Global distribution of the intensity and frequency of hourly precipitation and their responses to ENSO View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-04-30

AUTHORS

Xiao-Feng Li, Stephen Blenkinsop, Renaud Barbero, Jingjing Yu, Elizabeth Lewis, Geert Lenderink, Selma Guerreiro, Steven Chan, Yafei Li, Haider Ali, Roberto Villalobos Herrera, Elizabeth Kendon, Hayley J. Fowler

ABSTRACT

We investigate the global distribution of hourly precipitation and its connections with the El Niño–Southern Oscillation (ENSO) using both satellite precipitation estimates and the global sub-daily rainfall gauge dataset. Despite limited moisture availability over continental surfaces, we find that the highest mean and extreme hourly precipitation intensity (HPI) values are mainly located over continents rather than over oceans, a feature that is not evident in daily or coarser resolution data. After decomposing the total precipitation into the product of the number of wet hours (NWH) and HPI, we find that ENSO modulates total precipitation mainly through the NWH, while its effects on HPI are more limited. The contrasting responses to ENSO in NWH and HPI is particularly apparent at the rising branches of the Pacific and Atlantic Walker Circulations, and is also notable over land-based gauges in Australia, Malaysia, the USA, Japan and Europe across the whole distribution of hourly precipitation (i.e. extreme, moderate and light precipitation). These results provide new insights into the global precipitation distribution and its response to ENSO forcing. More... »

PAGES

4823-4839

References to SciGraph publications

  • 2014-06-01. Heavier summer downpours with climate change revealed by weather forecast resolution model in NATURE CLIMATE CHANGE
  • 2016-12-05. The future intensification of hourly precipitation extremes in NATURE CLIMATE CHANGE
  • 2016-05-27. The impact of ENSO and the NAO on extreme winter precipitation in North America in observations and regional climate models in CLIMATE DYNAMICS
  • 2018-03-05. Negative soil moisture-precipitation feedback in dry and wet regions in SCIENTIFIC REPORTS
  • 2014-03-20. Precipitation response to La Niña and global warming in the Indo-Pacific in CLIMATE DYNAMICS
  • 2015-10-26. Mechanisms of change in ENSO-induced tropical Pacific rainfall variability in a warming climate in NATURE GEOSCIENCE
  • 2017-04-27. Contrasting response of rainfall extremes to increase in surface air and dewpoint temperatures at urban locations in India in SCIENTIFIC REPORTS
  • 2018-07-30. Detection of continental-scale intensification of hourly rainfall extremes in NATURE CLIMATE CHANGE
  • 2008-07-20. Increase in hourly precipitation extremes beyond expectations from temperature changes in NATURE GEOSCIENCE
  • 2017-01-19. On the spatial coherence of sub-seasonal to seasonal Indian rainfall anomalies in CLIMATE DYNAMICS
  • 2009-10. Untangling aerosol effects on clouds and precipitation in a buffered system in NATURE
  • 2016-04-05. Percentile indices for assessing changes in heavy precipitation events in CLIMATIC CHANGE
  • 2013-08-07. Nonlinear precipitation response to El Niño and global warming in the Indo-Pacific in CLIMATE DYNAMICS
  • 2009-03-28. Local versus regional-scale characteristics of monsoon onset and post-onset rainfall over Indonesia in CLIMATE DYNAMICS
  • 2018-02-27. Contribution of large-scale midlatitude disturbances to hourly precipitation extremes in the United States in CLIMATE DYNAMICS
  • 2013-10-13. Robust twenty-first-century projections of El Niño and related precipitation variability in NATURE
  • 2015-11-30. Downturn in scaling of UK extreme rainfall with temperature for future hottest days in NATURE GEOSCIENCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00382-020-05258-7

    DOI

    http://dx.doi.org/10.1007/s00382-020-05258-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1127254693


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atmospheric Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK", 
              "id": "http://www.grid.ac/institutes/grid.1006.7", 
              "name": [
                "School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Xiao-Feng", 
            "id": "sg:person.013740613077.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013740613077.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK", 
              "id": "http://www.grid.ac/institutes/grid.1006.7", 
              "name": [
                "School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Blenkinsop", 
            "givenName": "Stephen", 
            "id": "sg:person.011617040511.72", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011617040511.72"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "French National Research Institute for Agriculture, Food and Environment, RECOVER, Aix-en-Provence, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK", 
                "French National Research Institute for Agriculture, Food and Environment, RECOVER, Aix-en-Provence, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Barbero", 
            "givenName": "Renaud", 
            "id": "sg:person.014254012401.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014254012401.78"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK", 
              "id": "http://www.grid.ac/institutes/grid.1006.7", 
              "name": [
                "School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yu", 
            "givenName": "Jingjing", 
            "id": "sg:person.010724754301.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010724754301.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK", 
              "id": "http://www.grid.ac/institutes/grid.1006.7", 
              "name": [
                "School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lewis", 
            "givenName": "Elizabeth", 
            "id": "sg:person.013415664474.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013415664474.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Royal Netherlands Meteorological Institute, De Bilt, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.8653.8", 
              "name": [
                "Royal Netherlands Meteorological Institute, De Bilt, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lenderink", 
            "givenName": "Geert", 
            "id": "sg:person.010547300007.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010547300007.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK", 
              "id": "http://www.grid.ac/institutes/grid.1006.7", 
              "name": [
                "School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Guerreiro", 
            "givenName": "Selma", 
            "id": "sg:person.016433175367.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016433175367.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK", 
              "id": "http://www.grid.ac/institutes/grid.1006.7", 
              "name": [
                "School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chan", 
            "givenName": "Steven", 
            "id": "sg:person.07474632311.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07474632311.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.20513.35", 
              "name": [
                "School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK", 
                "State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Yafei", 
            "id": "sg:person.07433125601.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07433125601.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK", 
              "id": "http://www.grid.ac/institutes/grid.1006.7", 
              "name": [
                "School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ali", 
            "givenName": "Haider", 
            "id": "sg:person.013435023474.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013435023474.62"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK", 
              "id": "http://www.grid.ac/institutes/grid.1006.7", 
              "name": [
                "School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Villalobos Herrera", 
            "givenName": "Roberto", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Met Office Hadley Centre, FitzRoy Road, Exeter, UK", 
              "id": "http://www.grid.ac/institutes/grid.17100.37", 
              "name": [
                "Met Office Hadley Centre, FitzRoy Road, Exeter, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kendon", 
            "givenName": "Elizabeth", 
            "id": "sg:person.015332533633.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015332533633.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK", 
              "id": "http://www.grid.ac/institutes/grid.1006.7", 
              "name": [
                "School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fowler", 
            "givenName": "Hayley J.", 
            "id": "sg:person.01161741260.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161741260.82"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/ngeo2571", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030056204", 
              "https://doi.org/10.1038/ngeo2571"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo2596", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013605352", 
              "https://doi.org/10.1038/ngeo2596"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate3168", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045597218", 
              "https://doi.org/10.1038/nclimate3168"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-009-0547-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021715336", 
              "https://doi.org/10.1007/s00382-009-0547-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-014-2105-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008740930", 
              "https://doi.org/10.1007/s00382-014-2105-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-018-4123-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101239798", 
              "https://doi.org/10.1007/s00382-018-4123-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-016-3148-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024125846", 
              "https://doi.org/10.1007/s00382-016-3148-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-016-1669-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026235085", 
              "https://doi.org/10.1007/s10584-016-1669-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo262", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012830057", 
              "https://doi.org/10.1038/ngeo262"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate2258", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037064860", 
              "https://doi.org/10.1038/nclimate2258"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08281", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047083434", 
              "https://doi.org/10.1038/nature08281"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41558-018-0245-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105832090", 
              "https://doi.org/10.1038/s41558-018-0245-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-017-3520-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001097876", 
              "https://doi.org/10.1007/s00382-017-3520-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-013-1892-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003267210", 
              "https://doi.org/10.1007/s00382-013-1892-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-018-22394-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101244900", 
              "https://doi.org/10.1038/s41598-018-22394-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-017-01306-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085071052", 
              "https://doi.org/10.1038/s41598-017-01306-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12580", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039983984", 
              "https://doi.org/10.1038/nature12580"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-04-30", 
        "datePublishedReg": "2020-04-30", 
        "description": "We investigate the global distribution of hourly precipitation and its connections with the El Ni\u00f1o\u2013Southern Oscillation (ENSO) using both satellite precipitation estimates and the global sub-daily rainfall gauge dataset. Despite limited moisture availability over continental surfaces, we find that the highest mean and extreme hourly precipitation intensity (HPI) values are mainly located over continents rather than over oceans, a feature that is not evident in daily or coarser resolution data. After decomposing the total precipitation into the product of the number of wet hours (NWH) and HPI, we find that ENSO modulates total precipitation mainly through the NWH, while its effects on HPI are more limited. The contrasting responses to ENSO in NWH and HPI is particularly apparent at the rising branches of the Pacific and Atlantic Walker Circulations, and is also notable over land-based gauges in Australia, Malaysia, the USA, Japan and Europe across the whole distribution of hourly precipitation (i.e. extreme, moderate and light precipitation). These results provide new insights into the global precipitation distribution and its response to ENSO forcing.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00382-020-05258-7", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3853003", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7924290", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7037241", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1049631", 
            "issn": [
              "0930-7575", 
              "1432-0894"
            ], 
            "name": "Climate Dynamics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "11-12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "54"
          }
        ], 
        "keywords": [
          "El Ni\u00f1o\u2013Southern Oscillation", 
          "hourly precipitation", 
          "total precipitation", 
          "global distribution", 
          "Ni\u00f1o\u2013Southern Oscillation", 
          "satellite precipitation estimates", 
          "Atlantic Walker circulation", 
          "limited moisture availability", 
          "coarse resolution data", 
          "Walker circulation", 
          "precipitation estimates", 
          "continental surfaces", 
          "gauge dataset", 
          "wet hours", 
          "precipitation distribution", 
          "moisture availability", 
          "precipitation", 
          "resolution data", 
          "NWH", 
          "Ocean", 
          "Pacific", 
          "continent", 
          "distribution", 
          "circulation", 
          "intensity values", 
          "new insights", 
          "gauge", 
          "oscillations", 
          "Australia", 
          "estimates", 
          "USA", 
          "Japan", 
          "Europe", 
          "whole distribution", 
          "surface", 
          "dataset", 
          "intensity", 
          "data", 
          "availability", 
          "features", 
          "response", 
          "insights", 
          "values", 
          "Malaysia", 
          "branches", 
          "connection", 
          "frequency", 
          "results", 
          "products", 
          "effect", 
          "hours", 
          "hpi", 
          "number"
        ], 
        "name": "Global distribution of the intensity and frequency of hourly precipitation and their responses to ENSO", 
        "pagination": "4823-4839", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1127254693"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00382-020-05258-7"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00382-020-05258-7", 
          "https://app.dimensions.ai/details/publication/pub.1127254693"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:46", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_844.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00382-020-05258-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-020-05258-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-020-05258-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-020-05258-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-020-05258-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    281 TRIPLES      21 PREDICATES      94 URIs      69 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00382-020-05258-7 schema:about anzsrc-for:04
    2 anzsrc-for:0401
    3 schema:author N8076188993034a84881cca66f9f5ee90
    4 schema:citation sg:pub.10.1007/s00382-009-0547-2
    5 sg:pub.10.1007/s00382-013-1892-8
    6 sg:pub.10.1007/s00382-014-2105-9
    7 sg:pub.10.1007/s00382-016-3148-x
    8 sg:pub.10.1007/s00382-017-3520-5
    9 sg:pub.10.1007/s00382-018-4123-5
    10 sg:pub.10.1007/s10584-016-1669-2
    11 sg:pub.10.1038/nature08281
    12 sg:pub.10.1038/nature12580
    13 sg:pub.10.1038/nclimate2258
    14 sg:pub.10.1038/nclimate3168
    15 sg:pub.10.1038/ngeo2571
    16 sg:pub.10.1038/ngeo2596
    17 sg:pub.10.1038/ngeo262
    18 sg:pub.10.1038/s41558-018-0245-3
    19 sg:pub.10.1038/s41598-017-01306-1
    20 sg:pub.10.1038/s41598-018-22394-7
    21 schema:datePublished 2020-04-30
    22 schema:datePublishedReg 2020-04-30
    23 schema:description We investigate the global distribution of hourly precipitation and its connections with the El Niño–Southern Oscillation (ENSO) using both satellite precipitation estimates and the global sub-daily rainfall gauge dataset. Despite limited moisture availability over continental surfaces, we find that the highest mean and extreme hourly precipitation intensity (HPI) values are mainly located over continents rather than over oceans, a feature that is not evident in daily or coarser resolution data. After decomposing the total precipitation into the product of the number of wet hours (NWH) and HPI, we find that ENSO modulates total precipitation mainly through the NWH, while its effects on HPI are more limited. The contrasting responses to ENSO in NWH and HPI is particularly apparent at the rising branches of the Pacific and Atlantic Walker Circulations, and is also notable over land-based gauges in Australia, Malaysia, the USA, Japan and Europe across the whole distribution of hourly precipitation (i.e. extreme, moderate and light precipitation). These results provide new insights into the global precipitation distribution and its response to ENSO forcing.
    24 schema:genre article
    25 schema:isAccessibleForFree true
    26 schema:isPartOf N74f7e3f13da64f09adbfe9adedd9b5a3
    27 N85df7f69b28c4c9ab1ef49938d3a8ca0
    28 sg:journal.1049631
    29 schema:keywords Atlantic Walker circulation
    30 Australia
    31 El Niño–Southern Oscillation
    32 Europe
    33 Japan
    34 Malaysia
    35 NWH
    36 Niño–Southern Oscillation
    37 Ocean
    38 Pacific
    39 USA
    40 Walker circulation
    41 availability
    42 branches
    43 circulation
    44 coarse resolution data
    45 connection
    46 continent
    47 continental surfaces
    48 data
    49 dataset
    50 distribution
    51 effect
    52 estimates
    53 features
    54 frequency
    55 gauge
    56 gauge dataset
    57 global distribution
    58 hourly precipitation
    59 hours
    60 hpi
    61 insights
    62 intensity
    63 intensity values
    64 limited moisture availability
    65 moisture availability
    66 new insights
    67 number
    68 oscillations
    69 precipitation
    70 precipitation distribution
    71 precipitation estimates
    72 products
    73 resolution data
    74 response
    75 results
    76 satellite precipitation estimates
    77 surface
    78 total precipitation
    79 values
    80 wet hours
    81 whole distribution
    82 schema:name Global distribution of the intensity and frequency of hourly precipitation and their responses to ENSO
    83 schema:pagination 4823-4839
    84 schema:productId N6f6a1b332b6d4e04a81dba6f734ec332
    85 N8bb8232ab89b48408560bf7ea37d5644
    86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1127254693
    87 https://doi.org/10.1007/s00382-020-05258-7
    88 schema:sdDatePublished 2022-10-01T06:46
    89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    90 schema:sdPublisher N9ff8f6bb4d3745fda88cc8a0e97e1777
    91 schema:url https://doi.org/10.1007/s00382-020-05258-7
    92 sgo:license sg:explorer/license/
    93 sgo:sdDataset articles
    94 rdf:type schema:ScholarlyArticle
    95 N0861ceb9648c4dcfae93754c7e39000c rdf:first sg:person.07433125601.73
    96 rdf:rest Nfc6c5bddbad44ef184227ecc8601b428
    97 N13de272412a94dc492f18238c16062f7 rdf:first sg:person.016433175367.18
    98 rdf:rest N74617813738846a7b07c3320e59ffa1c
    99 N412cc1be2f6149b19333ccdc0c605497 rdf:first sg:person.015332533633.13
    100 rdf:rest Nacdc78f75a884c3e922e5800c47f24ea
    101 N65286906eed44256a635f677b6c46b82 rdf:first sg:person.010547300007.01
    102 rdf:rest N13de272412a94dc492f18238c16062f7
    103 N6f2142b4600b418880b095c288eb075f rdf:first sg:person.010724754301.15
    104 rdf:rest Nba1b0a562b834aa591cb4f1b2c916ced
    105 N6f6a1b332b6d4e04a81dba6f734ec332 schema:name dimensions_id
    106 schema:value pub.1127254693
    107 rdf:type schema:PropertyValue
    108 N74617813738846a7b07c3320e59ffa1c rdf:first sg:person.07474632311.29
    109 rdf:rest N0861ceb9648c4dcfae93754c7e39000c
    110 N74f7e3f13da64f09adbfe9adedd9b5a3 schema:volumeNumber 54
    111 rdf:type schema:PublicationVolume
    112 N8076188993034a84881cca66f9f5ee90 rdf:first sg:person.013740613077.07
    113 rdf:rest Ndd9492d2357e4d6199f088ebb3b2fe25
    114 N85df7f69b28c4c9ab1ef49938d3a8ca0 schema:issueNumber 11-12
    115 rdf:type schema:PublicationIssue
    116 N8bb8232ab89b48408560bf7ea37d5644 schema:name doi
    117 schema:value 10.1007/s00382-020-05258-7
    118 rdf:type schema:PropertyValue
    119 N9ff8f6bb4d3745fda88cc8a0e97e1777 schema:name Springer Nature - SN SciGraph project
    120 rdf:type schema:Organization
    121 Nacdc78f75a884c3e922e5800c47f24ea rdf:first sg:person.01161741260.82
    122 rdf:rest rdf:nil
    123 Nb2009ecdd5e54f47bd1730b5d4286b2d schema:affiliation grid-institutes:grid.1006.7
    124 schema:familyName Villalobos Herrera
    125 schema:givenName Roberto
    126 rdf:type schema:Person
    127 Nba1b0a562b834aa591cb4f1b2c916ced rdf:first sg:person.013415664474.03
    128 rdf:rest N65286906eed44256a635f677b6c46b82
    129 Nc4af7207b66e4733954e7ac464ca66df rdf:first Nb2009ecdd5e54f47bd1730b5d4286b2d
    130 rdf:rest N412cc1be2f6149b19333ccdc0c605497
    131 Ndd9492d2357e4d6199f088ebb3b2fe25 rdf:first sg:person.011617040511.72
    132 rdf:rest Neaeb8820f8984784a4c65dd5439f2603
    133 Neaeb8820f8984784a4c65dd5439f2603 rdf:first sg:person.014254012401.78
    134 rdf:rest N6f2142b4600b418880b095c288eb075f
    135 Nfc6c5bddbad44ef184227ecc8601b428 rdf:first sg:person.013435023474.62
    136 rdf:rest Nc4af7207b66e4733954e7ac464ca66df
    137 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    138 schema:name Earth Sciences
    139 rdf:type schema:DefinedTerm
    140 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
    141 schema:name Atmospheric Sciences
    142 rdf:type schema:DefinedTerm
    143 sg:grant.3853003 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-020-05258-7
    144 rdf:type schema:MonetaryGrant
    145 sg:grant.7037241 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-020-05258-7
    146 rdf:type schema:MonetaryGrant
    147 sg:grant.7924290 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-020-05258-7
    148 rdf:type schema:MonetaryGrant
    149 sg:journal.1049631 schema:issn 0930-7575
    150 1432-0894
    151 schema:name Climate Dynamics
    152 schema:publisher Springer Nature
    153 rdf:type schema:Periodical
    154 sg:person.010547300007.01 schema:affiliation grid-institutes:grid.8653.8
    155 schema:familyName Lenderink
    156 schema:givenName Geert
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010547300007.01
    158 rdf:type schema:Person
    159 sg:person.010724754301.15 schema:affiliation grid-institutes:grid.1006.7
    160 schema:familyName Yu
    161 schema:givenName Jingjing
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010724754301.15
    163 rdf:type schema:Person
    164 sg:person.011617040511.72 schema:affiliation grid-institutes:grid.1006.7
    165 schema:familyName Blenkinsop
    166 schema:givenName Stephen
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011617040511.72
    168 rdf:type schema:Person
    169 sg:person.01161741260.82 schema:affiliation grid-institutes:grid.1006.7
    170 schema:familyName Fowler
    171 schema:givenName Hayley J.
    172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161741260.82
    173 rdf:type schema:Person
    174 sg:person.013415664474.03 schema:affiliation grid-institutes:grid.1006.7
    175 schema:familyName Lewis
    176 schema:givenName Elizabeth
    177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013415664474.03
    178 rdf:type schema:Person
    179 sg:person.013435023474.62 schema:affiliation grid-institutes:grid.1006.7
    180 schema:familyName Ali
    181 schema:givenName Haider
    182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013435023474.62
    183 rdf:type schema:Person
    184 sg:person.013740613077.07 schema:affiliation grid-institutes:grid.1006.7
    185 schema:familyName Li
    186 schema:givenName Xiao-Feng
    187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013740613077.07
    188 rdf:type schema:Person
    189 sg:person.014254012401.78 schema:affiliation grid-institutes:None
    190 schema:familyName Barbero
    191 schema:givenName Renaud
    192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014254012401.78
    193 rdf:type schema:Person
    194 sg:person.015332533633.13 schema:affiliation grid-institutes:grid.17100.37
    195 schema:familyName Kendon
    196 schema:givenName Elizabeth
    197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015332533633.13
    198 rdf:type schema:Person
    199 sg:person.016433175367.18 schema:affiliation grid-institutes:grid.1006.7
    200 schema:familyName Guerreiro
    201 schema:givenName Selma
    202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016433175367.18
    203 rdf:type schema:Person
    204 sg:person.07433125601.73 schema:affiliation grid-institutes:grid.20513.35
    205 schema:familyName Li
    206 schema:givenName Yafei
    207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07433125601.73
    208 rdf:type schema:Person
    209 sg:person.07474632311.29 schema:affiliation grid-institutes:grid.1006.7
    210 schema:familyName Chan
    211 schema:givenName Steven
    212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07474632311.29
    213 rdf:type schema:Person
    214 sg:pub.10.1007/s00382-009-0547-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021715336
    215 https://doi.org/10.1007/s00382-009-0547-2
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1007/s00382-013-1892-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003267210
    218 https://doi.org/10.1007/s00382-013-1892-8
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1007/s00382-014-2105-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008740930
    221 https://doi.org/10.1007/s00382-014-2105-9
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1007/s00382-016-3148-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024125846
    224 https://doi.org/10.1007/s00382-016-3148-x
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1007/s00382-017-3520-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001097876
    227 https://doi.org/10.1007/s00382-017-3520-5
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1007/s00382-018-4123-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101239798
    230 https://doi.org/10.1007/s00382-018-4123-5
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1007/s10584-016-1669-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026235085
    233 https://doi.org/10.1007/s10584-016-1669-2
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1038/nature08281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047083434
    236 https://doi.org/10.1038/nature08281
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1038/nature12580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039983984
    239 https://doi.org/10.1038/nature12580
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1038/nclimate2258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037064860
    242 https://doi.org/10.1038/nclimate2258
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1038/nclimate3168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045597218
    245 https://doi.org/10.1038/nclimate3168
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1038/ngeo2571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030056204
    248 https://doi.org/10.1038/ngeo2571
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1038/ngeo2596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013605352
    251 https://doi.org/10.1038/ngeo2596
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1038/ngeo262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012830057
    254 https://doi.org/10.1038/ngeo262
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1038/s41558-018-0245-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105832090
    257 https://doi.org/10.1038/s41558-018-0245-3
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1038/s41598-017-01306-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085071052
    260 https://doi.org/10.1038/s41598-017-01306-1
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1038/s41598-018-22394-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101244900
    263 https://doi.org/10.1038/s41598-018-22394-7
    264 rdf:type schema:CreativeWork
    265 grid-institutes:None schema:alternateName French National Research Institute for Agriculture, Food and Environment, RECOVER, Aix-en-Provence, France
    266 schema:name French National Research Institute for Agriculture, Food and Environment, RECOVER, Aix-en-Provence, France
    267 School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK
    268 rdf:type schema:Organization
    269 grid-institutes:grid.1006.7 schema:alternateName School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK
    270 schema:name School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK
    271 rdf:type schema:Organization
    272 grid-institutes:grid.17100.37 schema:alternateName Met Office Hadley Centre, FitzRoy Road, Exeter, UK
    273 schema:name Met Office Hadley Centre, FitzRoy Road, Exeter, UK
    274 rdf:type schema:Organization
    275 grid-institutes:grid.20513.35 schema:alternateName State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
    276 schema:name School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK
    277 State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
    278 rdf:type schema:Organization
    279 grid-institutes:grid.8653.8 schema:alternateName Royal Netherlands Meteorological Institute, De Bilt, The Netherlands
    280 schema:name Royal Netherlands Meteorological Institute, De Bilt, The Netherlands
    281 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...