Forced summer stationary waves: the opposing effects of direct radiative forcing and sea surface warming View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-04-30

AUTHORS

Hugh S. Baker, Tim Woollings, Cheikh Mbengue, Myles R. Allen, Christopher H. O’Reilly, Hideo Shiogama, Sarah Sparrow

ABSTRACT

We investigate the opposing effects of direct radiative forcing and sea surface warming on the atmospheric circulation using a hierarchy of models. In large ensembles of three general circulation models, direct CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CO}_2$$\end{document} forcing produces a wavenumber 5 stationary wave over the Northern Hemisphere in summer. Sea surface warming produces a similar wave, but with the opposite sign. The waves are also present in the Coupled Model Intercomparison Project phase 5 ensemble with opposite signs due to direct CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CO}_2$$\end{document} and sea surface warming. Analyses of tropical precipitation changes and equivalent potential temperature changes and the results from a simple barotropic model show that the wave is forced from the tropics. Key forcing locations are the Western Atlantic, Eastern Atlantic and in the Indian Ocean just off the east coast of Africa. The stationary wave has a significant impact on regional temperature anomalies in the Northern Hemisphere summer, explaining some of the direct effect that CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CO}_2$$\end{document} concentration has on temperature extremes. Ultimately, the climate sensitivity and future changes in the land–sea temperature contrast will dictate the balance between the opposing effects on regional changes in mean and extreme temperature and precipitation under climate change. More... »

PAGES

4291-4309

References to SciGraph publications

  • 2017-01-11. Timeslice experiments for understanding regional climate projections: applications to the tropical hydrological cycle and European winter circulation in CLIMATE DYNAMICS
  • 2015-06-01. Tug of war on summertime circulation between radiative forcing and sea surface warming in NATURE GEOSCIENCE
  • 1999-10. Do-it-yourself climate prediction in NATURE
  • 2017-09-18. Emission budgets and pathways consistent with limiting warming to 1.5 °C in NATURE GEOSCIENCE
  • 2014-02-26. No pause in the increase of hot temperature extremes in NATURE CLIMATE CHANGE
  • 2015-01-19. Circulation response to warming shaped by radiative changes of clouds and water vapour in NATURE GEOSCIENCE
  • 2016-02-01. Human influence on climate in the 2014 southern England winter floods and their impacts in NATURE CLIMATE CHANGE
  • 2013-04-21. Robust direct effect of carbon dioxide on tropical circulation and regional precipitation in NATURE GEOSCIENCE
  • 2018-06-11. Higher CO2 concentrations increase extreme event risk in a 1.5 °C world in NATURE CLIMATE CHANGE
  • 2012-02-11. Anthropogenic changes in the Walker circulation and their impact on the extra-tropical planetary wave structure in the Northern Hemisphere in CLIMATE DYNAMICS
  • 2008-07-31. Oceanic influences on recent continental warming in CLIMATE DYNAMICS
  • 2015-09-07. Causes of change in Northern Hemisphere winter meridional winds and regional hydroclimate in NATURE CLIMATE CHANGE
  • 2014-06-22. Amplified mid-latitude planetary waves favour particular regional weather extremes in NATURE CLIMATE CHANGE
  • 2016-07-21. Abrupt summer warming and changes in temperature extremes over Northeast Asia since the mid-1990s: Drivers and physical processes in ADVANCES IN ATMOSPHERIC SCIENCES
  • 2000-02. The impact of new physical parametrizations in the Hadley Centre climate model: HadAM3 in CLIMATE DYNAMICS
  • 2014-04-29. Summertime land–sea thermal contrast and atmospheric circulation over East Asia in a warming climate—Part II: Importance of CO2-induced continental warming in CLIMATE DYNAMICS
  • 2000-02. The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments in CLIMATE DYNAMICS
  • 2007-09-11. Mechanisms for the land/sea warming contrast exhibited by simulations of climate change in CLIMATE DYNAMICS
  • 2013. Tropical Meteorology, An Introduction in NONE
  • 2015-06-01. Dominant role of greenhouse-gas forcing in the recovery of Sahel rainfall in NATURE CLIMATE CHANGE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00382-019-04786-1

    DOI

    http://dx.doi.org/10.1007/s00382-019-04786-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1113833731


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atmospheric Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oceanography", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Atmospheric, Oceanic and Planetary Physics, University of Oxford, Parks Rd, OX1 3PU, Oxford, UK", 
              "id": "http://www.grid.ac/institutes/grid.4991.5", 
              "name": [
                "Atmospheric, Oceanic and Planetary Physics, University of Oxford, Parks Rd, OX1 3PU, Oxford, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Baker", 
            "givenName": "Hugh S.", 
            "id": "sg:person.015157606325.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015157606325.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Atmospheric, Oceanic and Planetary Physics, University of Oxford, Parks Rd, OX1 3PU, Oxford, UK", 
              "id": "http://www.grid.ac/institutes/grid.4991.5", 
              "name": [
                "Atmospheric, Oceanic and Planetary Physics, University of Oxford, Parks Rd, OX1 3PU, Oxford, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Woollings", 
            "givenName": "Tim", 
            "id": "sg:person.011743346331.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011743346331.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Atmospheric, Oceanic and Planetary Physics, University of Oxford, Parks Rd, OX1 3PU, Oxford, UK", 
              "id": "http://www.grid.ac/institutes/grid.4991.5", 
              "name": [
                "Atmospheric, Oceanic and Planetary Physics, University of Oxford, Parks Rd, OX1 3PU, Oxford, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mbengue", 
            "givenName": "Cheikh", 
            "id": "sg:person.010645056525.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010645056525.53"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Environmental Change Institute, School of Geography and the Environment, University of Oxford, South Parks Road, OX1 3QY, Oxford, UK", 
              "id": "http://www.grid.ac/institutes/grid.4991.5", 
              "name": [
                "Atmospheric, Oceanic and Planetary Physics, University of Oxford, Parks Rd, OX1 3PU, Oxford, UK", 
                "Environmental Change Institute, School of Geography and the Environment, University of Oxford, South Parks Road, OX1 3QY, Oxford, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Allen", 
            "givenName": "Myles R.", 
            "id": "sg:person.0600474550.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600474550.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Atmospheric, Oceanic and Planetary Physics, University of Oxford, Parks Rd, OX1 3PU, Oxford, UK", 
              "id": "http://www.grid.ac/institutes/grid.4991.5", 
              "name": [
                "Atmospheric, Oceanic and Planetary Physics, University of Oxford, Parks Rd, OX1 3PU, Oxford, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "O\u2019Reilly", 
            "givenName": "Christopher H.", 
            "id": "sg:person.012671740572.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012671740572.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba, Japan", 
              "id": "http://www.grid.ac/institutes/grid.140139.e", 
              "name": [
                "Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shiogama", 
            "givenName": "Hideo", 
            "id": "sg:person.011356656533.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011356656533.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Oxford e-Research Centre, Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ, Oxford, UK", 
              "id": "http://www.grid.ac/institutes/grid.4991.5", 
              "name": [
                "Oxford e-Research Centre, Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ, Oxford, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sparrow", 
            "givenName": "Sarah", 
            "id": "sg:person.013147101037.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013147101037.33"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00382-007-0306-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002755636", 
              "https://doi.org/10.1007/s00382-007-0306-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-014-2146-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048988383", 
              "https://doi.org/10.1007/s00382-014-2146-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate2271", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001500185", 
              "https://doi.org/10.1038/nclimate2271"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate2145", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042106860", 
              "https://doi.org/10.1038/nclimate2145"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo2345", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015988743", 
              "https://doi.org/10.1038/ngeo2345"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-008-0448-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044736575", 
              "https://doi.org/10.1007/s00382-008-0448-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-012-1308-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042671492", 
              "https://doi.org/10.1007/s00382-012-1308-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate2783", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042529161", 
              "https://doi.org/10.1038/nclimate2783"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003820050009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002170907", 
              "https://doi.org/10.1007/s003820050009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4614-7409-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019079427", 
              "https://doi.org/10.1007/978-1-4614-7409-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/44266", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034790274", 
              "https://doi.org/10.1038/44266"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo3031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091829266", 
              "https://doi.org/10.1038/ngeo3031"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41558-018-0190-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104468770", 
              "https://doi.org/10.1038/s41558-018-0190-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo1799", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023320468", 
              "https://doi.org/10.1038/ngeo1799"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-016-3488-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028103502", 
              "https://doi.org/10.1007/s00382-016-3488-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003820050010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015242699", 
              "https://doi.org/10.1007/s003820050010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo2449", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009889539", 
              "https://doi.org/10.1038/ngeo2449"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00376-016-5247-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004524857", 
              "https://doi.org/10.1007/s00376-016-5247-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate2664", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003706856", 
              "https://doi.org/10.1038/nclimate2664"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate2927", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011320779", 
              "https://doi.org/10.1038/nclimate2927"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-04-30", 
        "datePublishedReg": "2019-04-30", 
        "description": "We investigate the opposing effects of direct radiative forcing and sea surface warming on the atmospheric circulation using a hierarchy of models. In large ensembles of three general circulation models, direct CO2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {CO}_2$$\\end{document} forcing produces a wavenumber 5 stationary wave over the Northern Hemisphere in summer. Sea surface warming produces a similar wave, but with the opposite sign. The waves are also present in the Coupled Model Intercomparison Project phase 5 ensemble with opposite signs due to direct CO2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {CO}_2$$\\end{document} and sea surface warming. Analyses of tropical precipitation changes and equivalent potential temperature changes and the results from a simple barotropic model show that the wave is forced from the tropics. Key forcing locations are the Western Atlantic, Eastern Atlantic and in the Indian Ocean just off the east coast of Africa. The stationary wave has a significant impact on regional temperature anomalies in the Northern Hemisphere summer, explaining some of the direct effect that CO2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {CO}_2$$\\end{document} concentration has on temperature extremes. Ultimately, the climate sensitivity and future changes in the land\u2013sea temperature contrast will dictate the balance between the opposing effects on regional changes in mean and extreme temperature and precipitation under climate change.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00382-019-04786-1", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3958911", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4576541", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1049631", 
            "issn": [
              "0930-7575", 
              "1432-0894"
            ], 
            "name": "Climate Dynamics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7-8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "53"
          }
        ], 
        "keywords": [
          "sea surface warming", 
          "direct radiative forcing", 
          "stationary waves", 
          "surface warming", 
          "radiative forcing", 
          "sea surface", 
          "Coupled Model Intercomparison Project Phase 5 ensemble", 
          "Model Intercomparison Project Phase 5 ensemble", 
          "land\u2013sea temperature contrast", 
          "tropical precipitation changes", 
          "general circulation model", 
          "Northern Hemisphere summer", 
          "regional temperature anomalies", 
          "potential temperature change", 
          "atmospheric circulation", 
          "circulation model", 
          "precipitation changes", 
          "temperature anomalies", 
          "climate sensitivity", 
          "Indian Ocean", 
          "Northern Hemisphere", 
          "hierarchy of models", 
          "temperature contrast", 
          "opposite sign", 
          "eastern Atlantic", 
          "east coast", 
          "future changes", 
          "temperature extremes", 
          "large ensemble", 
          "climate change", 
          "regional changes", 
          "western Atlantic", 
          "similar waves", 
          "forcing", 
          "temperature changes", 
          "Atlantic", 
          "extreme temperatures", 
          "warming", 
          "summer", 
          "model show", 
          "waves", 
          "ensemble", 
          "Ocean", 
          "coast", 
          "precipitation", 
          "tropics", 
          "anomalies", 
          "hemisphere", 
          "circulation", 
          "extremes", 
          "changes", 
          "significant impact", 
          "surface", 
          "Africa", 
          "location", 
          "model", 
          "balance", 
          "temperature", 
          "show", 
          "concentration", 
          "impact", 
          "contrast", 
          "direct effect", 
          "analysis", 
          "effect", 
          "results", 
          "sensitivity", 
          "signs", 
          "hierarchy"
        ], 
        "name": "Forced summer stationary waves: the opposing effects of direct radiative forcing and sea surface warming", 
        "pagination": "4291-4309", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1113833731"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00382-019-04786-1"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00382-019-04786-1", 
          "https://app.dimensions.ai/details/publication/pub.1113833731"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:35", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_804.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00382-019-04786-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-019-04786-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-019-04786-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-019-04786-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-019-04786-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    264 TRIPLES      22 PREDICATES      115 URIs      86 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00382-019-04786-1 schema:about anzsrc-for:04
    2 anzsrc-for:0401
    3 anzsrc-for:0405
    4 schema:author Nfa4b904416f34520be5ce1712d38d751
    5 schema:citation sg:pub.10.1007/978-1-4614-7409-8
    6 sg:pub.10.1007/s00376-016-5247-3
    7 sg:pub.10.1007/s00382-007-0306-1
    8 sg:pub.10.1007/s00382-008-0448-9
    9 sg:pub.10.1007/s00382-012-1308-1
    10 sg:pub.10.1007/s00382-014-2146-0
    11 sg:pub.10.1007/s00382-016-3488-6
    12 sg:pub.10.1007/s003820050009
    13 sg:pub.10.1007/s003820050010
    14 sg:pub.10.1038/44266
    15 sg:pub.10.1038/nclimate2145
    16 sg:pub.10.1038/nclimate2271
    17 sg:pub.10.1038/nclimate2664
    18 sg:pub.10.1038/nclimate2783
    19 sg:pub.10.1038/nclimate2927
    20 sg:pub.10.1038/ngeo1799
    21 sg:pub.10.1038/ngeo2345
    22 sg:pub.10.1038/ngeo2449
    23 sg:pub.10.1038/ngeo3031
    24 sg:pub.10.1038/s41558-018-0190-1
    25 schema:datePublished 2019-04-30
    26 schema:datePublishedReg 2019-04-30
    27 schema:description We investigate the opposing effects of direct radiative forcing and sea surface warming on the atmospheric circulation using a hierarchy of models. In large ensembles of three general circulation models, direct CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CO}_2$$\end{document} forcing produces a wavenumber 5 stationary wave over the Northern Hemisphere in summer. Sea surface warming produces a similar wave, but with the opposite sign. The waves are also present in the Coupled Model Intercomparison Project phase 5 ensemble with opposite signs due to direct CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CO}_2$$\end{document} and sea surface warming. Analyses of tropical precipitation changes and equivalent potential temperature changes and the results from a simple barotropic model show that the wave is forced from the tropics. Key forcing locations are the Western Atlantic, Eastern Atlantic and in the Indian Ocean just off the east coast of Africa. The stationary wave has a significant impact on regional temperature anomalies in the Northern Hemisphere summer, explaining some of the direct effect that CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CO}_2$$\end{document} concentration has on temperature extremes. Ultimately, the climate sensitivity and future changes in the land–sea temperature contrast will dictate the balance between the opposing effects on regional changes in mean and extreme temperature and precipitation under climate change.
    28 schema:genre article
    29 schema:inLanguage en
    30 schema:isAccessibleForFree true
    31 schema:isPartOf Nb6fd0aea7bca4d539334fb37465cd34b
    32 Ned87ebe73f264fd9973da3b5c0434195
    33 sg:journal.1049631
    34 schema:keywords Africa
    35 Atlantic
    36 Coupled Model Intercomparison Project Phase 5 ensemble
    37 Indian Ocean
    38 Model Intercomparison Project Phase 5 ensemble
    39 Northern Hemisphere
    40 Northern Hemisphere summer
    41 Ocean
    42 analysis
    43 anomalies
    44 atmospheric circulation
    45 balance
    46 changes
    47 circulation
    48 circulation model
    49 climate change
    50 climate sensitivity
    51 coast
    52 concentration
    53 contrast
    54 direct effect
    55 direct radiative forcing
    56 east coast
    57 eastern Atlantic
    58 effect
    59 ensemble
    60 extreme temperatures
    61 extremes
    62 forcing
    63 future changes
    64 general circulation model
    65 hemisphere
    66 hierarchy
    67 hierarchy of models
    68 impact
    69 land–sea temperature contrast
    70 large ensemble
    71 location
    72 model
    73 model show
    74 opposite sign
    75 potential temperature change
    76 precipitation
    77 precipitation changes
    78 radiative forcing
    79 regional changes
    80 regional temperature anomalies
    81 results
    82 sea surface
    83 sea surface warming
    84 sensitivity
    85 show
    86 significant impact
    87 signs
    88 similar waves
    89 stationary waves
    90 summer
    91 surface
    92 surface warming
    93 temperature
    94 temperature anomalies
    95 temperature changes
    96 temperature contrast
    97 temperature extremes
    98 tropical precipitation changes
    99 tropics
    100 warming
    101 waves
    102 western Atlantic
    103 schema:name Forced summer stationary waves: the opposing effects of direct radiative forcing and sea surface warming
    104 schema:pagination 4291-4309
    105 schema:productId N40800fc0909d4133ba832934d75f0b27
    106 N5d3c38f498304fb6b8605bf1b66f47a2
    107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113833731
    108 https://doi.org/10.1007/s00382-019-04786-1
    109 schema:sdDatePublished 2022-05-20T07:35
    110 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    111 schema:sdPublisher N285793e5a5ff45a18879cfb80733a71d
    112 schema:url https://doi.org/10.1007/s00382-019-04786-1
    113 sgo:license sg:explorer/license/
    114 sgo:sdDataset articles
    115 rdf:type schema:ScholarlyArticle
    116 N285793e5a5ff45a18879cfb80733a71d schema:name Springer Nature - SN SciGraph project
    117 rdf:type schema:Organization
    118 N302d7417d4a64fd8babf5a616abe029a rdf:first sg:person.011356656533.12
    119 rdf:rest Ne04cef42a4ce434b990ee0891512ccbe
    120 N40800fc0909d4133ba832934d75f0b27 schema:name dimensions_id
    121 schema:value pub.1113833731
    122 rdf:type schema:PropertyValue
    123 N5d3c38f498304fb6b8605bf1b66f47a2 schema:name doi
    124 schema:value 10.1007/s00382-019-04786-1
    125 rdf:type schema:PropertyValue
    126 N8037941f64f6442094581682c04248f1 rdf:first sg:person.010645056525.53
    127 rdf:rest Ne8eae6a64ca442f4b5d204f5ece0ed63
    128 N9c9d4d58a4dc4319b0dc3367822fd7ce rdf:first sg:person.012671740572.65
    129 rdf:rest N302d7417d4a64fd8babf5a616abe029a
    130 Nb6fd0aea7bca4d539334fb37465cd34b schema:issueNumber 7-8
    131 rdf:type schema:PublicationIssue
    132 Nd47dbeeb459a485988ec681419cd55a5 rdf:first sg:person.011743346331.21
    133 rdf:rest N8037941f64f6442094581682c04248f1
    134 Ne04cef42a4ce434b990ee0891512ccbe rdf:first sg:person.013147101037.33
    135 rdf:rest rdf:nil
    136 Ne8eae6a64ca442f4b5d204f5ece0ed63 rdf:first sg:person.0600474550.17
    137 rdf:rest N9c9d4d58a4dc4319b0dc3367822fd7ce
    138 Ned87ebe73f264fd9973da3b5c0434195 schema:volumeNumber 53
    139 rdf:type schema:PublicationVolume
    140 Nfa4b904416f34520be5ce1712d38d751 rdf:first sg:person.015157606325.29
    141 rdf:rest Nd47dbeeb459a485988ec681419cd55a5
    142 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    143 schema:name Earth Sciences
    144 rdf:type schema:DefinedTerm
    145 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
    146 schema:name Atmospheric Sciences
    147 rdf:type schema:DefinedTerm
    148 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
    149 schema:name Oceanography
    150 rdf:type schema:DefinedTerm
    151 sg:grant.3958911 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-019-04786-1
    152 rdf:type schema:MonetaryGrant
    153 sg:grant.4576541 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-019-04786-1
    154 rdf:type schema:MonetaryGrant
    155 sg:journal.1049631 schema:issn 0930-7575
    156 1432-0894
    157 schema:name Climate Dynamics
    158 schema:publisher Springer Nature
    159 rdf:type schema:Periodical
    160 sg:person.010645056525.53 schema:affiliation grid-institutes:grid.4991.5
    161 schema:familyName Mbengue
    162 schema:givenName Cheikh
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010645056525.53
    164 rdf:type schema:Person
    165 sg:person.011356656533.12 schema:affiliation grid-institutes:grid.140139.e
    166 schema:familyName Shiogama
    167 schema:givenName Hideo
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011356656533.12
    169 rdf:type schema:Person
    170 sg:person.011743346331.21 schema:affiliation grid-institutes:grid.4991.5
    171 schema:familyName Woollings
    172 schema:givenName Tim
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011743346331.21
    174 rdf:type schema:Person
    175 sg:person.012671740572.65 schema:affiliation grid-institutes:grid.4991.5
    176 schema:familyName O’Reilly
    177 schema:givenName Christopher H.
    178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012671740572.65
    179 rdf:type schema:Person
    180 sg:person.013147101037.33 schema:affiliation grid-institutes:grid.4991.5
    181 schema:familyName Sparrow
    182 schema:givenName Sarah
    183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013147101037.33
    184 rdf:type schema:Person
    185 sg:person.015157606325.29 schema:affiliation grid-institutes:grid.4991.5
    186 schema:familyName Baker
    187 schema:givenName Hugh S.
    188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015157606325.29
    189 rdf:type schema:Person
    190 sg:person.0600474550.17 schema:affiliation grid-institutes:grid.4991.5
    191 schema:familyName Allen
    192 schema:givenName Myles R.
    193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600474550.17
    194 rdf:type schema:Person
    195 sg:pub.10.1007/978-1-4614-7409-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019079427
    196 https://doi.org/10.1007/978-1-4614-7409-8
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/s00376-016-5247-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004524857
    199 https://doi.org/10.1007/s00376-016-5247-3
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1007/s00382-007-0306-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002755636
    202 https://doi.org/10.1007/s00382-007-0306-1
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1007/s00382-008-0448-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044736575
    205 https://doi.org/10.1007/s00382-008-0448-9
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1007/s00382-012-1308-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042671492
    208 https://doi.org/10.1007/s00382-012-1308-1
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1007/s00382-014-2146-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048988383
    211 https://doi.org/10.1007/s00382-014-2146-0
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1007/s00382-016-3488-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028103502
    214 https://doi.org/10.1007/s00382-016-3488-6
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1007/s003820050009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002170907
    217 https://doi.org/10.1007/s003820050009
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1007/s003820050010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015242699
    220 https://doi.org/10.1007/s003820050010
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1038/44266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034790274
    223 https://doi.org/10.1038/44266
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1038/nclimate2145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042106860
    226 https://doi.org/10.1038/nclimate2145
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1038/nclimate2271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001500185
    229 https://doi.org/10.1038/nclimate2271
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1038/nclimate2664 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003706856
    232 https://doi.org/10.1038/nclimate2664
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1038/nclimate2783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042529161
    235 https://doi.org/10.1038/nclimate2783
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1038/nclimate2927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011320779
    238 https://doi.org/10.1038/nclimate2927
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1038/ngeo1799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023320468
    241 https://doi.org/10.1038/ngeo1799
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1038/ngeo2345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015988743
    244 https://doi.org/10.1038/ngeo2345
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1038/ngeo2449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009889539
    247 https://doi.org/10.1038/ngeo2449
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1038/ngeo3031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091829266
    250 https://doi.org/10.1038/ngeo3031
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1038/s41558-018-0190-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104468770
    253 https://doi.org/10.1038/s41558-018-0190-1
    254 rdf:type schema:CreativeWork
    255 grid-institutes:grid.140139.e schema:alternateName Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba, Japan
    256 schema:name Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba, Japan
    257 rdf:type schema:Organization
    258 grid-institutes:grid.4991.5 schema:alternateName Atmospheric, Oceanic and Planetary Physics, University of Oxford, Parks Rd, OX1 3PU, Oxford, UK
    259 Environmental Change Institute, School of Geography and the Environment, University of Oxford, South Parks Road, OX1 3QY, Oxford, UK
    260 Oxford e-Research Centre, Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ, Oxford, UK
    261 schema:name Atmospheric, Oceanic and Planetary Physics, University of Oxford, Parks Rd, OX1 3PU, Oxford, UK
    262 Environmental Change Institute, School of Geography and the Environment, University of Oxford, South Parks Road, OX1 3QY, Oxford, UK
    263 Oxford e-Research Centre, Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ, Oxford, UK
    264 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...