014-308076
65 https://doi.org/10.1136/postgradmedj-2016-134578
66 https://doi.org/10.1155/2012/846985
67 https://doi.org/10.1159/000365006
68 https://doi.org/10.1177/117693510600200030
69 https://doi.org/10.1590/s0102-67202014000200006
70 https://doi.org/10.2196/publichealth.5810
71 https://doi.org/10.2214/ajr.181.6.1811593
72 https://doi.org/10.4015/s1016237212002962
73 https://doi.org/10.4258/hir.2016.22.4.270
74 https://doi.org/10.4258/hir.2016.22.4.299
75 https://doi.org/10.4258/hir.2017.23.4.262
76 https://doi.org/10.5124/jkma.2003.46.7.594
77 https://doi.org/10.5946/ce.2012.45.4.404
78 schema:datePublished 2018-05
79 schema:datePublishedReg 2018-05-01
80 schema:description PURPOSE: The colonoscopy adenoma detection rate depends largely on physician experience and skill, and overlooked colorectal adenomas could develop into cancer. This study assessed a system that detects polyps and summarizes meaningful information from colonoscopy videos. METHODS: One hundred thirteen consecutive patients had colonoscopy videos prospectively recorded at the Seoul National University Hospital. Informative video frames were extracted using a MATLAB support vector machine (SVM) model and classified as bleeding, polypectomy, tool, residue, thin wrinkle, folded wrinkle, or common. Thin wrinkle, folded wrinkle, and common frames were reanalyzed using SVM for polyp detection. The SVM model was applied hierarchically for effective classification and optimization of the SVM. RESULTS: The mean classification accuracy according to type was over 93%; sensitivity was over 87%. The mean sensitivity for polyp detection was 82.1%, and the positive predicted value (PPV) was 39.3%. Polyps detected using the system were larger (6.3 ± 6.4 vs. 4.9 ± 2.5 mm; P = 0.003) with a more pedunculated morphology (Yamada type III, 10.2 vs. 0%; P < 0.001; Yamada type IV, 2.8 vs. 0%; P < 0.001) than polyps missed by the system. There were no statistically significant differences in polyp distribution or histology between the groups. Informative frames and suspected polyps were presented on a timeline. This summary was evaluated using the system usability scale questionnaire; 89.3% of participants expressed positive opinions. CONCLUSIONS: We developed and verified a system to extract meaningful information from colonoscopy videos. Although further improvement and validation of the system is needed, the proposed system is useful for physicians and patients.
81 schema:genre research_article
82 schema:inLanguage en
83 schema:isAccessibleForFree false
84 schema:isPartOf N5d2396b105614ff788ed71d6ed9291f9
85 Ne1fbb1a64d274df6afe2c8be10e2fe31
86 sg:journal.1096381
87 schema:name A novel summary report of colonoscopy: timeline visualization providing meaningful colonoscopy video information
88 schema:pagination 549-559
89 schema:productId N0757b932a73f4d09a7de39eebe0c2f4b
90 N0b5396a4080d468c99e08fd8f0244b51
91 N7494f257ec2e43ef9073015670dc25d3
92 Na85e52cc2e3448c79363ff42b71cb07c
93 Ndb619e303f904206bdb0fa2cbcb0eaf9
94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101381815
95 https://doi.org/10.1007/s00384-018-2980-3
96 schema:sdDatePublished 2019-04-11T11:18
97 schema:sdLicense https://scigraph.springernature.com/explorer/license/
98 schema:sdPublisher N008348b6d4494325b5dc098b00297e3e
99 schema:url https://link.springer.com/10.1007%2Fs00384-018-2980-3
100 sgo:license sg:explorer/license/
101 sgo:sdDataset articles
102 rdf:type schema:ScholarlyArticle
103 N008348b6d4494325b5dc098b00297e3e schema:name Springer Nature - SN SciGraph project
104 rdf:type schema:Organization
105 N0757b932a73f4d09a7de39eebe0c2f4b schema:name doi
106 schema:value 10.1007/s00384-018-2980-3
107 rdf:type schema:PropertyValue
108 N0b5396a4080d468c99e08fd8f0244b51 schema:name pubmed_id
109 schema:value 29520455
110 rdf:type schema:PropertyValue
111 N0ddcff689bdb4d77bbee74a2332c955c rdf:first sg:person.0677101001.99
112 rdf:rest N80cfbf8d4e854ce39b180c4c965bfadf
113 N1ad5f93bb37c44f59047e9d10c2a2451 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Research Report
115 rdf:type schema:DefinedTerm
116 N298419baca0444118b4ea66ed81dc294 rdf:first sg:person.01112430375.19
117 rdf:rest rdf:nil
118 N31ba04c439194516973a371c70b3c367 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Aged
120 rdf:type schema:DefinedTerm
121 N36b5480a28054cad812d5086c56fbe3d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Colonoscopy
123 rdf:type schema:DefinedTerm
124 N48df8a69cc7c43a1bc5e8ec9f80918e1 schema:name Department of Biomedical Engineering, Chungnam National University College of Medicine, 35015, Daejeon, South Korea
125 rdf:type schema:Organization
126 N5d2396b105614ff788ed71d6ed9291f9 schema:issueNumber 5
127 rdf:type schema:PublicationIssue
128 N5e795416a9c14ba4aeb7a5cb246bc361 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Support Vector Machine
130 rdf:type schema:DefinedTerm
131 N6ef6051071c946ebb99e3be77d1f4a92 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Humans
133 rdf:type schema:DefinedTerm
134 N7494f257ec2e43ef9073015670dc25d3 schema:name readcube_id
135 schema:value 1ba14a989f603fa12bf470cf5c26f24dddcd5bb05d11ecf3bf151f559f094f73
136 rdf:type schema:PropertyValue
137 N80cfbf8d4e854ce39b180c4c965bfadf rdf:first sg:person.012332532224.22
138 rdf:rest Nf8246b8607cf40f2bf3aa5ceec19dd93
139 N8bc3f75424f14c059977091cec548f70 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Video Recording
141 rdf:type schema:DefinedTerm
142 N9421f981cf2d46ab91beb7e1b87664c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Middle Aged
144 rdf:type schema:DefinedTerm
145 Na3d134dd80e74108bf0f992b00610c47 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Female
147 rdf:type schema:DefinedTerm
148 Na85e52cc2e3448c79363ff42b71cb07c schema:name nlm_unique_id
149 schema:value 8607899
150 rdf:type schema:PropertyValue
151 Naac209d83c8d4333aa6e2d77a2c54a73 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Surveys and Questionnaires
153 rdf:type schema:DefinedTerm
154 Nbdd40ea395ce42da87721a8011dd10c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Colonic Polyps
156 rdf:type schema:DefinedTerm
157 Nd093c07c05d9416e93316b591febfcab rdf:first sg:person.01313037351.59
158 rdf:rest N298419baca0444118b4ea66ed81dc294
159 Nd959623afb32423eb1fd1be80c06c362 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Time Factors
161 rdf:type schema:DefinedTerm
162 Ndb619e303f904206bdb0fa2cbcb0eaf9 schema:name dimensions_id
163 schema:value pub.1101381815
164 rdf:type schema:PropertyValue
165 Ne1fbb1a64d274df6afe2c8be10e2fe31 schema:volumeNumber 33
166 rdf:type schema:PublicationVolume
167 Ne30d4fbde7c74b55a86bba86dfc07d2a schema:name Department of Gastroenterology, Mediplex Sejong Hospital, 20 Gyeyangmunhwa-ro, Gyeyang-gu, 21080, Incheon, South Korea
168 rdf:type schema:Organization
169 Nf4877eb34dbb404b929efce880ca8c23 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Male
171 rdf:type schema:DefinedTerm
172 Nf8246b8607cf40f2bf3aa5ceec19dd93 rdf:first sg:person.01017134107.77
173 rdf:rest Nd093c07c05d9416e93316b591febfcab
174 Nfd09c59a8bfe49718ba4d223a297ebc1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Algorithms
176 rdf:type schema:DefinedTerm
177 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
178 schema:name Information and Computing Sciences
179 rdf:type schema:DefinedTerm
180 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
181 schema:name Artificial Intelligence and Image Processing
182 rdf:type schema:DefinedTerm
183 sg:journal.1096381 schema:issn 0179-1958
184 1432-1262
185 schema:name International Journal of Colorectal Disease
186 rdf:type schema:Periodical
187 sg:person.01017134107.77 schema:affiliation N48df8a69cc7c43a1bc5e8ec9f80918e1
188 schema:familyName Kong
189 schema:givenName Hyoun Joong
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017134107.77
191 rdf:type schema:Person
192 sg:person.01112430375.19 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
193 schema:familyName Kim
194 schema:givenName Sungwan
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112430375.19
196 rdf:type schema:Person
197 sg:person.012332532224.22 schema:affiliation https://www.grid.ac/institutes/grid.412479.d
198 schema:familyName Kim
199 schema:givenName Jee Hyun
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012332532224.22
201 rdf:type schema:Person
202 sg:person.01313037351.59 schema:affiliation Ne30d4fbde7c74b55a86bba86dfc07d2a
203 schema:familyName Hong
204 schema:givenName Kyoung Sup
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313037351.59
206 rdf:type schema:Person
207 sg:person.0677101001.99 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
208 schema:familyName Cho
209 schema:givenName Minwoo
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677101001.99
211 rdf:type schema:Person
212 sg:pub.10.1007/978-3-319-52277-7_49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083913969
213 https://doi.org/10.1007/978-3-319-52277-7_49
214 rdf:type schema:CreativeWork
215 sg:pub.10.1007/978-3-319-59758-4_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086389909
216 https://doi.org/10.1007/978-3-319-59758-4_20
217 rdf:type schema:CreativeWork
218 sg:pub.10.1007/978-3-540-72847-4_38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024908189
219 https://doi.org/10.1007/978-3-540-72847-4_38
220 rdf:type schema:CreativeWork
221 sg:pub.10.1007/s00535-012-0575-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045482781
222 https://doi.org/10.1007/s00535-012-0575-2
223 rdf:type schema:CreativeWork
224 sg:pub.10.1007/s11042-016-4219-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1006923922
225 https://doi.org/10.1007/s11042-016-4219-z
226 rdf:type schema:CreativeWork
227 sg:pub.10.1007/s40846-016-0138-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041822280
228 https://doi.org/10.1007/s40846-016-0138-8
229 rdf:type schema:CreativeWork
230 sg:pub.10.1038/ajg.2009.249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046521678
231 https://doi.org/10.1038/ajg.2009.249
232 rdf:type schema:CreativeWork
233 sg:pub.10.1038/ajg.2011.125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007718323
234 https://doi.org/10.1038/ajg.2011.125
235 rdf:type schema:CreativeWork
236 sg:pub.10.1038/ajg.2017.258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092088268
237 https://doi.org/10.1038/ajg.2017.258
238 rdf:type schema:CreativeWork
239 sg:pub.10.1038/nm.3641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051292284
240 https://doi.org/10.1038/nm.3641
241 rdf:type schema:CreativeWork
242 https://app.dimensions.ai/details/publication/pub.1077844442 schema:CreativeWork
243 https://doi.org/10.1016/j.amepre.2014.09.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046674940
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1016/j.cgh.2013.07.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014651307
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1016/j.compbiomed.2005.09.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009187830
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1016/j.compmedimag.2015.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039831711
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1016/j.gie.2005.08.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011602292
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1016/j.gie.2006.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004435338
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1016/j.gie.2007.07.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046497416
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1016/j.gie.2011.01.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022358886
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1016/j.gie.2011.06.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011353253
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1016/j.gie.2015.06.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036785677
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1016/j.gie.2015.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047765011
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1016/j.media.2016.04.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001451283
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1016/s1052-5157(03)00058-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004768068
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1046/j.1365-2168.2002.02120.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016156111
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1055/s-0029-1242458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035322968
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1055/s-0033-1358831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057300412
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1055/s-2001-14972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057408076
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1056/nejmoa1301969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033426756
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1067/mge.2002.121597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029605021
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1093/gastro/gou093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049746098
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1109/acit-csi.2015.60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093529814
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1109/icip.2007.4379193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094166169
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1109/isbi.2015.7163821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093845460
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1109/iscc.2017.8024526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095600719
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1109/jbhi.2013.2285230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061276750
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1109/jbhi.2016.2637004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061277353
294 rdf:type schema:CreativeWork
295 https://doi.org/10.1109/sips.2015.7345001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095260203
296 rdf:type schema:CreativeWork
297 https://doi.org/10.1109/tase.2015.2395429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061515497
298 rdf:type schema:CreativeWork
299 https://doi.org/10.1109/tbme.2016.2530141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061530120
300 rdf:type schema:CreativeWork
301 https://doi.org/10.1109/tmi.2015.2434398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061696540
302 rdf:type schema:CreativeWork
303 https://doi.org/10.1109/tmi.2015.2487997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061696613
304 rdf:type schema:CreativeWork
305 https://doi.org/10.1109/tmi.2016.2527736 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061696696
306 rdf:type schema:CreativeWork
307 https://doi.org/10.1111/his.12563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044693736
308 rdf:type schema:CreativeWork
309 https://doi.org/10.1111/j.1365-2036.2006.03080.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041175992
310 rdf:type schema:CreativeWork
311 https://doi.org/10.1117/12.770510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021112906
312 rdf:type schema:CreativeWork
313 https://doi.org/10.1136/gutjnl-2011-300167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012436734
314 rdf:type schema:CreativeWork
315 https://doi.org/10.1136/gutjnl-2014-308076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011696641
316 rdf:type schema:CreativeWork
317 https://doi.org/10.1136/postgradmedj-2016-134578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079396773
318 rdf:type schema:CreativeWork
319 https://doi.org/10.1155/2012/846985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030474091
320 rdf:type schema:CreativeWork
321 https://doi.org/10.1159/000365006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035100046
322 rdf:type schema:CreativeWork
323 https://doi.org/10.1177/117693510600200030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077902453
324 rdf:type schema:CreativeWork
325 https://doi.org/10.1590/s0102-67202014000200006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036589456
326 rdf:type schema:CreativeWork
327 https://doi.org/10.2196/publichealth.5810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069287104
328 rdf:type schema:CreativeWork
329 https://doi.org/10.2214/ajr.181.6.1811593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069325847
330 rdf:type schema:CreativeWork
331 https://doi.org/10.4015/s1016237212002962 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071874202
332 rdf:type schema:CreativeWork
333 https://doi.org/10.4258/hir.2016.22.4.270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013383187
334 rdf:type schema:CreativeWork
335 https://doi.org/10.4258/hir.2016.22.4.299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012480916
336 rdf:type schema:CreativeWork
337 https://doi.org/10.4258/hir.2017.23.4.262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092694080
338 rdf:type schema:CreativeWork
339 https://doi.org/10.5124/jkma.2003.46.7.594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051152209
340 rdf:type schema:CreativeWork
341 https://doi.org/10.5946/ce.2012.45.4.404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044039951
342 rdf:type schema:CreativeWork
343 https://www.grid.ac/institutes/grid.31501.36 schema:alternateName Seoul National University
344 schema:name Department of Biomedical Engineering, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea
345 Institute of Medical and Biological Engineering, Seoul National University, 08826, Seoul, South Korea
346 Interdisciplinary Program for Bioengineering, Graduate School, Seoul National University, 08826, Seoul, South Korea
347 rdf:type schema:Organization
348 https://www.grid.ac/institutes/grid.412479.d schema:alternateName Boramae Medical Center
349 schema:name Department of Gastroenterology, Seoul National University Boramae Medical Center, 07061, Seoul, South Korea
350 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...