Simulation of the influence of solar radiation variations on the global climate with an ocean-atmosphere general circulation model View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1997-11

AUTHORS

U. Cubasch, R. Voss, G. C. Hegerl, J. Waszkewitz, T. J. Crowley

ABSTRACT

. Two simulations with a global coupled ocean-atmosphere circulation model have been carried out to study the potential impact of solar variability on climate. The Hoyt and Schatten estimate of solar variability from 1700 to 1992 has been used to force the model. Results indicate that the near-surface temperature simulated by the model is dominated by the long periodic solar fluctuations (Gleissberg cycle), with global mean temperatures varying by about 0.5 K. Further results indicate that solar variability and an increase in greenhouse gases both induce to a first approximation a comparable pattern of surface temperature change, i.e., an increase of the land-sea contrast. However, the solar-induced warming pattern in annual means and summer is more centered over the subtropics, compared to a more uniform warming associated with the increase in greenhouse gases. The observed temperature rise over the most recent 30 and 100 years is larger than the trend in the solar forcing simulation during the same period, indicating a strong likelihood that, if the model forcing and response is realistic, other factors have contributed to the observed warming. Since the pattern of the recent observed warming agrees better with the greenhouse warming pattern than with the solar variability response, it is likely that one of these factors is the increase of the atmospheric greenhouse gas concentration. More... »

PAGES

757-767

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s003820050196

DOI

http://dx.doi.org/10.1007/s003820050196

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047759135


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oceanography", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Deutsches Klimarechenzentrum GmbH, Bundesstr. 55, D-20146 Hamburg, Germany, DE", 
          "id": "http://www.grid.ac/institutes/grid.424215.4", 
          "name": [
            "Deutsches Klimarechenzentrum GmbH, Bundesstr. 55, D-20146 Hamburg, Germany, DE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cubasch", 
        "givenName": "U.", 
        "id": "sg:person.01207007331.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207007331.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Deutsches Klimarechenzentrum GmbH, Bundesstr. 55, D-20146 Hamburg, Germany, DE", 
          "id": "http://www.grid.ac/institutes/grid.424215.4", 
          "name": [
            "Deutsches Klimarechenzentrum GmbH, Bundesstr. 55, D-20146 Hamburg, Germany, DE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Voss", 
        "givenName": "R.", 
        "id": "sg:person.014244276466.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014244276466.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Meteorologie, Bundesstr. 55, D-20146 Hamburg, Germany, DE", 
          "id": "http://www.grid.ac/institutes/grid.450268.d", 
          "name": [
            "Max-Planck-Institut f\u00fcr Meteorologie, Bundesstr. 55, D-20146 Hamburg, Germany, DE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hegerl", 
        "givenName": "G. C.", 
        "id": "sg:person.0624607120.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624607120.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Deutsches Klimarechenzentrum GmbH, Bundesstr. 55, D-20146 Hamburg, Germany, DE", 
          "id": "http://www.grid.ac/institutes/grid.424215.4", 
          "name": [
            "Deutsches Klimarechenzentrum GmbH, Bundesstr. 55, D-20146 Hamburg, Germany, DE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Waszkewitz", 
        "givenName": "J.", 
        "id": "sg:person.014405534652.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014405534652.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dept. of Oceanography, Texas A&M University, College Station TX 77843, USA, US", 
          "id": "http://www.grid.ac/institutes/grid.264756.4", 
          "name": [
            "Dept. of Oceanography, Texas A&M University, College Station TX 77843, USA, US"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Crowley", 
        "givenName": "T. J.", 
        "id": "sg:person.01065073752.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065073752.14"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1997-11", 
    "datePublishedReg": "1997-11-01", 
    "description": "Abstract.\u2002Two simulations with a global coupled ocean-atmosphere circulation model have been carried out to study the potential impact of solar variability on climate. The Hoyt and Schatten estimate of solar variability from 1700 to 1992 has been used to force the model. Results indicate that the near-surface temperature simulated by the model is dominated by the long periodic solar fluctuations (Gleissberg cycle), with global mean temperatures varying by about 0.5 K. Further results indicate that solar variability and an increase in greenhouse gases both induce to a first approximation a comparable pattern of surface temperature change, i.e., an increase of the land-sea contrast. However, the solar-induced warming pattern in annual means and summer is more centered over the subtropics, compared to a more uniform warming associated with the increase in greenhouse gases. The observed temperature rise over the most recent 30 and 100 years is larger than the trend in the solar forcing simulation during the same period, indicating a strong likelihood that, if the model forcing and response is realistic, other factors have contributed to the observed warming. Since the pattern of the recent observed warming agrees better with the greenhouse warming pattern than with the solar variability response, it is likely that one of these factors is the increase of the atmospheric greenhouse gas concentration.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s003820050196", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "keywords": [
      "solar variability", 
      "warming pattern", 
      "observed warming", 
      "circulation model", 
      "ocean-atmosphere general circulation model", 
      "ocean-atmosphere circulation model", 
      "greenhouse gases", 
      "atmospheric greenhouse gas concentrations", 
      "near-surface temperature", 
      "land\u2013sea contrast", 
      "general circulation model", 
      "greenhouse gas concentrations", 
      "global mean temperature", 
      "surface temperature changes", 
      "observed temperature rise", 
      "solar radiation variations", 
      "uniform warming", 
      "forcing simulations", 
      "global climate", 
      "solar fluctuations", 
      "annual mean", 
      "radiation variations", 
      "mean temperature", 
      "warming", 
      "gas concentration", 
      "temperature changes", 
      "variability", 
      "variability response", 
      "climate", 
      "potential impact", 
      "strong likelihood", 
      "gases", 
      "same period", 
      "subtropics", 
      "first approximation", 
      "summer", 
      "temperature rise", 
      "patterns", 
      "comparable patterns", 
      "temperature", 
      "simulations", 
      "estimates", 
      "model", 
      "variation", 
      "fluctuations", 
      "trends", 
      "rise", 
      "increase", 
      "period", 
      "changes", 
      "concentration", 
      "impact", 
      "influence", 
      "contrast", 
      "years", 
      "results", 
      "response", 
      "Further results", 
      "factors", 
      "means", 
      "likelihood", 
      "Hoyt", 
      "approximation"
    ], 
    "name": "Simulation of the influence of solar radiation variations on the global climate with an ocean-atmosphere general circulation model", 
    "pagination": "757-767", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047759135"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s003820050196"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s003820050196", 
      "https://app.dimensions.ai/details/publication/pub.1047759135"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_294.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s003820050196"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s003820050196'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s003820050196'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s003820050196'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s003820050196'


 

This table displays all metadata directly associated to this object as RDF triples.

158 TRIPLES      20 PREDICATES      89 URIs      80 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s003820050196 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 anzsrc-for:0405
4 schema:author N8bec9f7851754dceb71eb6ab44cd7a7d
5 schema:datePublished 1997-11
6 schema:datePublishedReg 1997-11-01
7 schema:description Abstract. Two simulations with a global coupled ocean-atmosphere circulation model have been carried out to study the potential impact of solar variability on climate. The Hoyt and Schatten estimate of solar variability from 1700 to 1992 has been used to force the model. Results indicate that the near-surface temperature simulated by the model is dominated by the long periodic solar fluctuations (Gleissberg cycle), with global mean temperatures varying by about 0.5 K. Further results indicate that solar variability and an increase in greenhouse gases both induce to a first approximation a comparable pattern of surface temperature change, i.e., an increase of the land-sea contrast. However, the solar-induced warming pattern in annual means and summer is more centered over the subtropics, compared to a more uniform warming associated with the increase in greenhouse gases. The observed temperature rise over the most recent 30 and 100 years is larger than the trend in the solar forcing simulation during the same period, indicating a strong likelihood that, if the model forcing and response is realistic, other factors have contributed to the observed warming. Since the pattern of the recent observed warming agrees better with the greenhouse warming pattern than with the solar variability response, it is likely that one of these factors is the increase of the atmospheric greenhouse gas concentration.
8 schema:genre article
9 schema:isAccessibleForFree false
10 schema:isPartOf N2ab9ed8ba6184c80a6d02af48a839a6b
11 Nbe2a888cd221482a8341457284385dcf
12 sg:journal.1049631
13 schema:keywords Further results
14 Hoyt
15 annual mean
16 approximation
17 atmospheric greenhouse gas concentrations
18 changes
19 circulation model
20 climate
21 comparable patterns
22 concentration
23 contrast
24 estimates
25 factors
26 first approximation
27 fluctuations
28 forcing simulations
29 gas concentration
30 gases
31 general circulation model
32 global climate
33 global mean temperature
34 greenhouse gas concentrations
35 greenhouse gases
36 impact
37 increase
38 influence
39 land–sea contrast
40 likelihood
41 mean temperature
42 means
43 model
44 near-surface temperature
45 observed temperature rise
46 observed warming
47 ocean-atmosphere circulation model
48 ocean-atmosphere general circulation model
49 patterns
50 period
51 potential impact
52 radiation variations
53 response
54 results
55 rise
56 same period
57 simulations
58 solar fluctuations
59 solar radiation variations
60 solar variability
61 strong likelihood
62 subtropics
63 summer
64 surface temperature changes
65 temperature
66 temperature changes
67 temperature rise
68 trends
69 uniform warming
70 variability
71 variability response
72 variation
73 warming
74 warming pattern
75 years
76 schema:name Simulation of the influence of solar radiation variations on the global climate with an ocean-atmosphere general circulation model
77 schema:pagination 757-767
78 schema:productId N1df8fa0f58f64e7286b47298f6885964
79 N2c32a2f2fd2b498c9554d8541f32677f
80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047759135
81 https://doi.org/10.1007/s003820050196
82 schema:sdDatePublished 2022-10-01T06:30
83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
84 schema:sdPublisher Nf0e6b6d85d054893a40f62681cec2386
85 schema:url https://doi.org/10.1007/s003820050196
86 sgo:license sg:explorer/license/
87 sgo:sdDataset articles
88 rdf:type schema:ScholarlyArticle
89 N078a8e1c30454d1985bcad35aad05af7 rdf:first sg:person.01065073752.14
90 rdf:rest rdf:nil
91 N0a2abb576ffe47a689909bf71a38e5c9 rdf:first sg:person.014405534652.30
92 rdf:rest N078a8e1c30454d1985bcad35aad05af7
93 N1df8fa0f58f64e7286b47298f6885964 schema:name doi
94 schema:value 10.1007/s003820050196
95 rdf:type schema:PropertyValue
96 N2ab9ed8ba6184c80a6d02af48a839a6b schema:volumeNumber 13
97 rdf:type schema:PublicationVolume
98 N2c32a2f2fd2b498c9554d8541f32677f schema:name dimensions_id
99 schema:value pub.1047759135
100 rdf:type schema:PropertyValue
101 N8bec9f7851754dceb71eb6ab44cd7a7d rdf:first sg:person.01207007331.96
102 rdf:rest Nb6ec0cae3f4c44b9864ecd5aede2baba
103 Nb6ec0cae3f4c44b9864ecd5aede2baba rdf:first sg:person.014244276466.52
104 rdf:rest Nbd47455ebfa849f18e3d1f4efe7a248e
105 Nbd47455ebfa849f18e3d1f4efe7a248e rdf:first sg:person.0624607120.80
106 rdf:rest N0a2abb576ffe47a689909bf71a38e5c9
107 Nbe2a888cd221482a8341457284385dcf schema:issueNumber 11
108 rdf:type schema:PublicationIssue
109 Nf0e6b6d85d054893a40f62681cec2386 schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
112 schema:name Earth Sciences
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
115 schema:name Atmospheric Sciences
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
118 schema:name Oceanography
119 rdf:type schema:DefinedTerm
120 sg:journal.1049631 schema:issn 0930-7575
121 1432-0894
122 schema:name Climate Dynamics
123 schema:publisher Springer Nature
124 rdf:type schema:Periodical
125 sg:person.01065073752.14 schema:affiliation grid-institutes:grid.264756.4
126 schema:familyName Crowley
127 schema:givenName T. J.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065073752.14
129 rdf:type schema:Person
130 sg:person.01207007331.96 schema:affiliation grid-institutes:grid.424215.4
131 schema:familyName Cubasch
132 schema:givenName U.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207007331.96
134 rdf:type schema:Person
135 sg:person.014244276466.52 schema:affiliation grid-institutes:grid.424215.4
136 schema:familyName Voss
137 schema:givenName R.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014244276466.52
139 rdf:type schema:Person
140 sg:person.014405534652.30 schema:affiliation grid-institutes:grid.424215.4
141 schema:familyName Waszkewitz
142 schema:givenName J.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014405534652.30
144 rdf:type schema:Person
145 sg:person.0624607120.80 schema:affiliation grid-institutes:grid.450268.d
146 schema:familyName Hegerl
147 schema:givenName G. C.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624607120.80
149 rdf:type schema:Person
150 grid-institutes:grid.264756.4 schema:alternateName Dept. of Oceanography, Texas A&M University, College Station TX 77843, USA, US
151 schema:name Dept. of Oceanography, Texas A&M University, College Station TX 77843, USA, US
152 rdf:type schema:Organization
153 grid-institutes:grid.424215.4 schema:alternateName Deutsches Klimarechenzentrum GmbH, Bundesstr. 55, D-20146 Hamburg, Germany, DE
154 schema:name Deutsches Klimarechenzentrum GmbH, Bundesstr. 55, D-20146 Hamburg, Germany, DE
155 rdf:type schema:Organization
156 grid-institutes:grid.450268.d schema:alternateName Max-Planck-Institut für Meteorologie, Bundesstr. 55, D-20146 Hamburg, Germany, DE
157 schema:name Max-Planck-Institut für Meteorologie, Bundesstr. 55, D-20146 Hamburg, Germany, DE
158 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...