Ontology type: schema:ScholarlyArticle
2001-12
AUTHORS ABSTRACTRadiative forcing is a useful concept in determining the potential influence of a particular mechanism of climate change. However, due to the increased number of forcing agents identified over the past decade, the total radiative forcing is difficult to assess. By assigning a range of probability distribution functions to the individual radiative forcings and using a Monte-Carlo approach, we estimate the total radiative forcing since pre-industrial times including all quantitative radiative forcing estimates to date. The resulting total radiative forcing has a 75–97% probability of being positive (or similarly a 3–25% probability of being negative), with mean radiative forcing ranging from +0.68 to +1.34 W m−2, and median radiative forcing ranging from +0.94 to +1.39 W m−2. More... »
PAGES297-302
http://scigraph.springernature.com/pub.10.1007/s003820100185
DOIhttp://dx.doi.org/10.1007/s003820100185
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1043744883
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Earth Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Geography and Environmental Geoscience",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Laboratoire d'Optique Atmosph\u00e9rique, U.F.R. de Physique, B\u00e2timent P5, Universit\u00e9 des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cedex, France. On sabbatical leave at the Max Planck Institute for Chemistry, Mainz, Germany E-mail: boucher@loa.univ-lille1.fr, XX",
"id": "http://www.grid.ac/institutes/grid.419509.0",
"name": [
"Laboratoire d'Optique Atmosph\u00e9rique, U.F.R. de Physique, B\u00e2timent P5, Universit\u00e9 des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cedex, France. On sabbatical leave at the Max Planck Institute for Chemistry, Mainz, Germany E-mail: boucher@loa.univ-lille1.fr, XX"
],
"type": "Organization"
},
"familyName": "Boucher",
"givenName": "O.",
"id": "sg:person.01301253676.11",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301253676.11"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Meteorological Office, London Road, Bracknell, UK, GB",
"id": "http://www.grid.ac/institutes/grid.17100.37",
"name": [
"Meteorological Office, London Road, Bracknell, UK, GB"
],
"type": "Organization"
},
"familyName": "Haywood",
"givenName": "J.",
"id": "sg:person.013271562267.97",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013271562267.97"
],
"type": "Person"
}
],
"datePublished": "2001-12",
"datePublishedReg": "2001-12-01",
"description": "Abstract\u2002Radiative forcing is a useful concept in determining the potential influence of a particular mechanism of climate change. However, due to the increased number of forcing agents identified over the past decade, the total radiative forcing is difficult to assess. By assigning a range of probability distribution functions to the individual radiative forcings and using a Monte-Carlo approach, we estimate the total radiative forcing since pre-industrial times including all quantitative radiative forcing estimates to date. The resulting total radiative forcing has a 75\u201397% probability of being positive (or similarly a 3\u201325% probability of being negative), with mean radiative forcing ranging from +0.68 to +1.34\u2009W\u2009m\u22122, and median radiative forcing ranging from +0.94 to +1.39\u2009W\u2009m\u22122.",
"genre": "article",
"id": "sg:pub.10.1007/s003820100185",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1049631",
"issn": [
"0930-7575",
"1432-0894"
],
"name": "Climate Dynamics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "3-4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "18"
}
],
"keywords": [
"probability distribution function",
"Monte Carlo approach",
"distribution function",
"individual radiative forcings",
"forcing",
"useful concept",
"estimates",
"probability",
"particular mechanism",
"number",
"function",
"approach",
"concept",
"past decade",
"range",
"time",
"influence",
"total radiative forcing",
"components",
"radiative forcing",
"decades",
"changes",
"mean radiative forcing",
"potential influence",
"mechanism",
"climate change",
"agents",
"radiative forcing estimates",
"date",
"pre-industrial times"
],
"name": "On summing the components of radiative forcing of climate change",
"pagination": "297-302",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1043744883"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s003820100185"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s003820100185",
"https://app.dimensions.ai/details/publication/pub.1043744883"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T09:52",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_345.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s003820100185"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s003820100185'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s003820100185'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s003820100185'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s003820100185'
This table displays all metadata directly associated to this object as RDF triples.
98 TRIPLES
21 PREDICATES
56 URIs
48 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s003820100185 | schema:about | anzsrc-for:04 |
2 | ″ | ″ | anzsrc-for:0406 |
3 | ″ | schema:author | N1dbc938dd4a347dab412ac6c33121a7b |
4 | ″ | schema:datePublished | 2001-12 |
5 | ″ | schema:datePublishedReg | 2001-12-01 |
6 | ″ | schema:description | Abstract Radiative forcing is a useful concept in determining the potential influence of a particular mechanism of climate change. However, due to the increased number of forcing agents identified over the past decade, the total radiative forcing is difficult to assess. By assigning a range of probability distribution functions to the individual radiative forcings and using a Monte-Carlo approach, we estimate the total radiative forcing since pre-industrial times including all quantitative radiative forcing estimates to date. The resulting total radiative forcing has a 75–97% probability of being positive (or similarly a 3–25% probability of being negative), with mean radiative forcing ranging from +0.68 to +1.34 W m−2, and median radiative forcing ranging from +0.94 to +1.39 W m−2. |
7 | ″ | schema:genre | article |
8 | ″ | schema:inLanguage | en |
9 | ″ | schema:isAccessibleForFree | false |
10 | ″ | schema:isPartOf | N5c6e15c267a94c5db60be82fd615a5f4 |
11 | ″ | ″ | Nbcf16b4266ae4893ade8bfc0adadee6e |
12 | ″ | ″ | sg:journal.1049631 |
13 | ″ | schema:keywords | Monte Carlo approach |
14 | ″ | ″ | agents |
15 | ″ | ″ | approach |
16 | ″ | ″ | changes |
17 | ″ | ″ | climate change |
18 | ″ | ″ | components |
19 | ″ | ″ | concept |
20 | ″ | ″ | date |
21 | ″ | ″ | decades |
22 | ″ | ″ | distribution function |
23 | ″ | ″ | estimates |
24 | ″ | ″ | forcing |
25 | ″ | ″ | function |
26 | ″ | ″ | individual radiative forcings |
27 | ″ | ″ | influence |
28 | ″ | ″ | mean radiative forcing |
29 | ″ | ″ | mechanism |
30 | ″ | ″ | number |
31 | ″ | ″ | particular mechanism |
32 | ″ | ″ | past decade |
33 | ″ | ″ | potential influence |
34 | ″ | ″ | pre-industrial times |
35 | ″ | ″ | probability |
36 | ″ | ″ | probability distribution function |
37 | ″ | ″ | radiative forcing |
38 | ″ | ″ | radiative forcing estimates |
39 | ″ | ″ | range |
40 | ″ | ″ | time |
41 | ″ | ″ | total radiative forcing |
42 | ″ | ″ | useful concept |
43 | ″ | schema:name | On summing the components of radiative forcing of climate change |
44 | ″ | schema:pagination | 297-302 |
45 | ″ | schema:productId | Nf5ffc011fe194778b8ead7e912f89e7f |
46 | ″ | ″ | Nffd6751a161646f3935d28c215e49f95 |
47 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1043744883 |
48 | ″ | ″ | https://doi.org/10.1007/s003820100185 |
49 | ″ | schema:sdDatePublished | 2022-05-10T09:52 |
50 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
51 | ″ | schema:sdPublisher | N27446dd980174d29b730676247e5cd37 |
52 | ″ | schema:url | https://doi.org/10.1007/s003820100185 |
53 | ″ | sgo:license | sg:explorer/license/ |
54 | ″ | sgo:sdDataset | articles |
55 | ″ | rdf:type | schema:ScholarlyArticle |
56 | N1dbc938dd4a347dab412ac6c33121a7b | rdf:first | sg:person.01301253676.11 |
57 | ″ | rdf:rest | N78343376367e44469ca86c5d19cb6f50 |
58 | N27446dd980174d29b730676247e5cd37 | schema:name | Springer Nature - SN SciGraph project |
59 | ″ | rdf:type | schema:Organization |
60 | N5c6e15c267a94c5db60be82fd615a5f4 | schema:issueNumber | 3-4 |
61 | ″ | rdf:type | schema:PublicationIssue |
62 | N78343376367e44469ca86c5d19cb6f50 | rdf:first | sg:person.013271562267.97 |
63 | ″ | rdf:rest | rdf:nil |
64 | Nbcf16b4266ae4893ade8bfc0adadee6e | schema:volumeNumber | 18 |
65 | ″ | rdf:type | schema:PublicationVolume |
66 | Nf5ffc011fe194778b8ead7e912f89e7f | schema:name | doi |
67 | ″ | schema:value | 10.1007/s003820100185 |
68 | ″ | rdf:type | schema:PropertyValue |
69 | Nffd6751a161646f3935d28c215e49f95 | schema:name | dimensions_id |
70 | ″ | schema:value | pub.1043744883 |
71 | ″ | rdf:type | schema:PropertyValue |
72 | anzsrc-for:04 | schema:inDefinedTermSet | anzsrc-for: |
73 | ″ | schema:name | Earth Sciences |
74 | ″ | rdf:type | schema:DefinedTerm |
75 | anzsrc-for:0406 | schema:inDefinedTermSet | anzsrc-for: |
76 | ″ | schema:name | Physical Geography and Environmental Geoscience |
77 | ″ | rdf:type | schema:DefinedTerm |
78 | sg:journal.1049631 | schema:issn | 0930-7575 |
79 | ″ | ″ | 1432-0894 |
80 | ″ | schema:name | Climate Dynamics |
81 | ″ | schema:publisher | Springer Nature |
82 | ″ | rdf:type | schema:Periodical |
83 | sg:person.01301253676.11 | schema:affiliation | grid-institutes:grid.419509.0 |
84 | ″ | schema:familyName | Boucher |
85 | ″ | schema:givenName | O. |
86 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301253676.11 |
87 | ″ | rdf:type | schema:Person |
88 | sg:person.013271562267.97 | schema:affiliation | grid-institutes:grid.17100.37 |
89 | ″ | schema:familyName | Haywood |
90 | ″ | schema:givenName | J. |
91 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013271562267.97 |
92 | ″ | rdf:type | schema:Person |
93 | grid-institutes:grid.17100.37 | schema:alternateName | Meteorological Office, London Road, Bracknell, UK, GB |
94 | ″ | schema:name | Meteorological Office, London Road, Bracknell, UK, GB |
95 | ″ | rdf:type | schema:Organization |
96 | grid-institutes:grid.419509.0 | schema:alternateName | Laboratoire d'Optique Atmosphérique, U.F.R. de Physique, Bâtiment P5, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cedex, France. On sabbatical leave at the Max Planck Institute for Chemistry, Mainz, Germany E-mail: boucher@loa.univ-lille1.fr, XX |
97 | ″ | schema:name | Laboratoire d'Optique Atmosphérique, U.F.R. de Physique, Bâtiment P5, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cedex, France. On sabbatical leave at the Max Planck Institute for Chemistry, Mainz, Germany E-mail: boucher@loa.univ-lille1.fr, XX |
98 | ″ | rdf:type | schema:Organization |