Optimal detection and attribution of climate change: sensitivity of results to climate model differences View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-10

AUTHORS

G. C. Hegerl, P. A. Stott, M. R. Allen, J. F. B. Mitchell, S. F. B. Tett, U. Cubasch

ABSTRACT

Fingerprint techniques for the detection of anthropogenic climate change aim to distinguish the climate response to anthropogenic forcing from responses to other external influences and from internal climate variability. All these responses and the characteristics of internal variability are typically estimated from climate model data. We evaluate the sensitivity of detection and attribution results to the use of response and variability estimates from two different coupled ocean atmosphere general circulation models (HadCM2, developed at the Hadley Centre, and ECHAM3/LSG from the MPI für Meteorologie and Deutsches Klimarechenzentrum). The models differ in their response to greenhouse gas and direct sulfate aerosol forcing and also in the structure of their internal variability. This leads to differences in the estimated amplitude and the significance level of anthropogenic signals in observed 50-year summer (June, July, August) surface temperature trends. While the detection of anthropogenic influence on climate is robust to intermodel differences, our ability to discriminate between the greenhouse gas and the sulfate aerosol signals is not. An analysis of the recent warming, and the warming that occurred in the first half of the twentieth century, suggests that simulations forced with combined changes in natural (solar and volcanic) and anthropogenic (greenhouse gas and sulfate aerosol) forcings agree best with the observations. More... »

PAGES

737-754

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s003820000071

DOI

http://dx.doi.org/10.1007/s003820000071

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050110772


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Texas Center for Climate Studies, Department of Oceanography, Texas A&M University, College Station, USA E-mail: hegerl@ocean.tamu.edu, US", 
          "id": "http://www.grid.ac/institutes/grid.264756.4", 
          "name": [
            "Texas Center for Climate Studies, Department of Oceanography, Texas A&M University, College Station, USA E-mail: hegerl@ocean.tamu.edu, US"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hegerl", 
        "givenName": "G. C.", 
        "id": "sg:person.0624607120.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624607120.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hadley Centre for Climate Prediction and Research, Bracknell, UK, GB", 
          "id": "http://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Hadley Centre for Climate Prediction and Research, Bracknell, UK, GB"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stott", 
        "givenName": "P. A.", 
        "id": "sg:person.015667030077.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015667030077.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rutherford Appleton Laboratory, Oxford, UK, GB", 
          "id": "http://www.grid.ac/institutes/grid.76978.37", 
          "name": [
            "Rutherford Appleton Laboratory, Oxford, UK, GB"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Allen", 
        "givenName": "M. R.", 
        "id": "sg:person.0600474550.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600474550.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hadley Centre for Climate Prediction and Research, Bracknell, UK, GB", 
          "id": "http://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Hadley Centre for Climate Prediction and Research, Bracknell, UK, GB"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mitchell", 
        "givenName": "J. F. B.", 
        "id": "sg:person.012141527247.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012141527247.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hadley Centre for Climate Prediction and Research, Bracknell, UK, GB", 
          "id": "http://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Hadley Centre for Climate Prediction and Research, Bracknell, UK, GB"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tett", 
        "givenName": "S. F. B.", 
        "id": "sg:person.01025613710.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025613710.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Deutsches Klimarechenzentrum, Hamburg, Germany, DE", 
          "id": "http://www.grid.ac/institutes/grid.424215.4", 
          "name": [
            "Deutsches Klimarechenzentrum, Hamburg, Germany, DE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cubasch", 
        "givenName": "U.", 
        "id": "sg:person.01207007331.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207007331.96"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2000-10", 
    "datePublishedReg": "2000-10-01", 
    "description": "Abstract Fingerprint techniques for the detection of anthropogenic climate change aim to distinguish the climate response to anthropogenic forcing from responses to other external influences and from internal climate variability. All these responses and the characteristics of internal variability are typically estimated from climate model data. We evaluate the sensitivity of detection and attribution results to the use of response and variability estimates from two different coupled ocean atmosphere general circulation models (HadCM2, developed at the Hadley Centre, and ECHAM3/LSG from the MPI f\u00fcr Meteorologie and Deutsches Klimarechenzentrum). The models differ in their response to greenhouse gas and direct sulfate aerosol forcing and also in the structure of their internal variability. This leads to differences in the estimated amplitude and the significance level of anthropogenic signals in observed 50-year summer (June, July, August) surface temperature trends. While the detection of anthropogenic influence on climate is robust to intermodel differences, our ability to discriminate between the greenhouse gas and the sulfate aerosol signals is not. An analysis of the recent warming, and the warming that occurred in the first half of the twentieth century, suggests that simulations forced with combined changes in natural (solar and volcanic) and anthropogenic (greenhouse gas and sulfate aerosol) forcings agree best with the observations.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s003820000071", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10-11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "keywords": [
      "anthropogenic forcing", 
      "internal variability", 
      "ocean-atmosphere general circulation model", 
      "climate change", 
      "atmosphere general circulation model", 
      "greenhouse gas", 
      "direct sulfate aerosol", 
      "internal climate variability", 
      "climate model data", 
      "general circulation model", 
      "anthropogenic climate change", 
      "anthropogenic signal", 
      "climate response", 
      "climate variability", 
      "circulation model", 
      "recent warming", 
      "sulfate aerosols", 
      "aerosol signal", 
      "temperature trends", 
      "anthropogenic influences", 
      "attribution results", 
      "model differences", 
      "model data", 
      "variability estimates", 
      "forcing", 
      "sensitivity of results", 
      "warming", 
      "variability", 
      "aerosols", 
      "climate", 
      "summer", 
      "first half", 
      "twentieth century", 
      "changes", 
      "gas", 
      "fingerprint technique", 
      "estimates", 
      "trends", 
      "century", 
      "external influences", 
      "influence", 
      "model", 
      "attribution", 
      "amplitude", 
      "simulations", 
      "data", 
      "signals", 
      "response", 
      "significance level", 
      "differences", 
      "characteristics", 
      "results", 
      "half", 
      "sensitivity", 
      "use of response", 
      "analysis", 
      "structure", 
      "optimal detection", 
      "levels", 
      "technique", 
      "use", 
      "detection", 
      "ability", 
      "sensitivity of detection", 
      "observations"
    ], 
    "name": "Optimal detection and attribution of climate change: sensitivity of results to climate model differences", 
    "pagination": "737-754", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050110772"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s003820000071"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s003820000071", 
      "https://app.dimensions.ai/details/publication/pub.1050110772"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T16:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_344.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s003820000071"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s003820000071'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s003820000071'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s003820000071'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s003820000071'


 

This table displays all metadata directly associated to this object as RDF triples.

166 TRIPLES      20 PREDICATES      90 URIs      82 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s003820000071 schema:about anzsrc-for:04
2 anzsrc-for:0406
3 schema:author N2e94d7b11035427984f7beeb808ef33d
4 schema:datePublished 2000-10
5 schema:datePublishedReg 2000-10-01
6 schema:description Abstract Fingerprint techniques for the detection of anthropogenic climate change aim to distinguish the climate response to anthropogenic forcing from responses to other external influences and from internal climate variability. All these responses and the characteristics of internal variability are typically estimated from climate model data. We evaluate the sensitivity of detection and attribution results to the use of response and variability estimates from two different coupled ocean atmosphere general circulation models (HadCM2, developed at the Hadley Centre, and ECHAM3/LSG from the MPI für Meteorologie and Deutsches Klimarechenzentrum). The models differ in their response to greenhouse gas and direct sulfate aerosol forcing and also in the structure of their internal variability. This leads to differences in the estimated amplitude and the significance level of anthropogenic signals in observed 50-year summer (June, July, August) surface temperature trends. While the detection of anthropogenic influence on climate is robust to intermodel differences, our ability to discriminate between the greenhouse gas and the sulfate aerosol signals is not. An analysis of the recent warming, and the warming that occurred in the first half of the twentieth century, suggests that simulations forced with combined changes in natural (solar and volcanic) and anthropogenic (greenhouse gas and sulfate aerosol) forcings agree best with the observations.
7 schema:genre article
8 schema:isAccessibleForFree false
9 schema:isPartOf N1fb545ea60dd4151a8a643a45617094f
10 N41b5528fa33d4dc98734c08e078cbfc6
11 sg:journal.1049631
12 schema:keywords ability
13 aerosol signal
14 aerosols
15 amplitude
16 analysis
17 anthropogenic climate change
18 anthropogenic forcing
19 anthropogenic influences
20 anthropogenic signal
21 atmosphere general circulation model
22 attribution
23 attribution results
24 century
25 changes
26 characteristics
27 circulation model
28 climate
29 climate change
30 climate model data
31 climate response
32 climate variability
33 data
34 detection
35 differences
36 direct sulfate aerosol
37 estimates
38 external influences
39 fingerprint technique
40 first half
41 forcing
42 gas
43 general circulation model
44 greenhouse gas
45 half
46 influence
47 internal climate variability
48 internal variability
49 levels
50 model
51 model data
52 model differences
53 observations
54 ocean-atmosphere general circulation model
55 optimal detection
56 recent warming
57 response
58 results
59 sensitivity
60 sensitivity of detection
61 sensitivity of results
62 signals
63 significance level
64 simulations
65 structure
66 sulfate aerosols
67 summer
68 technique
69 temperature trends
70 trends
71 twentieth century
72 use
73 use of response
74 variability
75 variability estimates
76 warming
77 schema:name Optimal detection and attribution of climate change: sensitivity of results to climate model differences
78 schema:pagination 737-754
79 schema:productId Na2871e9555684cbc8a8b2fde222ffb8f
80 Nc619dfe7f5ad4fb9927aebfc84eb9799
81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050110772
82 https://doi.org/10.1007/s003820000071
83 schema:sdDatePublished 2022-08-04T16:53
84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
85 schema:sdPublisher N982c891534954352aeb7598588b8e7a6
86 schema:url https://doi.org/10.1007/s003820000071
87 sgo:license sg:explorer/license/
88 sgo:sdDataset articles
89 rdf:type schema:ScholarlyArticle
90 N143f67494e524caba7cae91d76e20c16 rdf:first sg:person.01025613710.20
91 rdf:rest N33ba1ab5cf4e4145924a6b43dbcc2f57
92 N1fb545ea60dd4151a8a643a45617094f schema:volumeNumber 16
93 rdf:type schema:PublicationVolume
94 N2e94d7b11035427984f7beeb808ef33d rdf:first sg:person.0624607120.80
95 rdf:rest N80e8406fdd8b49edb025c346c12867ac
96 N33ba1ab5cf4e4145924a6b43dbcc2f57 rdf:first sg:person.01207007331.96
97 rdf:rest rdf:nil
98 N4073ab680e184873952c8e07cde87f6a rdf:first sg:person.012141527247.99
99 rdf:rest N143f67494e524caba7cae91d76e20c16
100 N41b5528fa33d4dc98734c08e078cbfc6 schema:issueNumber 10-11
101 rdf:type schema:PublicationIssue
102 N80e8406fdd8b49edb025c346c12867ac rdf:first sg:person.015667030077.29
103 rdf:rest Na4de27c423a340b1947c74ad5b3f0601
104 N982c891534954352aeb7598588b8e7a6 schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 Na2871e9555684cbc8a8b2fde222ffb8f schema:name dimensions_id
107 schema:value pub.1050110772
108 rdf:type schema:PropertyValue
109 Na4de27c423a340b1947c74ad5b3f0601 rdf:first sg:person.0600474550.17
110 rdf:rest N4073ab680e184873952c8e07cde87f6a
111 Nc619dfe7f5ad4fb9927aebfc84eb9799 schema:name doi
112 schema:value 10.1007/s003820000071
113 rdf:type schema:PropertyValue
114 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
115 schema:name Earth Sciences
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
118 schema:name Physical Geography and Environmental Geoscience
119 rdf:type schema:DefinedTerm
120 sg:journal.1049631 schema:issn 0930-7575
121 1432-0894
122 schema:name Climate Dynamics
123 schema:publisher Springer Nature
124 rdf:type schema:Periodical
125 sg:person.01025613710.20 schema:affiliation grid-institutes:grid.17100.37
126 schema:familyName Tett
127 schema:givenName S. F. B.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025613710.20
129 rdf:type schema:Person
130 sg:person.01207007331.96 schema:affiliation grid-institutes:grid.424215.4
131 schema:familyName Cubasch
132 schema:givenName U.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207007331.96
134 rdf:type schema:Person
135 sg:person.012141527247.99 schema:affiliation grid-institutes:grid.17100.37
136 schema:familyName Mitchell
137 schema:givenName J. F. B.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012141527247.99
139 rdf:type schema:Person
140 sg:person.015667030077.29 schema:affiliation grid-institutes:grid.17100.37
141 schema:familyName Stott
142 schema:givenName P. A.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015667030077.29
144 rdf:type schema:Person
145 sg:person.0600474550.17 schema:affiliation grid-institutes:grid.76978.37
146 schema:familyName Allen
147 schema:givenName M. R.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600474550.17
149 rdf:type schema:Person
150 sg:person.0624607120.80 schema:affiliation grid-institutes:grid.264756.4
151 schema:familyName Hegerl
152 schema:givenName G. C.
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624607120.80
154 rdf:type schema:Person
155 grid-institutes:grid.17100.37 schema:alternateName Hadley Centre for Climate Prediction and Research, Bracknell, UK, GB
156 schema:name Hadley Centre for Climate Prediction and Research, Bracknell, UK, GB
157 rdf:type schema:Organization
158 grid-institutes:grid.264756.4 schema:alternateName Texas Center for Climate Studies, Department of Oceanography, Texas A&M University, College Station, USA E-mail: hegerl@ocean.tamu.edu, US
159 schema:name Texas Center for Climate Studies, Department of Oceanography, Texas A&M University, College Station, USA E-mail: hegerl@ocean.tamu.edu, US
160 rdf:type schema:Organization
161 grid-institutes:grid.424215.4 schema:alternateName Deutsches Klimarechenzentrum, Hamburg, Germany, DE
162 schema:name Deutsches Klimarechenzentrum, Hamburg, Germany, DE
163 rdf:type schema:Organization
164 grid-institutes:grid.76978.37 schema:alternateName Rutherford Appleton Laboratory, Oxford, UK, GB
165 schema:name Rutherford Appleton Laboratory, Oxford, UK, GB
166 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...