A Euro-Mediterranean tree-ring reconstruction of the winter NAO index since 910 C.E. View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-05

AUTHORS

Edward R. Cook, Yochanan Kushnir, Jason E. Smerdon, A. Park Williams, Kevin J. Anchukaitis, Eugene R. Wahl

ABSTRACT

We develop a new reconstruction of the winter North Atlantic Oscillation (NAO) index using a network of 97 Euro-Mediterranean tree-ring series. The reconstruction covers the period 910–2018 C.E., making it the longest annually resolved estimate of winter NAO variability available. We use nested correlation-weighted principal components regression and the Maximum Entropy Bootstrap method to generate a 2400-member ensemble of reconstructions for estimating the final reconstruction and its quantile uncertainties. Extensive validation testing of the new reconstruction against data withheld from the calibration exercise demonstrates its skill. The skill level of the new reconstruction is also an improvement over two NAO reconstructions published earlier. Spectral analyses indicate that the new reconstruction behaves like a ‘white noise’ process with intermittent band-limited power, suggesting that the winter NAO is stochastically forced. The ‘white noise’ properties of our reconstruction are also shown to be consistent with the spectral properties of long instrumental NAO indices extending back to 1781 and NAO indices extracted from a large number of forced climate model runs covering the last millennium. In contrast, an annually resolved multi-proxy NAO reconstruction of comparable length, based in part on speleothem data, behaves more like externally forced ‘red noise’ process, which is inconsistent with our reconstruction, long observations, and forced model runs. More... »

PAGES

1567-1580

References to SciGraph publications

  • 2014-05-04. Multi-site, multivariate weather generator using maximum entropy bootstrap in CLIMATE DYNAMICS
  • 2002-03. Reconstruction of sea level pressure fields over the Eastern North Atlantic and Europe back to 1500 in CLIMATE DYNAMICS
  • 1999-03. Oceanic forcing of the wintertime North Atlantic Oscillation and European climate in NATURE
  • 2013-09-19. Stochastically-forced multidecadal variability in the North Atlantic: a model study in CLIMATE DYNAMICS
  • 2012-12-05. Tree-ring reconstructed summer temperature anomalies for temperate East Asia since 800 C.E. in CLIMATE DYNAMICS
  • 2014-07-31. Contrasting interannual and multidecadal NAO variability in CLIMATE DYNAMICS
  • 2007-08-31. Robustness of the Mann, Bradley, Hughes reconstruction of Northern Hemisphere surface temperatures: Examination of criticisms based on the nature and processing of proxy climate evidence in CLIMATIC CHANGE
  • 2010-11-04. Changes of interannual NAO variability in response to greenhouse gases forcing in CLIMATE DYNAMICS
  • 2004-05-04. Simulating the winter North Atlantic Oscillation: the roles of internal variability and greenhouse gas forcing in CLIMATE DYNAMICS
  • 2019-01-21. Insignificant influence of the 11-year solar cycle on the North Atlantic Oscillation in NATURE GEOSCIENCE
  • 2015-09-15. Solar forcing synchronizes decadal North Atlantic climate variability in NATURE COMMUNICATIONS
  • 2000-10. A thousand year speleothem proxy record of North Atlantic climate from Scotland in CLIMATE DYNAMICS
  • 2015-06-11. A composite annual-resolution stalagmite record of North Atlantic climate over the last three millennia in SCIENTIFIC REPORTS
  • 2016-09-27. Coherency of late Holocene European speleothem δ18O records linked to North Atlantic Ocean circulation in CLIMATE DYNAMICS
  • 2011-10-29. The relative contributions of radiative forcing and internal climate variability to the late 20th Century winter drying of the Mediterranean region in CLIMATE DYNAMICS
  • 2015-07-01. A model-tested North Atlantic Oscillation reconstruction for the past millennium in NATURE
  • 1999-09. Evaluation of the North Atlantic Oscillation as simulated by a coupled climate model in CLIMATE DYNAMICS
  • 1997-07. DECADAL VARIATIONS IN CLIMATE ASSOCIATED WITH THE NORTH ATLANTIC OSCILLATION in CLIMATIC CHANGE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00382-019-04696-2

    DOI

    http://dx.doi.org/10.1007/s00382-019-04696-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112540593


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atmospheric Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oceanography", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Geography and Environmental Geoscience", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Lamont-Doherty Earth Observatory, 61 Route 9W, 10964, Palisades, NY, USA", 
              "id": "http://www.grid.ac/institutes/grid.473157.3", 
              "name": [
                "Lamont-Doherty Earth Observatory, 61 Route 9W, 10964, Palisades, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cook", 
            "givenName": "Edward R.", 
            "id": "sg:person.01104173064.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104173064.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Lamont-Doherty Earth Observatory, 61 Route 9W, 10964, Palisades, NY, USA", 
              "id": "http://www.grid.ac/institutes/grid.473157.3", 
              "name": [
                "Lamont-Doherty Earth Observatory, 61 Route 9W, 10964, Palisades, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kushnir", 
            "givenName": "Yochanan", 
            "id": "sg:person.01047311444.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047311444.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Lamont-Doherty Earth Observatory, 61 Route 9W, 10964, Palisades, NY, USA", 
              "id": "http://www.grid.ac/institutes/grid.473157.3", 
              "name": [
                "Lamont-Doherty Earth Observatory, 61 Route 9W, 10964, Palisades, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Smerdon", 
            "givenName": "Jason E.", 
            "id": "sg:person.0620774552.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620774552.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Lamont-Doherty Earth Observatory, 61 Route 9W, 10964, Palisades, NY, USA", 
              "id": "http://www.grid.ac/institutes/grid.473157.3", 
              "name": [
                "Lamont-Doherty Earth Observatory, 61 Route 9W, 10964, Palisades, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Williams", 
            "givenName": "A. Park", 
            "id": "sg:person.01253143066.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253143066.98"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Geography and Development and Laboratory of Tree-Ring Research, University of Arizona, 85721, Tucson, AZ, USA", 
              "id": "http://www.grid.ac/institutes/grid.134563.6", 
              "name": [
                "School of Geography and Development and Laboratory of Tree-Ring Research, University of Arizona, 85721, Tucson, AZ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Anchukaitis", 
            "givenName": "Kevin J.", 
            "id": "sg:person.013204527225.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013204527225.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "World Data Service for Paleoclimatology, NOAA National Centers for Environmental Information, 325 Broadway Street, 80305, Boulder, CO, USA", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "World Data Service for Paleoclimatology, NOAA National Centers for Environmental Information, 325 Broadway Street, 80305, Boulder, CO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wahl", 
            "givenName": "Eugene R.", 
            "id": "sg:person.012375463505.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012375463505.03"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/a:1005314315270", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035234324", 
              "https://doi.org/10.1023/a:1005314315270"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-012-1611-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006901195", 
              "https://doi.org/10.1007/s00382-012-1611-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14518", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010972727", 
              "https://doi.org/10.1038/nature14518"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-013-1930-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030780424", 
              "https://doi.org/10.1007/s00382-013-1930-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/18648", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010854918", 
              "https://doi.org/10.1038/18648"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-011-1221-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038888256", 
              "https://doi.org/10.1007/s00382-011-1221-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41561-018-0293-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111418052", 
              "https://doi.org/10.1038/s41561-018-0293-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms9268", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017312740", 
              "https://doi.org/10.1038/ncomms9268"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-010-0936-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050887221", 
              "https://doi.org/10.1007/s00382-010-0936-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-016-3360-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025117732", 
              "https://doi.org/10.1007/s00382-016-3360-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003820050310", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043505050", 
              "https://doi.org/10.1007/s003820050310"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-004-0405-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008302447", 
              "https://doi.org/10.1007/s00382-004-0405-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003820000077", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012494891", 
              "https://doi.org/10.1007/s003820000077"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-006-9105-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042986970", 
              "https://doi.org/10.1007/s10584-006-9105-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-001-0196-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011538049", 
              "https://doi.org/10.1007/s00382-001-0196-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-014-2237-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039544609", 
              "https://doi.org/10.1007/s00382-014-2237-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep10307", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004523211", 
              "https://doi.org/10.1038/srep10307"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-014-2157-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031243898", 
              "https://doi.org/10.1007/s00382-014-2157-x"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03-05", 
        "datePublishedReg": "2019-03-05", 
        "description": "We develop a new reconstruction of the winter North Atlantic Oscillation (NAO) index using a network of 97\u00a0Euro-Mediterranean tree-ring series. The reconstruction covers the period 910\u20132018\u00a0C.E., making it the longest annually resolved estimate of winter NAO variability available. We use nested correlation-weighted principal components regression and the Maximum Entropy Bootstrap method to generate a 2400-member ensemble of reconstructions for estimating the final reconstruction and its quantile uncertainties. Extensive validation testing of the new reconstruction against data withheld from the calibration exercise demonstrates its skill. The skill level of the new reconstruction is also an improvement over two NAO reconstructions published earlier. Spectral analyses indicate that the new reconstruction behaves like a \u2018white noise\u2019 process with intermittent band-limited power, suggesting that the winter NAO is stochastically forced. The \u2018white noise\u2019 properties of our reconstruction are also shown to be consistent with the spectral properties of long instrumental NAO indices extending back to 1781 and NAO indices extracted from a large number of forced climate model runs covering the last millennium. In contrast, an annually resolved multi-proxy NAO reconstruction of comparable length, based in part on speleothem data, behaves more like externally forced \u2018red noise\u2019 process, which is inconsistent with our reconstruction, long observations, and forced model runs.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00382-019-04696-2", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7057112", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4058721", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4728118", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6935217", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4058741", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1049631", 
            "issn": [
              "0930-7575", 
              "1432-0894"
            ], 
            "name": "Climate Dynamics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3-4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "53"
          }
        ], 
        "keywords": [
          "new reconstruction", 
          "NAO index", 
          "NAO reconstructions", 
          "model runs", 
          "winter North Atlantic Oscillation (NAO) index", 
          "North Atlantic Oscillation index", 
          "climate model runs", 
          "tree-ring reconstructions", 
          "winter NAO index", 
          "tree-ring series", 
          "Oscillation Index", 
          "NAO variability", 
          "winter NAO", 
          "last millennium", 
          "speleothem data", 
          "red noise", 
          "C.E.", 
          "calibration exercise", 
          "spectral analysis", 
          "reconstruction", 
          "longer observation", 
          "NAO", 
          "variability", 
          "millennium", 
          "comparable length", 
          "principal component regression", 
          "ensemble", 
          "estimates", 
          "uncertainty", 
          "data", 
          "run", 
          "component regression", 
          "index", 
          "process", 
          "part", 
          "series", 
          "final reconstruction", 
          "spectral properties", 
          "large number", 
          "contrast", 
          "bootstrap method", 
          "extensive validation testing", 
          "validation testing", 
          "analysis", 
          "white noise", 
          "properties", 
          "levels", 
          "noise", 
          "network", 
          "regression", 
          "skills", 
          "length", 
          "skill level", 
          "method", 
          "quantile uncertainty", 
          "improvement", 
          "power", 
          "number", 
          "testing", 
          "band-limited power", 
          "observations", 
          "exercise"
        ], 
        "name": "A Euro-Mediterranean tree-ring reconstruction of the winter NAO index since 910 C.E.", 
        "pagination": "1567-1580", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112540593"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00382-019-04696-2"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00382-019-04696-2", 
          "https://app.dimensions.ai/details/publication/pub.1112540593"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:39", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_822.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00382-019-04696-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-019-04696-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-019-04696-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-019-04696-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-019-04696-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    250 TRIPLES      21 PREDICATES      106 URIs      78 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00382-019-04696-2 schema:about anzsrc-for:04
    2 anzsrc-for:0401
    3 anzsrc-for:0405
    4 anzsrc-for:0406
    5 schema:author N99af7014721e44eb987a35325768b9f7
    6 schema:citation sg:pub.10.1007/s00382-001-0196-6
    7 sg:pub.10.1007/s00382-004-0405-1
    8 sg:pub.10.1007/s00382-010-0936-6
    9 sg:pub.10.1007/s00382-011-1221-z
    10 sg:pub.10.1007/s00382-012-1611-x
    11 sg:pub.10.1007/s00382-013-1930-6
    12 sg:pub.10.1007/s00382-014-2157-x
    13 sg:pub.10.1007/s00382-014-2237-y
    14 sg:pub.10.1007/s00382-016-3360-8
    15 sg:pub.10.1007/s003820000077
    16 sg:pub.10.1007/s003820050310
    17 sg:pub.10.1007/s10584-006-9105-7
    18 sg:pub.10.1023/a:1005314315270
    19 sg:pub.10.1038/18648
    20 sg:pub.10.1038/nature14518
    21 sg:pub.10.1038/ncomms9268
    22 sg:pub.10.1038/s41561-018-0293-3
    23 sg:pub.10.1038/srep10307
    24 schema:datePublished 2019-03-05
    25 schema:datePublishedReg 2019-03-05
    26 schema:description We develop a new reconstruction of the winter North Atlantic Oscillation (NAO) index using a network of 97 Euro-Mediterranean tree-ring series. The reconstruction covers the period 910–2018 C.E., making it the longest annually resolved estimate of winter NAO variability available. We use nested correlation-weighted principal components regression and the Maximum Entropy Bootstrap method to generate a 2400-member ensemble of reconstructions for estimating the final reconstruction and its quantile uncertainties. Extensive validation testing of the new reconstruction against data withheld from the calibration exercise demonstrates its skill. The skill level of the new reconstruction is also an improvement over two NAO reconstructions published earlier. Spectral analyses indicate that the new reconstruction behaves like a ‘white noise’ process with intermittent band-limited power, suggesting that the winter NAO is stochastically forced. The ‘white noise’ properties of our reconstruction are also shown to be consistent with the spectral properties of long instrumental NAO indices extending back to 1781 and NAO indices extracted from a large number of forced climate model runs covering the last millennium. In contrast, an annually resolved multi-proxy NAO reconstruction of comparable length, based in part on speleothem data, behaves more like externally forced ‘red noise’ process, which is inconsistent with our reconstruction, long observations, and forced model runs.
    27 schema:genre article
    28 schema:isAccessibleForFree false
    29 schema:isPartOf N9c36617a0f194db79a15ab9e9a47e546
    30 Nbee40c97d01248899c0c6c4a4b661cb1
    31 sg:journal.1049631
    32 schema:keywords C.E.
    33 NAO
    34 NAO index
    35 NAO reconstructions
    36 NAO variability
    37 North Atlantic Oscillation index
    38 Oscillation Index
    39 analysis
    40 band-limited power
    41 bootstrap method
    42 calibration exercise
    43 climate model runs
    44 comparable length
    45 component regression
    46 contrast
    47 data
    48 ensemble
    49 estimates
    50 exercise
    51 extensive validation testing
    52 final reconstruction
    53 improvement
    54 index
    55 large number
    56 last millennium
    57 length
    58 levels
    59 longer observation
    60 method
    61 millennium
    62 model runs
    63 network
    64 new reconstruction
    65 noise
    66 number
    67 observations
    68 part
    69 power
    70 principal component regression
    71 process
    72 properties
    73 quantile uncertainty
    74 reconstruction
    75 red noise
    76 regression
    77 run
    78 series
    79 skill level
    80 skills
    81 spectral analysis
    82 spectral properties
    83 speleothem data
    84 testing
    85 tree-ring reconstructions
    86 tree-ring series
    87 uncertainty
    88 validation testing
    89 variability
    90 white noise
    91 winter NAO
    92 winter NAO index
    93 winter North Atlantic Oscillation (NAO) index
    94 schema:name A Euro-Mediterranean tree-ring reconstruction of the winter NAO index since 910 C.E.
    95 schema:pagination 1567-1580
    96 schema:productId N6ec6ad348bb245aeb6d777557c8f46f7
    97 Neb50395b131c4621aa85e518904d26f5
    98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112540593
    99 https://doi.org/10.1007/s00382-019-04696-2
    100 schema:sdDatePublished 2022-12-01T06:39
    101 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    102 schema:sdPublisher N61b7186c92c14dec9ba9be610b9c6d3b
    103 schema:url https://doi.org/10.1007/s00382-019-04696-2
    104 sgo:license sg:explorer/license/
    105 sgo:sdDataset articles
    106 rdf:type schema:ScholarlyArticle
    107 N1d397c65948449b2bf7f738dd2042e3d rdf:first sg:person.012375463505.03
    108 rdf:rest rdf:nil
    109 N3196176f9b3d4327a30fb5839b3d4c95 rdf:first sg:person.0620774552.58
    110 rdf:rest N36f75354e7594905a2f64daa412c1ee5
    111 N36f75354e7594905a2f64daa412c1ee5 rdf:first sg:person.01253143066.98
    112 rdf:rest N5f81d29ba6e94c9cada2733bea53df7d
    113 N5f81d29ba6e94c9cada2733bea53df7d rdf:first sg:person.013204527225.25
    114 rdf:rest N1d397c65948449b2bf7f738dd2042e3d
    115 N61b7186c92c14dec9ba9be610b9c6d3b schema:name Springer Nature - SN SciGraph project
    116 rdf:type schema:Organization
    117 N6ec6ad348bb245aeb6d777557c8f46f7 schema:name dimensions_id
    118 schema:value pub.1112540593
    119 rdf:type schema:PropertyValue
    120 N8d1172943aac43a38ac8f1ff9bba40c7 rdf:first sg:person.01047311444.10
    121 rdf:rest N3196176f9b3d4327a30fb5839b3d4c95
    122 N99af7014721e44eb987a35325768b9f7 rdf:first sg:person.01104173064.88
    123 rdf:rest N8d1172943aac43a38ac8f1ff9bba40c7
    124 N9c36617a0f194db79a15ab9e9a47e546 schema:issueNumber 3-4
    125 rdf:type schema:PublicationIssue
    126 Nbee40c97d01248899c0c6c4a4b661cb1 schema:volumeNumber 53
    127 rdf:type schema:PublicationVolume
    128 Neb50395b131c4621aa85e518904d26f5 schema:name doi
    129 schema:value 10.1007/s00382-019-04696-2
    130 rdf:type schema:PropertyValue
    131 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    132 schema:name Earth Sciences
    133 rdf:type schema:DefinedTerm
    134 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
    135 schema:name Atmospheric Sciences
    136 rdf:type schema:DefinedTerm
    137 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
    138 schema:name Oceanography
    139 rdf:type schema:DefinedTerm
    140 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
    141 schema:name Physical Geography and Environmental Geoscience
    142 rdf:type schema:DefinedTerm
    143 sg:grant.4058721 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-019-04696-2
    144 rdf:type schema:MonetaryGrant
    145 sg:grant.4058741 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-019-04696-2
    146 rdf:type schema:MonetaryGrant
    147 sg:grant.4728118 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-019-04696-2
    148 rdf:type schema:MonetaryGrant
    149 sg:grant.6935217 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-019-04696-2
    150 rdf:type schema:MonetaryGrant
    151 sg:grant.7057112 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-019-04696-2
    152 rdf:type schema:MonetaryGrant
    153 sg:journal.1049631 schema:issn 0930-7575
    154 1432-0894
    155 schema:name Climate Dynamics
    156 schema:publisher Springer Nature
    157 rdf:type schema:Periodical
    158 sg:person.01047311444.10 schema:affiliation grid-institutes:grid.473157.3
    159 schema:familyName Kushnir
    160 schema:givenName Yochanan
    161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047311444.10
    162 rdf:type schema:Person
    163 sg:person.01104173064.88 schema:affiliation grid-institutes:grid.473157.3
    164 schema:familyName Cook
    165 schema:givenName Edward R.
    166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104173064.88
    167 rdf:type schema:Person
    168 sg:person.012375463505.03 schema:affiliation grid-institutes:None
    169 schema:familyName Wahl
    170 schema:givenName Eugene R.
    171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012375463505.03
    172 rdf:type schema:Person
    173 sg:person.01253143066.98 schema:affiliation grid-institutes:grid.473157.3
    174 schema:familyName Williams
    175 schema:givenName A. Park
    176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253143066.98
    177 rdf:type schema:Person
    178 sg:person.013204527225.25 schema:affiliation grid-institutes:grid.134563.6
    179 schema:familyName Anchukaitis
    180 schema:givenName Kevin J.
    181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013204527225.25
    182 rdf:type schema:Person
    183 sg:person.0620774552.58 schema:affiliation grid-institutes:grid.473157.3
    184 schema:familyName Smerdon
    185 schema:givenName Jason E.
    186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620774552.58
    187 rdf:type schema:Person
    188 sg:pub.10.1007/s00382-001-0196-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011538049
    189 https://doi.org/10.1007/s00382-001-0196-6
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1007/s00382-004-0405-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008302447
    192 https://doi.org/10.1007/s00382-004-0405-1
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1007/s00382-010-0936-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050887221
    195 https://doi.org/10.1007/s00382-010-0936-6
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1007/s00382-011-1221-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1038888256
    198 https://doi.org/10.1007/s00382-011-1221-z
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/s00382-012-1611-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006901195
    201 https://doi.org/10.1007/s00382-012-1611-x
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1007/s00382-013-1930-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030780424
    204 https://doi.org/10.1007/s00382-013-1930-6
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1007/s00382-014-2157-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031243898
    207 https://doi.org/10.1007/s00382-014-2157-x
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1007/s00382-014-2237-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1039544609
    210 https://doi.org/10.1007/s00382-014-2237-y
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1007/s00382-016-3360-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025117732
    213 https://doi.org/10.1007/s00382-016-3360-8
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1007/s003820000077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012494891
    216 https://doi.org/10.1007/s003820000077
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1007/s003820050310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043505050
    219 https://doi.org/10.1007/s003820050310
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1007/s10584-006-9105-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042986970
    222 https://doi.org/10.1007/s10584-006-9105-7
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1023/a:1005314315270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035234324
    225 https://doi.org/10.1023/a:1005314315270
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1038/18648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010854918
    228 https://doi.org/10.1038/18648
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1038/nature14518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010972727
    231 https://doi.org/10.1038/nature14518
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1038/ncomms9268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017312740
    234 https://doi.org/10.1038/ncomms9268
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1038/s41561-018-0293-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111418052
    237 https://doi.org/10.1038/s41561-018-0293-3
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1038/srep10307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004523211
    240 https://doi.org/10.1038/srep10307
    241 rdf:type schema:CreativeWork
    242 grid-institutes:None schema:alternateName World Data Service for Paleoclimatology, NOAA National Centers for Environmental Information, 325 Broadway Street, 80305, Boulder, CO, USA
    243 schema:name World Data Service for Paleoclimatology, NOAA National Centers for Environmental Information, 325 Broadway Street, 80305, Boulder, CO, USA
    244 rdf:type schema:Organization
    245 grid-institutes:grid.134563.6 schema:alternateName School of Geography and Development and Laboratory of Tree-Ring Research, University of Arizona, 85721, Tucson, AZ, USA
    246 schema:name School of Geography and Development and Laboratory of Tree-Ring Research, University of Arizona, 85721, Tucson, AZ, USA
    247 rdf:type schema:Organization
    248 grid-institutes:grid.473157.3 schema:alternateName Lamont-Doherty Earth Observatory, 61 Route 9W, 10964, Palisades, NY, USA
    249 schema:name Lamont-Doherty Earth Observatory, 61 Route 9W, 10964, Palisades, NY, USA
    250 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...