Increased occurrence of day–night hot extremes in a warming climate View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-11-15

AUTHORS

Jinxin Zhu, Shuo Wang, Erich Markus Fischer

ABSTRACT

Climate change leads to a more frequent occurrence of hot days (HDs) and hot nights (HNs). The consecutive occurrence of HDs and HNs (COHs) is often used as a measure of the persistence of an extremely hot spell. Nonetheless, the combined effect of air temperature and relative humidity on the changing COHs has never been studied. In this paper, we use an ensemble of global climate models and multiple thermal indices to robustly examine the combined effect of air temperature and relative humidity on COHs globally on an hourly basis. Our findings reveal that COHs show an increasing trend in the future and a strong latitudinal gradient increasing from high latitudes to the equator. Compared to COHs based on air temperature, the frequency of COHs based on perceived temperature is amplified by the combined effects of high temperature and humidity for both boreal and austral summers. To investigate the underlying mechanisms, we examine two different diurnal temperature ranges (DTRs), derived from air temperature and perceived temperature, for their corresponding types of COHs. Both DTRs are projected to increase in the future relative to the historical period from 1980 to 2004, but the DTR changes derived from perceived temperature are consistently larger than those derived from air temperature. Due to the nonlinearity in thermal indices, the perceived temperature in HDs and HNs rising faster than air temperature leads to a larger increase in perceived COHs. The COHs are further amplified by the increasing number of HNs and HDs that occur consecutively under wet conditions. More... »

PAGES

1-11

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00382-021-06038-7

DOI

http://dx.doi.org/10.1007/s00382-021-06038-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1142596055


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oceanography", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Geography and Planning, Sun Yat-Sen University, Guangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "School of Geography and Planning, Sun Yat-Sen University, Guangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Jinxin", 
        "id": "sg:person.010353142777.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010353142777.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong, China", 
          "id": "http://www.grid.ac/institutes/grid.16890.36", 
          "name": [
            "Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Shuo", 
        "id": "sg:person.0777350347.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777350347.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fischer", 
        "givenName": "Erich Markus", 
        "id": "sg:person.016571603451.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016571603451.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00484-017-1383-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090867565", 
          "https://doi.org/10.1007/s00484-017-1383-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40641-016-0042-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041933351", 
          "https://doi.org/10.1007/s40641-016-0042-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate3322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086070177", 
          "https://doi.org/10.1038/nclimate3322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate1627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033864222", 
          "https://doi.org/10.1038/nclimate1627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015014641", 
          "https://doi.org/10.1038/nature06207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050241953", 
          "https://doi.org/10.1038/ngeo866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00484-011-0409-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018992844", 
          "https://doi.org/10.1007/s00484-011-0409-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate2833", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026457939", 
          "https://doi.org/10.1038/nclimate2833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-019-14233-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1124798024", 
          "https://doi.org/10.1038/s41467-019-14233-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate1682", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004972876", 
          "https://doi.org/10.1038/nclimate1682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-019-04994-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1121686471", 
          "https://doi.org/10.1007/s00382-019-04994-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-017-3738-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085605727", 
          "https://doi.org/10.1007/s00382-017-3738-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-11-15", 
    "datePublishedReg": "2021-11-15", 
    "description": "Climate change leads to a more frequent occurrence of hot days (HDs) and hot nights (HNs). The consecutive occurrence of HDs and HNs (COHs) is often used as a measure of the persistence of an extremely hot spell. Nonetheless, the combined effect of air temperature and relative humidity on the changing COHs has never been studied. In this paper, we use an ensemble of global climate models and multiple thermal indices to robustly examine the combined effect of air temperature and relative humidity on COHs globally on an hourly basis. Our findings reveal that COHs show an increasing trend in the future and a strong latitudinal gradient increasing from high latitudes to the equator. Compared to COHs based on air temperature, the frequency of COHs based on perceived temperature is amplified by the combined effects of high temperature and humidity for both boreal and austral summers. To investigate the underlying mechanisms, we examine two different diurnal temperature ranges (DTRs), derived from air temperature and perceived temperature, for their corresponding types of COHs. Both DTRs are projected to increase in the future relative to the historical period from 1980 to 2004, but the DTR changes derived from perceived temperature are consistently larger than those derived from air temperature. Due to the nonlinearity in thermal indices, the perceived temperature in HDs and HNs rising faster than air temperature leads to a larger increase in perceived COHs. The COHs are further amplified by the increasing number of HNs and HDs that occur consecutively under wet conditions.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00382-021-06038-7", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8930477", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8964790", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }
    ], 
    "keywords": [
      "hot nights", 
      "air temperature", 
      "hot days", 
      "global climate models", 
      "strong latitudinal gradient", 
      "diurnal temperature range", 
      "relative humidity", 
      "climate models", 
      "climate change", 
      "hot spells", 
      "high latitudes", 
      "austral summer", 
      "DTR changes", 
      "hot extremes", 
      "warming climate", 
      "thermal indices", 
      "latitudinal gradient", 
      "historical period", 
      "wet conditions", 
      "consecutive occurrences", 
      "hourly basis", 
      "frequent occurrence", 
      "humidity", 
      "Perceived Temperature", 
      "occurrence", 
      "latitudes", 
      "equator", 
      "climate", 
      "spells", 
      "temperature", 
      "summer", 
      "large increase", 
      "extremes", 
      "ensemble", 
      "gradient", 
      "changes", 
      "trends", 
      "high temperature", 
      "night", 
      "COHS", 
      "period", 
      "persistence", 
      "model", 
      "index", 
      "range", 
      "corresponding types", 
      "conditions", 
      "measures", 
      "COH", 
      "findings", 
      "future", 
      "temperature range", 
      "increase", 
      "effect", 
      "basis", 
      "frequency", 
      "types", 
      "days", 
      "mechanism", 
      "paper", 
      "nonlinearity", 
      "number"
    ], 
    "name": "Increased occurrence of day\u2013night hot extremes in a warming climate", 
    "pagination": "1-11", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1142596055"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00382-021-06038-7"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00382-021-06038-7", 
      "https://app.dimensions.ai/details/publication/pub.1142596055"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_878.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00382-021-06038-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-021-06038-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-021-06038-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-021-06038-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-021-06038-7'


 

This table displays all metadata directly associated to this object as RDF triples.

194 TRIPLES      22 PREDICATES      99 URIs      77 LITERALS      4 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00382-021-06038-7 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 anzsrc-for:0405
4 anzsrc-for:0406
5 schema:author N9f0743ac675b461e8617a6e3130b5af1
6 schema:citation sg:pub.10.1007/s00382-017-3738-2
7 sg:pub.10.1007/s00382-019-04994-9
8 sg:pub.10.1007/s00484-011-0409-6
9 sg:pub.10.1007/s00484-017-1383-4
10 sg:pub.10.1007/s40641-016-0042-x
11 sg:pub.10.1038/nature06207
12 sg:pub.10.1038/nclimate1627
13 sg:pub.10.1038/nclimate1682
14 sg:pub.10.1038/nclimate2833
15 sg:pub.10.1038/nclimate3322
16 sg:pub.10.1038/ngeo866
17 sg:pub.10.1038/s41467-019-14233-8
18 schema:datePublished 2021-11-15
19 schema:datePublishedReg 2021-11-15
20 schema:description Climate change leads to a more frequent occurrence of hot days (HDs) and hot nights (HNs). The consecutive occurrence of HDs and HNs (COHs) is often used as a measure of the persistence of an extremely hot spell. Nonetheless, the combined effect of air temperature and relative humidity on the changing COHs has never been studied. In this paper, we use an ensemble of global climate models and multiple thermal indices to robustly examine the combined effect of air temperature and relative humidity on COHs globally on an hourly basis. Our findings reveal that COHs show an increasing trend in the future and a strong latitudinal gradient increasing from high latitudes to the equator. Compared to COHs based on air temperature, the frequency of COHs based on perceived temperature is amplified by the combined effects of high temperature and humidity for both boreal and austral summers. To investigate the underlying mechanisms, we examine two different diurnal temperature ranges (DTRs), derived from air temperature and perceived temperature, for their corresponding types of COHs. Both DTRs are projected to increase in the future relative to the historical period from 1980 to 2004, but the DTR changes derived from perceived temperature are consistently larger than those derived from air temperature. Due to the nonlinearity in thermal indices, the perceived temperature in HDs and HNs rising faster than air temperature leads to a larger increase in perceived COHs. The COHs are further amplified by the increasing number of HNs and HDs that occur consecutively under wet conditions.
21 schema:genre article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf sg:journal.1049631
25 schema:keywords COH
26 COHS
27 DTR changes
28 Perceived Temperature
29 air temperature
30 austral summer
31 basis
32 changes
33 climate
34 climate change
35 climate models
36 conditions
37 consecutive occurrences
38 corresponding types
39 days
40 diurnal temperature range
41 effect
42 ensemble
43 equator
44 extremes
45 findings
46 frequency
47 frequent occurrence
48 future
49 global climate models
50 gradient
51 high latitudes
52 high temperature
53 historical period
54 hot days
55 hot extremes
56 hot nights
57 hot spells
58 hourly basis
59 humidity
60 increase
61 index
62 large increase
63 latitudes
64 latitudinal gradient
65 measures
66 mechanism
67 model
68 night
69 nonlinearity
70 number
71 occurrence
72 paper
73 period
74 persistence
75 range
76 relative humidity
77 spells
78 strong latitudinal gradient
79 summer
80 temperature
81 temperature range
82 thermal indices
83 trends
84 types
85 warming climate
86 wet conditions
87 schema:name Increased occurrence of day–night hot extremes in a warming climate
88 schema:pagination 1-11
89 schema:productId N49614822640b487a996183bdbb66bb1a
90 N5fb6fe7055464226b2135cb1d63f8f0b
91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142596055
92 https://doi.org/10.1007/s00382-021-06038-7
93 schema:sdDatePublished 2022-05-20T07:38
94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
95 schema:sdPublisher Ne38c203ebc9b4e289d7e4c7ba2326286
96 schema:url https://doi.org/10.1007/s00382-021-06038-7
97 sgo:license sg:explorer/license/
98 sgo:sdDataset articles
99 rdf:type schema:ScholarlyArticle
100 N0c5e1f0d2ba948a3bd848c7c64ae4250 rdf:first sg:person.0777350347.33
101 rdf:rest N4bf53f491238473794c945dc08c9f8f1
102 N49614822640b487a996183bdbb66bb1a schema:name doi
103 schema:value 10.1007/s00382-021-06038-7
104 rdf:type schema:PropertyValue
105 N4bf53f491238473794c945dc08c9f8f1 rdf:first sg:person.016571603451.04
106 rdf:rest rdf:nil
107 N5fb6fe7055464226b2135cb1d63f8f0b schema:name dimensions_id
108 schema:value pub.1142596055
109 rdf:type schema:PropertyValue
110 N9f0743ac675b461e8617a6e3130b5af1 rdf:first sg:person.010353142777.13
111 rdf:rest N0c5e1f0d2ba948a3bd848c7c64ae4250
112 Ne38c203ebc9b4e289d7e4c7ba2326286 schema:name Springer Nature - SN SciGraph project
113 rdf:type schema:Organization
114 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
115 schema:name Earth Sciences
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
118 schema:name Atmospheric Sciences
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
121 schema:name Oceanography
122 rdf:type schema:DefinedTerm
123 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
124 schema:name Physical Geography and Environmental Geoscience
125 rdf:type schema:DefinedTerm
126 sg:grant.8930477 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-021-06038-7
127 rdf:type schema:MonetaryGrant
128 sg:grant.8964790 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-021-06038-7
129 rdf:type schema:MonetaryGrant
130 sg:journal.1049631 schema:issn 0930-7575
131 1432-0894
132 schema:name Climate Dynamics
133 schema:publisher Springer Nature
134 rdf:type schema:Periodical
135 sg:person.010353142777.13 schema:affiliation grid-institutes:grid.12981.33
136 schema:familyName Zhu
137 schema:givenName Jinxin
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010353142777.13
139 rdf:type schema:Person
140 sg:person.016571603451.04 schema:affiliation grid-institutes:grid.5801.c
141 schema:familyName Fischer
142 schema:givenName Erich Markus
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016571603451.04
144 rdf:type schema:Person
145 sg:person.0777350347.33 schema:affiliation grid-institutes:grid.16890.36
146 schema:familyName Wang
147 schema:givenName Shuo
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777350347.33
149 rdf:type schema:Person
150 sg:pub.10.1007/s00382-017-3738-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085605727
151 https://doi.org/10.1007/s00382-017-3738-2
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s00382-019-04994-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1121686471
154 https://doi.org/10.1007/s00382-019-04994-9
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/s00484-011-0409-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018992844
157 https://doi.org/10.1007/s00484-011-0409-6
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s00484-017-1383-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090867565
160 https://doi.org/10.1007/s00484-017-1383-4
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/s40641-016-0042-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041933351
163 https://doi.org/10.1007/s40641-016-0042-x
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/nature06207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015014641
166 https://doi.org/10.1038/nature06207
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/nclimate1627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033864222
169 https://doi.org/10.1038/nclimate1627
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/nclimate1682 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004972876
172 https://doi.org/10.1038/nclimate1682
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/nclimate2833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026457939
175 https://doi.org/10.1038/nclimate2833
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/nclimate3322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086070177
178 https://doi.org/10.1038/nclimate3322
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/ngeo866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050241953
181 https://doi.org/10.1038/ngeo866
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/s41467-019-14233-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124798024
184 https://doi.org/10.1038/s41467-019-14233-8
185 rdf:type schema:CreativeWork
186 grid-institutes:grid.12981.33 schema:alternateName School of Geography and Planning, Sun Yat-Sen University, Guangzhou, China
187 schema:name School of Geography and Planning, Sun Yat-Sen University, Guangzhou, China
188 rdf:type schema:Organization
189 grid-institutes:grid.16890.36 schema:alternateName Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong, China
190 schema:name Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong, China
191 rdf:type schema:Organization
192 grid-institutes:grid.5801.c schema:alternateName Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
193 schema:name Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
194 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...