A nonlinear impulse response model of the coupled carbon cycle-climate system (NICCS) View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2001-12

AUTHORS

G. Hooss, R. Voss, K. Hasselmann, E. Maier-Reimer, F. Joos

ABSTRACT

Impulse-response-function (IRF) models are designed for applications requiring a large number of climate change simulations, such as multi-scenario climate impact studies or cost-benefit integrated-assessment studies. The models apply linear response theory to reproduce the characteristics of the climate response to external forcing computed with sophisticated state-of-the-art climate models like general circulation models of the physical ocean-atmosphere system and three-dimensional oceanic-plus-terrestrial carbon cycle models. Although highly computer efficient, IRF models are nonetheless capable of reproducing the full set of climate-change information generated by the complex models against which they are calibrated. While limited in principle to the linear response regime (less than about 3 ∘C global-mean temperature change), the applicability of the IRF model presented has been extended into the nonlinear domain through explicit treatment of the climate system's dominant nonlinearities: CO2 chemistry in ocean water, CO2 fertilization of land biota, and sublinear radiative forcing. The resultant nonlinear impulse-response model of the coupled carbon cycle-climate system (NICCS) computes the temporal evolution of spatial patterns of climate change for four climate variables of particular relevance for climate impact studies: near-surface temperature, cloud cover, precipitation, and sea level. The space-time response characteristics of the model are derived from an EOF analysis of a transient 850-year greenhouse warming simulation with the Hamburg atmosphere-ocean general circulation model ECHAM3-LSG and a similar response experiment with the Hamburg carbon cycle model HAMOCC. The model is applied to two long-term CO2 emission scenarios, demonstrating that the use of all currently estimated fossil fuel resources would carry the Earth's climate far beyond the range of climate change for which reliable quantitative predictions are possible today, and that even a freezing of emissions to present-day levels would cause a major global warming in the long term. More... »

PAGES

189-202

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s003820100170

DOI

http://dx.doi.org/10.1007/s003820100170

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047788509


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oceanography", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Meteorologie, Bundesstrasse 55, 20146 Hamburg, Germany E-mail: hooss@dkrz.de, DE", 
          "id": "http://www.grid.ac/institutes/grid.450268.d", 
          "name": [
            "Max-Planck-Institut f\u00fcr Meteorologie, Bundesstrasse 55, 20146 Hamburg, Germany E-mail: hooss@dkrz.de, DE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hooss", 
        "givenName": "G.", 
        "id": "sg:person.07721366375.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07721366375.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Meteorologie, Bundesstrasse 55, 20146 Hamburg, Germany E-mail: hooss@dkrz.de, DE", 
          "id": "http://www.grid.ac/institutes/grid.450268.d", 
          "name": [
            "Max-Planck-Institut f\u00fcr Meteorologie, Bundesstrasse 55, 20146 Hamburg, Germany E-mail: hooss@dkrz.de, DE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Voss", 
        "givenName": "R.", 
        "id": "sg:person.014244276466.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014244276466.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Meteorologie, Bundesstrasse 55, 20146 Hamburg, Germany E-mail: hooss@dkrz.de, DE", 
          "id": "http://www.grid.ac/institutes/grid.450268.d", 
          "name": [
            "Max-Planck-Institut f\u00fcr Meteorologie, Bundesstrasse 55, 20146 Hamburg, Germany E-mail: hooss@dkrz.de, DE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hasselmann", 
        "givenName": "K.", 
        "id": "sg:person.011507631147.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011507631147.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Meteorologie, Bundesstrasse 55, 20146 Hamburg, Germany E-mail: hooss@dkrz.de, DE", 
          "id": "http://www.grid.ac/institutes/grid.450268.d", 
          "name": [
            "Max-Planck-Institut f\u00fcr Meteorologie, Bundesstrasse 55, 20146 Hamburg, Germany E-mail: hooss@dkrz.de, DE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maier-Reimer", 
        "givenName": "E.", 
        "id": "sg:person.014145550405.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014145550405.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland, CH", 
          "id": "http://www.grid.ac/institutes/grid.5734.5", 
          "name": [
            "Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland, CH"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Joos", 
        "givenName": "F.", 
        "id": "sg:person.01214736104.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214736104.98"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2001-12", 
    "datePublishedReg": "2001-12-01", 
    "description": "Abstract\u2002Impulse-response-function (IRF) models are designed for applications requiring a large number of climate change simulations, such as multi-scenario climate impact studies or cost-benefit integrated-assessment studies. The models apply linear response theory to reproduce the characteristics of the climate response to external forcing computed with sophisticated state-of-the-art climate models like general circulation models of the physical ocean-atmosphere system and three-dimensional oceanic-plus-terrestrial carbon cycle models. Although highly computer efficient, IRF models are nonetheless capable of reproducing the full set of climate-change information generated by the complex models against which they are calibrated. While limited in principle to the linear response regime (less than about 3\u2009\u2218C global-mean temperature change), the applicability of the IRF model presented has been extended into the nonlinear domain through explicit treatment of the climate system's dominant nonlinearities: CO2 chemistry in ocean water, CO2 fertilization of land biota, and sublinear radiative forcing. The resultant nonlinear impulse-response model of the coupled carbon cycle-climate system (NICCS) computes the temporal evolution of spatial patterns of climate change for four climate variables of particular relevance for climate impact studies: near-surface temperature, cloud cover, precipitation, and sea level. The space-time response characteristics of the model are derived from an EOF analysis of a transient 850-year greenhouse warming simulation with the Hamburg atmosphere-ocean general circulation model ECHAM3-LSG and a similar response experiment with the Hamburg carbon cycle model HAMOCC. The model is applied to two long-term CO2 emission scenarios, demonstrating that the use of all currently estimated fossil fuel resources would carry the Earth's climate far beyond the range of climate change for which reliable quantitative predictions are possible today, and that even a freezing of emissions to present-day levels would cause a major global warming in the long term.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s003820100170", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "keywords": [
      "climate impact studies", 
      "climate change", 
      "terrestrial carbon cycle models", 
      "impact studies", 
      "art climate models", 
      "ocean-atmosphere system", 
      "greenhouse warming simulations", 
      "climate change simulations", 
      "general circulation model", 
      "carbon cycle models", 
      "present-day levels", 
      "CO2 emission scenarios", 
      "climate change information", 
      "integrated assessment studies", 
      "warming simulations", 
      "climate models", 
      "climate response", 
      "circulation model", 
      "Earth's climate", 
      "ocean water", 
      "radiative forcing", 
      "land biota", 
      "EOF analysis", 
      "change simulations", 
      "sea level", 
      "emission scenarios", 
      "external forcing", 
      "cloud cover", 
      "CO2 chemistry", 
      "CO2 fertilization", 
      "surface temperature", 
      "climate variables", 
      "global warming", 
      "spatial patterns", 
      "temporal evolution", 
      "response experiments", 
      "reliable quantitative predictions", 
      "forcing", 
      "cycle model", 
      "impulse response model", 
      "climate", 
      "explicit treatment", 
      "oceanic", 
      "warming", 
      "precipitation", 
      "biota", 
      "quantitative predictions", 
      "cover", 
      "IRF models", 
      "complex models", 
      "sophisticated state", 
      "water", 
      "fossil fuel resources", 
      "chemistry", 
      "evolution", 
      "changes", 
      "model", 
      "regime", 
      "simulations", 
      "response characteristics", 
      "dominant nonlinearity", 
      "freezing", 
      "long term", 
      "response model", 
      "scenarios", 
      "emission", 
      "fuel resources", 
      "temperature", 
      "characteristics", 
      "full set", 
      "patterns", 
      "prediction", 
      "possible today", 
      "particular relevance", 
      "system", 
      "range", 
      "today", 
      "resources", 
      "large number", 
      "study", 
      "resultant", 
      "set", 
      "levels", 
      "analysis", 
      "response regime", 
      "information", 
      "experiments", 
      "applicability", 
      "variables", 
      "response", 
      "fertilization", 
      "domain", 
      "terms", 
      "state", 
      "nonlinear domain", 
      "linear response theory", 
      "linear response regime", 
      "nonlinearity", 
      "use", 
      "applications", 
      "number", 
      "response theory", 
      "relevance", 
      "theory", 
      "principles", 
      "computer", 
      "treatment"
    ], 
    "name": "A nonlinear impulse response model of the coupled carbon cycle-climate system (NICCS)", 
    "pagination": "189-202", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047788509"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s003820100170"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s003820100170", 
      "https://app.dimensions.ai/details/publication/pub.1047788509"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_304.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s003820100170"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s003820100170'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s003820100170'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s003820100170'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s003820100170'


 

This table displays all metadata directly associated to this object as RDF triples.

203 TRIPLES      20 PREDICATES      134 URIs      124 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s003820100170 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 anzsrc-for:0405
4 anzsrc-for:0406
5 schema:author N01380a630be846e095d0b08f0031844e
6 schema:datePublished 2001-12
7 schema:datePublishedReg 2001-12-01
8 schema:description Abstract Impulse-response-function (IRF) models are designed for applications requiring a large number of climate change simulations, such as multi-scenario climate impact studies or cost-benefit integrated-assessment studies. The models apply linear response theory to reproduce the characteristics of the climate response to external forcing computed with sophisticated state-of-the-art climate models like general circulation models of the physical ocean-atmosphere system and three-dimensional oceanic-plus-terrestrial carbon cycle models. Although highly computer efficient, IRF models are nonetheless capable of reproducing the full set of climate-change information generated by the complex models against which they are calibrated. While limited in principle to the linear response regime (less than about 3 ∘C global-mean temperature change), the applicability of the IRF model presented has been extended into the nonlinear domain through explicit treatment of the climate system's dominant nonlinearities: CO2 chemistry in ocean water, CO2 fertilization of land biota, and sublinear radiative forcing. The resultant nonlinear impulse-response model of the coupled carbon cycle-climate system (NICCS) computes the temporal evolution of spatial patterns of climate change for four climate variables of particular relevance for climate impact studies: near-surface temperature, cloud cover, precipitation, and sea level. The space-time response characteristics of the model are derived from an EOF analysis of a transient 850-year greenhouse warming simulation with the Hamburg atmosphere-ocean general circulation model ECHAM3-LSG and a similar response experiment with the Hamburg carbon cycle model HAMOCC. The model is applied to two long-term CO2 emission scenarios, demonstrating that the use of all currently estimated fossil fuel resources would carry the Earth's climate far beyond the range of climate change for which reliable quantitative predictions are possible today, and that even a freezing of emissions to present-day levels would cause a major global warming in the long term.
9 schema:genre article
10 schema:isAccessibleForFree true
11 schema:isPartOf Nf163624084064ea2b403f4ad1c9bf223
12 Nf4134cfe66fb42e5be731e424bc966b8
13 sg:journal.1049631
14 schema:keywords CO2 chemistry
15 CO2 emission scenarios
16 CO2 fertilization
17 EOF analysis
18 Earth's climate
19 IRF models
20 analysis
21 applicability
22 applications
23 art climate models
24 biota
25 carbon cycle models
26 change simulations
27 changes
28 characteristics
29 chemistry
30 circulation model
31 climate
32 climate change
33 climate change information
34 climate change simulations
35 climate impact studies
36 climate models
37 climate response
38 climate variables
39 cloud cover
40 complex models
41 computer
42 cover
43 cycle model
44 domain
45 dominant nonlinearity
46 emission
47 emission scenarios
48 evolution
49 experiments
50 explicit treatment
51 external forcing
52 fertilization
53 forcing
54 fossil fuel resources
55 freezing
56 fuel resources
57 full set
58 general circulation model
59 global warming
60 greenhouse warming simulations
61 impact studies
62 impulse response model
63 information
64 integrated assessment studies
65 land biota
66 large number
67 levels
68 linear response regime
69 linear response theory
70 long term
71 model
72 nonlinear domain
73 nonlinearity
74 number
75 ocean water
76 ocean-atmosphere system
77 oceanic
78 particular relevance
79 patterns
80 possible today
81 precipitation
82 prediction
83 present-day levels
84 principles
85 quantitative predictions
86 radiative forcing
87 range
88 regime
89 relevance
90 reliable quantitative predictions
91 resources
92 response
93 response characteristics
94 response experiments
95 response model
96 response regime
97 response theory
98 resultant
99 scenarios
100 sea level
101 set
102 simulations
103 sophisticated state
104 spatial patterns
105 state
106 study
107 surface temperature
108 system
109 temperature
110 temporal evolution
111 terms
112 terrestrial carbon cycle models
113 theory
114 today
115 treatment
116 use
117 variables
118 warming
119 warming simulations
120 water
121 schema:name A nonlinear impulse response model of the coupled carbon cycle-climate system (NICCS)
122 schema:pagination 189-202
123 schema:productId Nf752eb29f65e4c89a532c960a0ebb7f4
124 Nfade630f2d004386a2da82d9f3c69dcf
125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047788509
126 https://doi.org/10.1007/s003820100170
127 schema:sdDatePublished 2022-12-01T06:22
128 schema:sdLicense https://scigraph.springernature.com/explorer/license/
129 schema:sdPublisher Neb6ead127d5b40e0bc14082efc9200ae
130 schema:url https://doi.org/10.1007/s003820100170
131 sgo:license sg:explorer/license/
132 sgo:sdDataset articles
133 rdf:type schema:ScholarlyArticle
134 N01380a630be846e095d0b08f0031844e rdf:first sg:person.07721366375.90
135 rdf:rest Na2eb1deb71f0433f9a65112e963c75c7
136 N2c29b7ffd6e949df99505f7fbf22fdd4 rdf:first sg:person.011507631147.31
137 rdf:rest N6bee5be49bd14462a4a194d2faa708a7
138 N6bee5be49bd14462a4a194d2faa708a7 rdf:first sg:person.014145550405.00
139 rdf:rest Nfe01929a68a64e5a8cb6fc1aef8e0e19
140 Na2eb1deb71f0433f9a65112e963c75c7 rdf:first sg:person.014244276466.52
141 rdf:rest N2c29b7ffd6e949df99505f7fbf22fdd4
142 Neb6ead127d5b40e0bc14082efc9200ae schema:name Springer Nature - SN SciGraph project
143 rdf:type schema:Organization
144 Nf163624084064ea2b403f4ad1c9bf223 schema:issueNumber 3-4
145 rdf:type schema:PublicationIssue
146 Nf4134cfe66fb42e5be731e424bc966b8 schema:volumeNumber 18
147 rdf:type schema:PublicationVolume
148 Nf752eb29f65e4c89a532c960a0ebb7f4 schema:name dimensions_id
149 schema:value pub.1047788509
150 rdf:type schema:PropertyValue
151 Nfade630f2d004386a2da82d9f3c69dcf schema:name doi
152 schema:value 10.1007/s003820100170
153 rdf:type schema:PropertyValue
154 Nfe01929a68a64e5a8cb6fc1aef8e0e19 rdf:first sg:person.01214736104.98
155 rdf:rest rdf:nil
156 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
157 schema:name Earth Sciences
158 rdf:type schema:DefinedTerm
159 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
160 schema:name Atmospheric Sciences
161 rdf:type schema:DefinedTerm
162 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
163 schema:name Oceanography
164 rdf:type schema:DefinedTerm
165 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
166 schema:name Physical Geography and Environmental Geoscience
167 rdf:type schema:DefinedTerm
168 sg:journal.1049631 schema:issn 0930-7575
169 1432-0894
170 schema:name Climate Dynamics
171 schema:publisher Springer Nature
172 rdf:type schema:Periodical
173 sg:person.011507631147.31 schema:affiliation grid-institutes:grid.450268.d
174 schema:familyName Hasselmann
175 schema:givenName K.
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011507631147.31
177 rdf:type schema:Person
178 sg:person.01214736104.98 schema:affiliation grid-institutes:grid.5734.5
179 schema:familyName Joos
180 schema:givenName F.
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214736104.98
182 rdf:type schema:Person
183 sg:person.014145550405.00 schema:affiliation grid-institutes:grid.450268.d
184 schema:familyName Maier-Reimer
185 schema:givenName E.
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014145550405.00
187 rdf:type schema:Person
188 sg:person.014244276466.52 schema:affiliation grid-institutes:grid.450268.d
189 schema:familyName Voss
190 schema:givenName R.
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014244276466.52
192 rdf:type schema:Person
193 sg:person.07721366375.90 schema:affiliation grid-institutes:grid.450268.d
194 schema:familyName Hooss
195 schema:givenName G.
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07721366375.90
197 rdf:type schema:Person
198 grid-institutes:grid.450268.d schema:alternateName Max-Planck-Institut für Meteorologie, Bundesstrasse 55, 20146 Hamburg, Germany E-mail: hooss@dkrz.de, DE
199 schema:name Max-Planck-Institut für Meteorologie, Bundesstrasse 55, 20146 Hamburg, Germany E-mail: hooss@dkrz.de, DE
200 rdf:type schema:Organization
201 grid-institutes:grid.5734.5 schema:alternateName Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland, CH
202 schema:name Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland, CH
203 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...