Dynamical downscaling of unforced interannual sea-level variability in the North-West European shelf seas View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-07-22

AUTHORS

Jonathan Tinker, Matthew D. Palmer, Dan Copsey, Tom Howard, Jason A. Lowe, Tim H. J. Hermans

ABSTRACT

Variability of Sea-Surface Height (SSH) from ocean dynamic processes is an important component of sea-level change. In this study we dynamically downscale a present-day control simulation of a climate model to replicate sea-level variability in the Northwest European shelf seas. The simulation can reproduce many characteristics of sea-level variability exhibited in tide gauge and satellite altimeter observations. We examine the roles of lateral ocean boundary conditions and surface atmospheric forcings in determining the sea-level variability in the model interior using sensitivity experiments. Variability in the oceanic boundary conditions leads to uniform sea-level variations across the shelf. Atmospheric variability leads to spatial SSH variability with a greater mean amplitude. We separate the SSH variability into a uniform loading term (change in shelf volume with no change in distribution), and a spatial redistribution term (with no volume change). The shelf loading variance accounted for 80% of the shelf mean total variance, but this drops to ~ 60% around Scotland and in the southeast North Sea. We analyse our modelled variability to provide a useful context to coastal planners and managers. Our 200-year simulation allows the distribution of the unforced trends (over 4–21 year) of sea-level changes to be quantified. We found that the 95th percentile change over a 4-year period can lead to coastal sea-level changes of ~ 58 mm, which must be considered when using smooth sea level projections. We also found that simulated coastal SSH variations have long correlation length-scales, suggesting that observations of interannual sea-level variability from tide gauges are typically representative of > 200 km of the adjacent coast. This helps guide the use of tide gauge variability estimates. More... »

PAGES

2207-2236

References to SciGraph publications

  • 2008-11-29. The influence of initial conditions and open boundary conditions on shelf circulation in a 3D ocean-shelf model of the North East Atlantic in OCEAN DYNAMICS
  • 2019-04-29. Concepts and Terminology for Sea Level: Mean, Variability and Change, Both Local and Global in SURVEYS IN GEOPHYSICS
  • 2015-07-29. Detecting anthropogenic footprints in sea level rise in NATURE COMMUNICATIONS
  • 2019-01-31. North Atlantic Ocean Circulation and Decadal Sea Level Change During the Altimetry Era in SCIENTIFIC REPORTS
  • 2010-04-11. The potential to narrow uncertainty in projections of regional precipitation change in CLIMATE DYNAMICS
  • 2016-05-30. Internal Variability Versus Anthropogenic Forcing on Sea Level and Its Components in SURVEYS IN GEOPHYSICS
  • 1995-07. Interannual and interdecadal oscillation patterns in sea level in CLIMATE DYNAMICS
  • 2015-05-27. Ocean impact on decadal Atlantic climate variability revealed by sea-level observations in NATURE
  • 2014-02-12. Seasonal prediction of global sea level anomalies using an ocean–atmosphere dynamical model in CLIMATE DYNAMICS
  • 2014-04-14. Timescales for detecting a significant acceleration in sea level rise in NATURE COMMUNICATIONS
  • 2020-01-10. Improving sea-level projections on the Northwestern European shelf using dynamical downscaling in CLIMATE DYNAMICS
  • 2011-04-05. Towards regional projections of twenty-first century sea-level change based on IPCC SRES scenarios in CLIMATE DYNAMICS
  • 2016-04-11. Anthropogenic forcing dominates global mean sea-level rise since 1970 in NATURE CLIMATE CHANGE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00382-020-05378-0

    DOI

    http://dx.doi.org/10.1007/s00382-020-05378-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1129568728


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oceanography", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Geography and Environmental Geoscience", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Met Office Hadley Centre, EX1 3PB, Exeter, UK", 
              "id": "http://www.grid.ac/institutes/grid.17100.37", 
              "name": [
                "Met Office Hadley Centre, EX1 3PB, Exeter, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tinker", 
            "givenName": "Jonathan", 
            "id": "sg:person.014422635041.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014422635041.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Met Office Hadley Centre, EX1 3PB, Exeter, UK", 
              "id": "http://www.grid.ac/institutes/grid.17100.37", 
              "name": [
                "Met Office Hadley Centre, EX1 3PB, Exeter, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Palmer", 
            "givenName": "Matthew D.", 
            "id": "sg:person.016317430671.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016317430671.85"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Met Office Hadley Centre, EX1 3PB, Exeter, UK", 
              "id": "http://www.grid.ac/institutes/grid.17100.37", 
              "name": [
                "Met Office Hadley Centre, EX1 3PB, Exeter, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Copsey", 
            "givenName": "Dan", 
            "id": "sg:person.010550613616.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010550613616.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Met Office Hadley Centre, EX1 3PB, Exeter, UK", 
              "id": "http://www.grid.ac/institutes/grid.17100.37", 
              "name": [
                "Met Office Hadley Centre, EX1 3PB, Exeter, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Howard", 
            "givenName": "Tom", 
            "id": "sg:person.07663255237.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07663255237.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Priestley International Centre for Climate, University of Leeds, Leeds, UK", 
              "id": "http://www.grid.ac/institutes/grid.9909.9", 
              "name": [
                "Met Office Hadley Centre, EX1 3PB, Exeter, UK", 
                "Priestley International Centre for Climate, University of Leeds, Leeds, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lowe", 
            "givenName": "Jason A.", 
            "id": "sg:person.011066117233.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011066117233.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Geosciences and Remote Sensing, Civil Engineering and Geoscience, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.5292.c", 
              "name": [
                "NIOZ Royal Netherlands Institute for Sea Research, Department of Estuarine & Delta Systems, and Utrecht University, Korringaweg 7, 4401 NT, Yerseke, The Netherlands", 
                "Department of Geosciences and Remote Sensing, Civil Engineering and Geoscience, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hermans", 
            "givenName": "Tim H. J.", 
            "id": "sg:person.011660700544.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011660700544.36"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/ncomms4635", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026337032", 
              "https://doi.org/10.1038/ncomms4635"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-019-05104-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124007453", 
              "https://doi.org/10.1007/s00382-019-05104-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10712-019-09525-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1113833930", 
              "https://doi.org/10.1007/s10712-019-09525-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate2991", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002006443", 
              "https://doi.org/10.1038/nclimate2991"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-013-2039-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034349826", 
              "https://doi.org/10.1007/s00382-013-2039-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-011-1057-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051741203", 
              "https://doi.org/10.1007/s00382-011-1057-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14491", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012323543", 
              "https://doi.org/10.1038/nature14491"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10712-016-9373-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034014179", 
              "https://doi.org/10.1007/s10712-016-9373-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10236-008-0164-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020174951", 
              "https://doi.org/10.1007/s10236-008-0164-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms8849", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034302152", 
              "https://doi.org/10.1038/ncomms8849"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-018-37603-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111769930", 
              "https://doi.org/10.1038/s41598-018-37603-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00211679", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017413883", 
              "https://doi.org/10.1007/bf00211679"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-010-0810-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001203373", 
              "https://doi.org/10.1007/s00382-010-0810-6"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-07-22", 
        "datePublishedReg": "2020-07-22", 
        "description": "Variability of Sea-Surface Height (SSH) from ocean dynamic processes is an important component of sea-level change. In this study we dynamically downscale a present-day control simulation of a climate model to replicate sea-level variability in the Northwest European shelf seas. The simulation can reproduce many characteristics of sea-level variability exhibited in tide gauge and satellite altimeter observations. We examine the roles of lateral ocean boundary conditions and surface atmospheric forcings in determining the sea-level variability in the model interior using sensitivity experiments. Variability in the oceanic boundary conditions leads to uniform sea-level variations across the shelf. Atmospheric variability leads to spatial SSH variability with a greater mean amplitude. We separate the SSH variability into a uniform loading term (change in shelf volume with no change in distribution), and a spatial redistribution term (with no volume change). The shelf loading variance accounted for 80% of the shelf mean total variance, but this drops to\u2009~\u200960% around Scotland and in the southeast North Sea. We analyse our modelled variability to provide a useful context to coastal planners and managers. Our 200-year simulation allows the distribution of the unforced trends (over 4\u201321\u00a0year) of sea-level changes to be quantified. We found that the 95th percentile change over a 4-year period can lead to coastal sea-level changes of\u2009~\u200958\u00a0mm, which must be considered when using smooth sea level projections. We also found that simulated coastal SSH variations have long correlation length-scales, suggesting that observations of interannual sea-level variability from tide gauges are typically representative of\u2009>\u2009200\u00a0km of the adjacent coast. This helps guide the use of tide gauge variability estimates.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00382-020-05378-0", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1049631", 
            "issn": [
              "0930-7575", 
              "1432-0894"
            ], 
            "name": "Climate Dynamics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7-8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "55"
          }
        ], 
        "keywords": [
          "sea level variability", 
          "sea-level changes", 
          "interannual sea level variability", 
          "European shelf seas", 
          "sea surface height", 
          "SSH variability", 
          "shelf seas", 
          "tide gauges", 
          "north-west European shelf seas", 
          "present-day control simulation", 
          "coastal sea level changes", 
          "northwest European shelf seas", 
          "oceanic boundary conditions", 
          "sea level projections", 
          "ocean boundary conditions", 
          "sea level variations", 
          "ocean dynamic processes", 
          "satellite altimeter observations", 
          "southeast North Sea", 
          "atmospheric forcing", 
          "SSH variations", 
          "atmospheric variability", 
          "climate models", 
          "dynamical downscaling", 
          "altimeter observations", 
          "level projections", 
          "sensitivity experiments", 
          "coastal planners", 
          "adjacent coast", 
          "North Sea", 
          "control simulation", 
          "model interior", 
          "greater mean amplitudes", 
          "shelf", 
          "Sea", 
          "variability estimates", 
          "variability", 
          "loading terms", 
          "boundary conditions", 
          "total variance", 
          "gauge", 
          "forcing", 
          "long correlations", 
          "downscaling", 
          "percentile change", 
          "coast", 
          "dynamic process", 
          "variation", 
          "important component", 
          "interior", 
          "redistribution term", 
          "changes", 
          "Scotland", 
          "simulations", 
          "estimates", 
          "projections", 
          "useful context", 
          "trends", 
          "conditions", 
          "height", 
          "period", 
          "distribution", 
          "mean amplitude", 
          "amplitude", 
          "variance", 
          "correlation", 
          "model", 
          "process", 
          "characteristics", 
          "components", 
          "planners", 
          "terms", 
          "experiments", 
          "study", 
          "observations", 
          "role", 
          "context", 
          "use", 
          "managers"
        ], 
        "name": "Dynamical downscaling of unforced interannual sea-level variability in the North-West European shelf seas", 
        "pagination": "2207-2236", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1129568728"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00382-020-05378-0"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00382-020-05378-0", 
          "https://app.dimensions.ai/details/publication/pub.1129568728"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:46", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_840.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00382-020-05378-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-020-05378-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-020-05378-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-020-05378-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-020-05378-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    235 TRIPLES      21 PREDICATES      117 URIs      95 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00382-020-05378-0 schema:about anzsrc-for:04
    2 anzsrc-for:0405
    3 anzsrc-for:0406
    4 schema:author N176f67d4bacc4e1a86234d26813b292e
    5 schema:citation sg:pub.10.1007/bf00211679
    6 sg:pub.10.1007/s00382-010-0810-6
    7 sg:pub.10.1007/s00382-011-1057-6
    8 sg:pub.10.1007/s00382-013-2039-7
    9 sg:pub.10.1007/s00382-019-05104-5
    10 sg:pub.10.1007/s10236-008-0164-3
    11 sg:pub.10.1007/s10712-016-9373-3
    12 sg:pub.10.1007/s10712-019-09525-z
    13 sg:pub.10.1038/nature14491
    14 sg:pub.10.1038/nclimate2991
    15 sg:pub.10.1038/ncomms4635
    16 sg:pub.10.1038/ncomms8849
    17 sg:pub.10.1038/s41598-018-37603-6
    18 schema:datePublished 2020-07-22
    19 schema:datePublishedReg 2020-07-22
    20 schema:description Variability of Sea-Surface Height (SSH) from ocean dynamic processes is an important component of sea-level change. In this study we dynamically downscale a present-day control simulation of a climate model to replicate sea-level variability in the Northwest European shelf seas. The simulation can reproduce many characteristics of sea-level variability exhibited in tide gauge and satellite altimeter observations. We examine the roles of lateral ocean boundary conditions and surface atmospheric forcings in determining the sea-level variability in the model interior using sensitivity experiments. Variability in the oceanic boundary conditions leads to uniform sea-level variations across the shelf. Atmospheric variability leads to spatial SSH variability with a greater mean amplitude. We separate the SSH variability into a uniform loading term (change in shelf volume with no change in distribution), and a spatial redistribution term (with no volume change). The shelf loading variance accounted for 80% of the shelf mean total variance, but this drops to ~ 60% around Scotland and in the southeast North Sea. We analyse our modelled variability to provide a useful context to coastal planners and managers. Our 200-year simulation allows the distribution of the unforced trends (over 4–21 year) of sea-level changes to be quantified. We found that the 95th percentile change over a 4-year period can lead to coastal sea-level changes of ~ 58 mm, which must be considered when using smooth sea level projections. We also found that simulated coastal SSH variations have long correlation length-scales, suggesting that observations of interannual sea-level variability from tide gauges are typically representative of > 200 km of the adjacent coast. This helps guide the use of tide gauge variability estimates.
    21 schema:genre article
    22 schema:isAccessibleForFree true
    23 schema:isPartOf N2689a7265a2c4024a7b93736fc6fa06c
    24 N5cab52a037a8491c93cc8241d09c8290
    25 sg:journal.1049631
    26 schema:keywords European shelf seas
    27 North Sea
    28 SSH variability
    29 SSH variations
    30 Scotland
    31 Sea
    32 adjacent coast
    33 altimeter observations
    34 amplitude
    35 atmospheric forcing
    36 atmospheric variability
    37 boundary conditions
    38 changes
    39 characteristics
    40 climate models
    41 coast
    42 coastal planners
    43 coastal sea level changes
    44 components
    45 conditions
    46 context
    47 control simulation
    48 correlation
    49 distribution
    50 downscaling
    51 dynamic process
    52 dynamical downscaling
    53 estimates
    54 experiments
    55 forcing
    56 gauge
    57 greater mean amplitudes
    58 height
    59 important component
    60 interannual sea level variability
    61 interior
    62 level projections
    63 loading terms
    64 long correlations
    65 managers
    66 mean amplitude
    67 model
    68 model interior
    69 north-west European shelf seas
    70 northwest European shelf seas
    71 observations
    72 ocean boundary conditions
    73 ocean dynamic processes
    74 oceanic boundary conditions
    75 percentile change
    76 period
    77 planners
    78 present-day control simulation
    79 process
    80 projections
    81 redistribution term
    82 role
    83 satellite altimeter observations
    84 sea level projections
    85 sea level variability
    86 sea level variations
    87 sea surface height
    88 sea-level changes
    89 sensitivity experiments
    90 shelf
    91 shelf seas
    92 simulations
    93 southeast North Sea
    94 study
    95 terms
    96 tide gauges
    97 total variance
    98 trends
    99 use
    100 useful context
    101 variability
    102 variability estimates
    103 variance
    104 variation
    105 schema:name Dynamical downscaling of unforced interannual sea-level variability in the North-West European shelf seas
    106 schema:pagination 2207-2236
    107 schema:productId Na3ba73fca836481291d519e9d62985f1
    108 Nb90142b33b674625a29b1645f4573169
    109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1129568728
    110 https://doi.org/10.1007/s00382-020-05378-0
    111 schema:sdDatePublished 2022-10-01T06:46
    112 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    113 schema:sdPublisher Nb51eec2939654402b31e68158662f613
    114 schema:url https://doi.org/10.1007/s00382-020-05378-0
    115 sgo:license sg:explorer/license/
    116 sgo:sdDataset articles
    117 rdf:type schema:ScholarlyArticle
    118 N176f67d4bacc4e1a86234d26813b292e rdf:first sg:person.014422635041.12
    119 rdf:rest N7208f2043447475fb2c1edcee1acdbe6
    120 N2689a7265a2c4024a7b93736fc6fa06c schema:issueNumber 7-8
    121 rdf:type schema:PublicationIssue
    122 N3daa26b165554a52be0e916b098e29f6 rdf:first sg:person.011066117233.90
    123 rdf:rest Nb55ff6004a534d8e986aaf2f6cc5a5a5
    124 N5cab52a037a8491c93cc8241d09c8290 schema:volumeNumber 55
    125 rdf:type schema:PublicationVolume
    126 N5cc0b6b515fb46cb86ce4b21aae80565 rdf:first sg:person.07663255237.76
    127 rdf:rest N3daa26b165554a52be0e916b098e29f6
    128 N7208f2043447475fb2c1edcee1acdbe6 rdf:first sg:person.016317430671.85
    129 rdf:rest Ne4f1e88974564d2ab7cce5afc34af772
    130 Na3ba73fca836481291d519e9d62985f1 schema:name dimensions_id
    131 schema:value pub.1129568728
    132 rdf:type schema:PropertyValue
    133 Nb51eec2939654402b31e68158662f613 schema:name Springer Nature - SN SciGraph project
    134 rdf:type schema:Organization
    135 Nb55ff6004a534d8e986aaf2f6cc5a5a5 rdf:first sg:person.011660700544.36
    136 rdf:rest rdf:nil
    137 Nb90142b33b674625a29b1645f4573169 schema:name doi
    138 schema:value 10.1007/s00382-020-05378-0
    139 rdf:type schema:PropertyValue
    140 Ne4f1e88974564d2ab7cce5afc34af772 rdf:first sg:person.010550613616.38
    141 rdf:rest N5cc0b6b515fb46cb86ce4b21aae80565
    142 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    143 schema:name Earth Sciences
    144 rdf:type schema:DefinedTerm
    145 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
    146 schema:name Oceanography
    147 rdf:type schema:DefinedTerm
    148 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
    149 schema:name Physical Geography and Environmental Geoscience
    150 rdf:type schema:DefinedTerm
    151 sg:journal.1049631 schema:issn 0930-7575
    152 1432-0894
    153 schema:name Climate Dynamics
    154 schema:publisher Springer Nature
    155 rdf:type schema:Periodical
    156 sg:person.010550613616.38 schema:affiliation grid-institutes:grid.17100.37
    157 schema:familyName Copsey
    158 schema:givenName Dan
    159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010550613616.38
    160 rdf:type schema:Person
    161 sg:person.011066117233.90 schema:affiliation grid-institutes:grid.9909.9
    162 schema:familyName Lowe
    163 schema:givenName Jason A.
    164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011066117233.90
    165 rdf:type schema:Person
    166 sg:person.011660700544.36 schema:affiliation grid-institutes:grid.5292.c
    167 schema:familyName Hermans
    168 schema:givenName Tim H. J.
    169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011660700544.36
    170 rdf:type schema:Person
    171 sg:person.014422635041.12 schema:affiliation grid-institutes:grid.17100.37
    172 schema:familyName Tinker
    173 schema:givenName Jonathan
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014422635041.12
    175 rdf:type schema:Person
    176 sg:person.016317430671.85 schema:affiliation grid-institutes:grid.17100.37
    177 schema:familyName Palmer
    178 schema:givenName Matthew D.
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016317430671.85
    180 rdf:type schema:Person
    181 sg:person.07663255237.76 schema:affiliation grid-institutes:grid.17100.37
    182 schema:familyName Howard
    183 schema:givenName Tom
    184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07663255237.76
    185 rdf:type schema:Person
    186 sg:pub.10.1007/bf00211679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017413883
    187 https://doi.org/10.1007/bf00211679
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/s00382-010-0810-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001203373
    190 https://doi.org/10.1007/s00382-010-0810-6
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/s00382-011-1057-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051741203
    193 https://doi.org/10.1007/s00382-011-1057-6
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/s00382-013-2039-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034349826
    196 https://doi.org/10.1007/s00382-013-2039-7
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/s00382-019-05104-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124007453
    199 https://doi.org/10.1007/s00382-019-05104-5
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1007/s10236-008-0164-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020174951
    202 https://doi.org/10.1007/s10236-008-0164-3
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1007/s10712-016-9373-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034014179
    205 https://doi.org/10.1007/s10712-016-9373-3
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1007/s10712-019-09525-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1113833930
    208 https://doi.org/10.1007/s10712-019-09525-z
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1038/nature14491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012323543
    211 https://doi.org/10.1038/nature14491
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1038/nclimate2991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002006443
    214 https://doi.org/10.1038/nclimate2991
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1038/ncomms4635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026337032
    217 https://doi.org/10.1038/ncomms4635
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1038/ncomms8849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034302152
    220 https://doi.org/10.1038/ncomms8849
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1038/s41598-018-37603-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111769930
    223 https://doi.org/10.1038/s41598-018-37603-6
    224 rdf:type schema:CreativeWork
    225 grid-institutes:grid.17100.37 schema:alternateName Met Office Hadley Centre, EX1 3PB, Exeter, UK
    226 schema:name Met Office Hadley Centre, EX1 3PB, Exeter, UK
    227 rdf:type schema:Organization
    228 grid-institutes:grid.5292.c schema:alternateName Department of Geosciences and Remote Sensing, Civil Engineering and Geoscience, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, The Netherlands
    229 schema:name Department of Geosciences and Remote Sensing, Civil Engineering and Geoscience, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, The Netherlands
    230 NIOZ Royal Netherlands Institute for Sea Research, Department of Estuarine & Delta Systems, and Utrecht University, Korringaweg 7, 4401 NT, Yerseke, The Netherlands
    231 rdf:type schema:Organization
    232 grid-institutes:grid.9909.9 schema:alternateName Priestley International Centre for Climate, University of Leeds, Leeds, UK
    233 schema:name Met Office Hadley Centre, EX1 3PB, Exeter, UK
    234 Priestley International Centre for Climate, University of Leeds, Leeds, UK
    235 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...