An analogue model to derive additional climate change scenarios from existing GCM simulations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-08

AUTHORS

C. Huntingford, P. M. Cox

ABSTRACT

Changes in land surface driving variables, predicted by GCM transient climate change experiments, are confirmed to exhibit linearity in the global mean land temperature anomaly, ΔTl. The associated constants of proportionality retain spatial and seasonal characteristics of the GCM output, whilst ΔTl is related to radiative forcing anomalies. The resultant analogue model is shown to be robust between GCM runs and as such provides a computationally efficient technique of extending existing GCM experiments to a large range of climate change scenarios. As an example impacts study, the analogue model is used to drive a terrestrial ecosystem model, and predicted changes in terrestrial carbon are found to be similar to those when using GCM anomalies directly. More... »

PAGES

575-586

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s003820000067

DOI

http://dx.doi.org/10.1007/s003820000067

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022442065


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oceanography", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Hydrology, Wallingford, Oxon, OX10 8BB, UK, GB", 
          "id": "http://www.grid.ac/institutes/grid.494924.6", 
          "name": [
            "Institute of Hydrology, Wallingford, Oxon, OX10 8BB, UK, GB"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huntingford", 
        "givenName": "C.", 
        "id": "sg:person.01265557306.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265557306.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hadley Centre, Met Office, Bracknell, Berks, RG12 2SY, UK, GB", 
          "id": "http://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Hadley Centre, Met Office, Bracknell, Berks, RG12 2SY, UK, GB"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cox", 
        "givenName": "P. M.", 
        "id": "sg:person.01067107161.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067107161.45"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2000-08", 
    "datePublishedReg": "2000-08-01", 
    "description": "Abstract\u2002Changes in land surface driving variables, predicted by GCM transient climate change experiments, are confirmed to exhibit linearity in the global mean land temperature anomaly, \u0394Tl. The associated constants of proportionality retain spatial and seasonal characteristics of the GCM output, whilst \u0394Tl is related to radiative forcing anomalies. The resultant analogue model is shown to be robust between GCM runs and as such provides a computationally efficient technique of extending existing GCM experiments to a large range of climate change scenarios. As an example impacts study, the analogue model is used to drive a terrestrial ecosystem model, and predicted changes in terrestrial carbon are found to be similar to those when using GCM anomalies directly.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s003820000067", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "keywords": [
      "climate change scenarios", 
      "analogue models", 
      "change scenarios", 
      "transient climate change experiments", 
      "land temperature anomaly", 
      "climate change experiments", 
      "terrestrial ecosystem models", 
      "GCM outputs", 
      "GCM experiments", 
      "GCM simulations", 
      "GCM runs", 
      "temperature anomalies", 
      "land surface", 
      "terrestrial carbon", 
      "seasonal characteristics", 
      "change experiments", 
      "ecosystem model", 
      "anomalies", 
      "large range", 
      "constant of proportionality", 
      "scenarios", 
      "carbon", 
      "changes", 
      "\u0394TL", 
      "model", 
      "surface", 
      "run", 
      "simulations", 
      "range", 
      "experiments", 
      "characteristics", 
      "output", 
      "example", 
      "variables", 
      "proportionality", 
      "study", 
      "technique", 
      "constants", 
      "efficient technique", 
      "linearity"
    ], 
    "name": "An analogue model to derive additional climate change scenarios from existing GCM simulations", 
    "pagination": "575-586", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022442065"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s003820000067"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s003820000067", 
      "https://app.dimensions.ai/details/publication/pub.1022442065"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T16:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_327.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s003820000067"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s003820000067'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s003820000067'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s003820000067'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s003820000067'


 

This table displays all metadata directly associated to this object as RDF triples.

115 TRIPLES      20 PREDICATES      67 URIs      57 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s003820000067 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 anzsrc-for:0405
4 anzsrc-for:0406
5 schema:author Na18259d0e109492da4eda7b9d2bdfe4b
6 schema:datePublished 2000-08
7 schema:datePublishedReg 2000-08-01
8 schema:description Abstract Changes in land surface driving variables, predicted by GCM transient climate change experiments, are confirmed to exhibit linearity in the global mean land temperature anomaly, ΔTl. The associated constants of proportionality retain spatial and seasonal characteristics of the GCM output, whilst ΔTl is related to radiative forcing anomalies. The resultant analogue model is shown to be robust between GCM runs and as such provides a computationally efficient technique of extending existing GCM experiments to a large range of climate change scenarios. As an example impacts study, the analogue model is used to drive a terrestrial ecosystem model, and predicted changes in terrestrial carbon are found to be similar to those when using GCM anomalies directly.
9 schema:genre article
10 schema:isAccessibleForFree false
11 schema:isPartOf N3c920c1353234728acf181ef5c5c2090
12 N5d4040f65d3149eda842c6d5600e4b92
13 sg:journal.1049631
14 schema:keywords GCM experiments
15 GCM outputs
16 GCM runs
17 GCM simulations
18 analogue models
19 anomalies
20 carbon
21 change experiments
22 change scenarios
23 changes
24 characteristics
25 climate change experiments
26 climate change scenarios
27 constant of proportionality
28 constants
29 ecosystem model
30 efficient technique
31 example
32 experiments
33 land surface
34 land temperature anomaly
35 large range
36 linearity
37 model
38 output
39 proportionality
40 range
41 run
42 scenarios
43 seasonal characteristics
44 simulations
45 study
46 surface
47 technique
48 temperature anomalies
49 terrestrial carbon
50 terrestrial ecosystem models
51 transient climate change experiments
52 variables
53 ΔTL
54 schema:name An analogue model to derive additional climate change scenarios from existing GCM simulations
55 schema:pagination 575-586
56 schema:productId N02e5ebd472304a5fb20a94fa145b661d
57 N22d2fa34dfa44faf91c9e68204eed8d9
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022442065
59 https://doi.org/10.1007/s003820000067
60 schema:sdDatePublished 2022-08-04T16:53
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N6654720bf6d844b692dfba0055870811
63 schema:url https://doi.org/10.1007/s003820000067
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N02e5ebd472304a5fb20a94fa145b661d schema:name dimensions_id
68 schema:value pub.1022442065
69 rdf:type schema:PropertyValue
70 N22d2fa34dfa44faf91c9e68204eed8d9 schema:name doi
71 schema:value 10.1007/s003820000067
72 rdf:type schema:PropertyValue
73 N3c920c1353234728acf181ef5c5c2090 schema:issueNumber 8
74 rdf:type schema:PublicationIssue
75 N5d4040f65d3149eda842c6d5600e4b92 schema:volumeNumber 16
76 rdf:type schema:PublicationVolume
77 N6654720bf6d844b692dfba0055870811 schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 N9c617fa7a7fd4933b788cee897e92833 rdf:first sg:person.01067107161.45
80 rdf:rest rdf:nil
81 Na18259d0e109492da4eda7b9d2bdfe4b rdf:first sg:person.01265557306.26
82 rdf:rest N9c617fa7a7fd4933b788cee897e92833
83 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
84 schema:name Earth Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
87 schema:name Atmospheric Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
90 schema:name Oceanography
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
93 schema:name Physical Geography and Environmental Geoscience
94 rdf:type schema:DefinedTerm
95 sg:journal.1049631 schema:issn 0930-7575
96 1432-0894
97 schema:name Climate Dynamics
98 schema:publisher Springer Nature
99 rdf:type schema:Periodical
100 sg:person.01067107161.45 schema:affiliation grid-institutes:grid.17100.37
101 schema:familyName Cox
102 schema:givenName P. M.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067107161.45
104 rdf:type schema:Person
105 sg:person.01265557306.26 schema:affiliation grid-institutes:grid.494924.6
106 schema:familyName Huntingford
107 schema:givenName C.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265557306.26
109 rdf:type schema:Person
110 grid-institutes:grid.17100.37 schema:alternateName Hadley Centre, Met Office, Bracknell, Berks, RG12 2SY, UK, GB
111 schema:name Hadley Centre, Met Office, Bracknell, Berks, RG12 2SY, UK, GB
112 rdf:type schema:Organization
113 grid-institutes:grid.494924.6 schema:alternateName Institute of Hydrology, Wallingford, Oxon, OX10 8BB, UK, GB
114 schema:name Institute of Hydrology, Wallingford, Oxon, OX10 8BB, UK, GB
115 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...