Optimal detection and attribution of climate change: sensitivity of results to climate model differences View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-10

AUTHORS

G. C. Hegerl, P. A. Stott, M. R. Allen, J. F. B. Mitchell, S. F. B. Tett, U. Cubasch

ABSTRACT

Fingerprint techniques for the detection of anthropogenic climate change aim to distinguish the climate response to anthropogenic forcing from responses to other external influences and from internal climate variability. All these responses and the characteristics of internal variability are typically estimated from climate model data. We evaluate the sensitivity of detection and attribution results to the use of response and variability estimates from two different coupled ocean atmosphere general circulation models (HadCM2, developed at the Hadley Centre, and ECHAM3/LSG from the MPI für Meteorologie and Deutsches Klimarechenzentrum). The models differ in their response to greenhouse gas and direct sulfate aerosol forcing and also in the structure of their internal variability. This leads to differences in the estimated amplitude and the significance level of anthropogenic signals in observed 50-year summer (June, July, August) surface temperature trends. While the detection of anthropogenic influence on climate is robust to intermodel differences, our ability to discriminate between the greenhouse gas and the sulfate aerosol signals is not. An analysis of the recent warming, and the warming that occurred in the first half of the twentieth century, suggests that simulations forced with combined changes in natural (solar and volcanic) and anthropogenic (greenhouse gas and sulfate aerosol) forcings agree best with the observations. More... »

PAGES

737-754

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s003820000071

DOI

http://dx.doi.org/10.1007/s003820000071

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050110772


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oceanography", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Texas A&M University", 
          "id": "https://www.grid.ac/institutes/grid.264756.4", 
          "name": [
            "Texas Center for Climate Studies, Department of Oceanography, Texas A&M University, College Station, USA E-mail: hegerl@ocean.tamu.edu, US"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hegerl", 
        "givenName": "G. C.", 
        "id": "sg:person.0624607120.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624607120.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Met Office", 
          "id": "https://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Hadley Centre for Climate Prediction and Research, Bracknell, UK, GB"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stott", 
        "givenName": "P. A.", 
        "id": "sg:person.015667030077.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015667030077.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rutherford Appleton Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.76978.37", 
          "name": [
            "Rutherford Appleton Laboratory, Oxford, UK, GB"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Allen", 
        "givenName": "M. R.", 
        "id": "sg:person.0600474550.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600474550.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Met Office", 
          "id": "https://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Hadley Centre for Climate Prediction and Research, Bracknell, UK, GB"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mitchell", 
        "givenName": "J. F. B.", 
        "id": "sg:person.012141527247.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012141527247.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Met Office", 
          "id": "https://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Hadley Centre for Climate Prediction and Research, Bracknell, UK, GB"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tett", 
        "givenName": "S. F. B.", 
        "id": "sg:person.01025613710.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025613710.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "German Climate Computing Centre", 
          "id": "https://www.grid.ac/institutes/grid.424215.4", 
          "name": [
            "Deutsches Klimarechenzentrum, Hamburg, Germany, DE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cubasch", 
        "givenName": "U.", 
        "id": "sg:person.01207007331.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207007331.96"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2000-10", 
    "datePublishedReg": "2000-10-01", 
    "description": "Fingerprint techniques for the detection of anthropogenic climate change aim to distinguish the climate response to anthropogenic forcing from responses to other external influences and from internal climate variability. All these responses and the characteristics of internal variability are typically estimated from climate model data. We evaluate the sensitivity of detection and attribution results to the use of response and variability estimates from two different coupled ocean atmosphere general circulation models (HadCM2, developed at the Hadley Centre, and ECHAM3/LSG from the MPI f\u00fcr Meteorologie and Deutsches Klimarechenzentrum). The models differ in their response to greenhouse gas and direct sulfate aerosol forcing and also in the structure of their internal variability. This leads to differences in the estimated amplitude and the significance level of anthropogenic signals in observed 50-year summer (June, July, August) surface temperature trends. While the detection of anthropogenic influence on climate is robust to intermodel differences, our ability to discriminate between the greenhouse gas and the sulfate aerosol signals is not. An analysis of the recent warming, and the warming that occurred in the first half of the twentieth century, suggests that simulations forced with combined changes in natural (solar and volcanic) and anthropogenic (greenhouse gas and sulfate aerosol) forcings agree best with the observations.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s003820000071", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10-11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "name": "Optimal detection and attribution of climate change: sensitivity of results to climate model differences", 
    "pagination": "737-754", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "eeb68c84bfdb27ffa3c72510592996261274e56a19a0cb398339bb6e4c31ef1b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s003820000071"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050110772"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s003820000071", 
      "https://app.dimensions.ai/details/publication/pub.1050110772"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000491.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s003820000071"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s003820000071'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s003820000071'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s003820000071'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s003820000071'


 

This table displays all metadata directly associated to this object as RDF triples.

105 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s003820000071 schema:about anzsrc-for:04
2 anzsrc-for:0405
3 schema:author N53d2950df16f4da8a48d21faf5bc35bb
4 schema:datePublished 2000-10
5 schema:datePublishedReg 2000-10-01
6 schema:description Fingerprint techniques for the detection of anthropogenic climate change aim to distinguish the climate response to anthropogenic forcing from responses to other external influences and from internal climate variability. All these responses and the characteristics of internal variability are typically estimated from climate model data. We evaluate the sensitivity of detection and attribution results to the use of response and variability estimates from two different coupled ocean atmosphere general circulation models (HadCM2, developed at the Hadley Centre, and ECHAM3/LSG from the MPI für Meteorologie and Deutsches Klimarechenzentrum). The models differ in their response to greenhouse gas and direct sulfate aerosol forcing and also in the structure of their internal variability. This leads to differences in the estimated amplitude and the significance level of anthropogenic signals in observed 50-year summer (June, July, August) surface temperature trends. While the detection of anthropogenic influence on climate is robust to intermodel differences, our ability to discriminate between the greenhouse gas and the sulfate aerosol signals is not. An analysis of the recent warming, and the warming that occurred in the first half of the twentieth century, suggests that simulations forced with combined changes in natural (solar and volcanic) and anthropogenic (greenhouse gas and sulfate aerosol) forcings agree best with the observations.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf Naff63360f3b844b2bbe34a5410dd8da6
11 Ne3e3d1a1f6cb4b0c8fd8c011317dff87
12 sg:journal.1049631
13 schema:name Optimal detection and attribution of climate change: sensitivity of results to climate model differences
14 schema:pagination 737-754
15 schema:productId N41e410e3ad5248feb344395ddc2f7813
16 Nd137924155b9432ebc337863f728af26
17 Nd7d14df5180b4f3b9168bd32bc848d58
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050110772
19 https://doi.org/10.1007/s003820000071
20 schema:sdDatePublished 2019-04-10T19:04
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N3a109dc9bd44459183727e1cdb72e281
23 schema:url http://link.springer.com/10.1007/s003820000071
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N0156c874d1e646b08470591b36e0a688 rdf:first sg:person.012141527247.99
28 rdf:rest N7efaa1d6e3244f7b9e629371c5ed6915
29 N060310aa744c42559f6992b3b1012e53 rdf:first sg:person.015667030077.29
30 rdf:rest N0f4e1d032a4247a586c62d98f0f094d6
31 N0f4e1d032a4247a586c62d98f0f094d6 rdf:first sg:person.0600474550.17
32 rdf:rest N0156c874d1e646b08470591b36e0a688
33 N3a109dc9bd44459183727e1cdb72e281 schema:name Springer Nature - SN SciGraph project
34 rdf:type schema:Organization
35 N41e410e3ad5248feb344395ddc2f7813 schema:name dimensions_id
36 schema:value pub.1050110772
37 rdf:type schema:PropertyValue
38 N53d2950df16f4da8a48d21faf5bc35bb rdf:first sg:person.0624607120.80
39 rdf:rest N060310aa744c42559f6992b3b1012e53
40 N7efaa1d6e3244f7b9e629371c5ed6915 rdf:first sg:person.01025613710.20
41 rdf:rest Ne14dec1236fe4349b28fa00f247bc4c6
42 Naff63360f3b844b2bbe34a5410dd8da6 schema:volumeNumber 16
43 rdf:type schema:PublicationVolume
44 Nd137924155b9432ebc337863f728af26 schema:name doi
45 schema:value 10.1007/s003820000071
46 rdf:type schema:PropertyValue
47 Nd7d14df5180b4f3b9168bd32bc848d58 schema:name readcube_id
48 schema:value eeb68c84bfdb27ffa3c72510592996261274e56a19a0cb398339bb6e4c31ef1b
49 rdf:type schema:PropertyValue
50 Ne14dec1236fe4349b28fa00f247bc4c6 rdf:first sg:person.01207007331.96
51 rdf:rest rdf:nil
52 Ne3e3d1a1f6cb4b0c8fd8c011317dff87 schema:issueNumber 10-11
53 rdf:type schema:PublicationIssue
54 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
55 schema:name Earth Sciences
56 rdf:type schema:DefinedTerm
57 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
58 schema:name Oceanography
59 rdf:type schema:DefinedTerm
60 sg:journal.1049631 schema:issn 0930-7575
61 1432-0894
62 schema:name Climate Dynamics
63 rdf:type schema:Periodical
64 sg:person.01025613710.20 schema:affiliation https://www.grid.ac/institutes/grid.17100.37
65 schema:familyName Tett
66 schema:givenName S. F. B.
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025613710.20
68 rdf:type schema:Person
69 sg:person.01207007331.96 schema:affiliation https://www.grid.ac/institutes/grid.424215.4
70 schema:familyName Cubasch
71 schema:givenName U.
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207007331.96
73 rdf:type schema:Person
74 sg:person.012141527247.99 schema:affiliation https://www.grid.ac/institutes/grid.17100.37
75 schema:familyName Mitchell
76 schema:givenName J. F. B.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012141527247.99
78 rdf:type schema:Person
79 sg:person.015667030077.29 schema:affiliation https://www.grid.ac/institutes/grid.17100.37
80 schema:familyName Stott
81 schema:givenName P. A.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015667030077.29
83 rdf:type schema:Person
84 sg:person.0600474550.17 schema:affiliation https://www.grid.ac/institutes/grid.76978.37
85 schema:familyName Allen
86 schema:givenName M. R.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600474550.17
88 rdf:type schema:Person
89 sg:person.0624607120.80 schema:affiliation https://www.grid.ac/institutes/grid.264756.4
90 schema:familyName Hegerl
91 schema:givenName G. C.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624607120.80
93 rdf:type schema:Person
94 https://www.grid.ac/institutes/grid.17100.37 schema:alternateName Met Office
95 schema:name Hadley Centre for Climate Prediction and Research, Bracknell, UK, GB
96 rdf:type schema:Organization
97 https://www.grid.ac/institutes/grid.264756.4 schema:alternateName Texas A&M University
98 schema:name Texas Center for Climate Studies, Department of Oceanography, Texas A&M University, College Station, USA E-mail: hegerl@ocean.tamu.edu, US
99 rdf:type schema:Organization
100 https://www.grid.ac/institutes/grid.424215.4 schema:alternateName German Climate Computing Centre
101 schema:name Deutsches Klimarechenzentrum, Hamburg, Germany, DE
102 rdf:type schema:Organization
103 https://www.grid.ac/institutes/grid.76978.37 schema:alternateName Rutherford Appleton Laboratory
104 schema:name Rutherford Appleton Laboratory, Oxford, UK, GB
105 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...