Bias adjustment and ensemble recalibration methods for seasonal forecasting: a comprehensive intercomparison using the C3S dataset View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-05

AUTHORS

R. Manzanas, J. M. Gutiérrez, J. Bhend, S. Hemri, F. J. Doblas-Reyes, V. Torralba, E. Penabad, A. Brookshaw

ABSTRACT

This work presents a comprehensive intercomparison of different alternatives for the calibration of seasonal forecasts, ranging from simple bias adjustment (BA)—e.g. quantile mapping—to more sophisticated ensemble recalibration (RC) methods—e.g. non-homogeneous Gaussian regression, which build on the temporal correspondence between the climate model and the corresponding observations to generate reliable predictions. To be as critical as possible, we validate the raw model and the calibrated forecasts in terms of a number of metrics which take into account different aspects of forecast quality (association, accuracy, discrimination and reliability). We focus on one-month lead forecasts of precipitation and temperature from four state-of-the-art seasonal forecasting systems, three of them included in the Copernicus Climate Change Service dataset (ECMWF-SEAS5, UK Met Office-GloSea5 and Météo France-System5) for boreal winter and summer over two illustrative regions with different skill characteristics (Europe and Southeast Asia). Our results indicate that both BA and RC methods effectively correct the large raw model biases, which is of paramount importance for users, particularly when directly using the climate model outputs to run impact models, or when computing climate indices depending on absolute values/thresholds. However, except for particular regions and/or seasons (typically with high skill), there is only marginal added value—with respect to the raw model outputs—beyond this bias removal. For those cases, RC methods can outperform BA ones, mostly due to an improvement in reliability. Finally, we also show that whereas an increase in the number of members only modestly affects the results obtained from calibration, longer hindcast periods lead to improved forecast quality, particularly for RC methods. More... »

PAGES

1-19

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00382-019-04640-4

DOI

http://dx.doi.org/10.1007/s00382-019-04640-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111934813


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Physics of Cantabria", 
          "id": "https://www.grid.ac/institutes/grid.469953.4", 
          "name": [
            "Meteorology Group, Institute of Physics of Cantabria (IFCA), CSIC-University of Cantabria, 39005, Santander, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Manzanas", 
        "givenName": "R.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics of Cantabria", 
          "id": "https://www.grid.ac/institutes/grid.469953.4", 
          "name": [
            "Meteorology Group, Institute of Physics of Cantabria (IFCA), CSIC-University of Cantabria, 39005, Santander, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guti\u00e9rrez", 
        "givenName": "J. M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal Office of Meteorology and Climatology", 
          "id": "https://www.grid.ac/institutes/grid.469494.2", 
          "name": [
            "Federal Office of Meteorology and Climatology MeteoSwiss, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhend", 
        "givenName": "J.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal Office of Meteorology and Climatology", 
          "id": "https://www.grid.ac/institutes/grid.469494.2", 
          "name": [
            "Federal Office of Meteorology and Climatology MeteoSwiss, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hemri", 
        "givenName": "S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituci\u00f3 Catalana de Recerca i Estudis Avan\u00e7ats", 
          "id": "https://www.grid.ac/institutes/grid.425902.8", 
          "name": [
            "Barcelona Supercomputing Center (BSC), Barcelona, Spain", 
            "ICREA, Pg. Llu\u00eds Companys, 23 08010, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Doblas-Reyes", 
        "givenName": "F. J.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Barcelona Supercomputing Center", 
          "id": "https://www.grid.ac/institutes/grid.10097.3f", 
          "name": [
            "Barcelona Supercomputing Center (BSC), Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Torralba", 
        "givenName": "V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Centre for Medium-Range Weather Forecasts", 
          "id": "https://www.grid.ac/institutes/grid.42781.38", 
          "name": [
            "European Centre for Medium-Range Weather Forecasts (ECMWF), Reading, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Penabad", 
        "givenName": "E.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Centre for Medium-Range Weather Forecasts", 
          "id": "https://www.grid.ac/institutes/grid.42781.38", 
          "name": [
            "European Centre for Medium-Range Weather Forecasts (ECMWF), Reading, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brookshaw", 
        "givenName": "A.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/2014gl061146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000298037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/mwr-d-11-00075.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000390037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.2975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006924236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(1994)007<1513:lsstcp>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011785264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0477(1999)080<2313:sotehs>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012066826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/mwr3402.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013837450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsif.2013.1162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014506299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1600-0870.2005.00104.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015724036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0450(1969)008<0985:assfpf>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018743296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2013jd020680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019603863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0450(1973)012<0595:anvpot>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023865831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(2003)016<4145:otrsop>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025442885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00704-009-0134-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027965373", 
          "https://doi.org/10.1007/s00704-009-0134-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2008mwr2431.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029104429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0434(2000)015<0559:dotcrp>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031058864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/mwr2904.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031533304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/mwr2904.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031533304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2009rg000314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032135615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2009rg000314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032135615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gloplacha.2016.12.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033055634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gloplacha.2016.12.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033055634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gloplacha.2016.12.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033055634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-013-1683-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033076144", 
          "https://doi.org/10.1007/s00382-013-1683-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gloplacha.2006.11.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038421763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039601605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/wcc.217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043013835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2008mwr2773.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051378925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00401706.1968.10490530", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058283932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-15-0868.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063455258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/mwr-d-14-00210.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063455969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/15-aoas843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064395040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3402/tellusa.v57i3.14665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071280277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3402/tellusa.v57i3.14672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071280284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jamc-d-16-0204.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083939687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-017-3668-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084517707", 
          "https://doi.org/10.1007/s00382-017-3668-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-017-3668-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084517707", 
          "https://doi.org/10.1007/s00382-017-3668-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-16-0652.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084787621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cliser.2017.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084917017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cliser.2017.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086044292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2017.08.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091143478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/joc.5249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091517741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate3418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092504071", 
          "https://doi.org/10.1038/nclimate3418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate3418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092504071", 
          "https://doi.org/10.1038/nclimate3418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cliser.2017.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093125547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/joc.5462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101718699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-018-4226-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103924891", 
          "https://doi.org/10.1007/s00382-018-4226-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-018-4226-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103924891", 
          "https://doi.org/10.1007/s00382-018-4226-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-018-4226-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103924891", 
          "https://doi.org/10.1007/s00382-018-4226-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-018-4226-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103924891", 
          "https://doi.org/10.1007/s00382-018-4226-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envsoft.2018.09.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107161595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/joc.5878", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107393014"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-05", 
    "datePublishedReg": "2019-02-05", 
    "description": "This work presents a comprehensive intercomparison of different alternatives for the calibration of seasonal forecasts, ranging from simple bias adjustment (BA)\u2014e.g. quantile mapping\u2014to more sophisticated ensemble recalibration (RC) methods\u2014e.g. non-homogeneous Gaussian regression, which build on the temporal correspondence between the climate model and the corresponding observations to generate reliable predictions. To be as critical as possible, we validate the raw model and the calibrated forecasts in terms of a number of metrics which take into account different aspects of forecast quality (association, accuracy, discrimination and reliability). We focus on one-month lead forecasts of precipitation and temperature from four state-of-the-art seasonal forecasting systems, three of them included in the Copernicus Climate Change Service dataset (ECMWF-SEAS5, UK Met Office-GloSea5 and M\u00e9t\u00e9o France-System5) for boreal winter and summer over two illustrative regions with different skill characteristics (Europe and Southeast Asia). Our results indicate that both BA and RC methods effectively correct the large raw model biases, which is of paramount importance for users, particularly when directly using the climate model outputs to run impact models, or when computing climate indices depending on absolute values/thresholds. However, except for particular regions and/or seasons (typically with high skill), there is only marginal added value\u2014with respect to the raw model outputs\u2014beyond this bias removal. For those cases, RC methods can outperform BA ones, mostly due to an improvement in reliability. Finally, we also show that whereas an increase in the number of members only modestly affects the results obtained from calibration, longer hindcast periods lead to improved forecast quality, particularly for RC methods.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00382-019-04640-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "type": "Periodical"
      }
    ], 
    "name": "Bias adjustment and ensemble recalibration methods for seasonal forecasting: a comprehensive intercomparison using the C3S dataset", 
    "pagination": "1-19", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5b3c5badfa3ad5aebf0e05548d9f07c5161704e53afd76be85a165054c554fd9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00382-019-04640-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111934813"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00382-019-04640-4", 
      "https://app.dimensions.ai/details/publication/pub.1111934813"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000331_0000000331/records_105412_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00382-019-04640-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-019-04640-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-019-04640-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-019-04640-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-019-04640-4'


 

This table displays all metadata directly associated to this object as RDF triples.

240 TRIPLES      21 PREDICATES      66 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00382-019-04640-4 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author N27c81299a7e74712b7c67bb57f979f75
4 schema:citation sg:pub.10.1007/s00382-013-1683-2
5 sg:pub.10.1007/s00382-017-3668-z
6 sg:pub.10.1007/s00382-018-4226-z
7 sg:pub.10.1007/s00704-009-0134-9
8 sg:pub.10.1038/nclimate3418
9 https://doi.org/10.1002/2013jd020680
10 https://doi.org/10.1002/2014gl061146
11 https://doi.org/10.1002/joc.5249
12 https://doi.org/10.1002/joc.5462
13 https://doi.org/10.1002/joc.5878
14 https://doi.org/10.1002/qj.2975
15 https://doi.org/10.1002/qj.828
16 https://doi.org/10.1002/wcc.217
17 https://doi.org/10.1016/j.cliser.2017.04.001
18 https://doi.org/10.1016/j.cliser.2017.06.004
19 https://doi.org/10.1016/j.cliser.2017.11.003
20 https://doi.org/10.1016/j.envsoft.2018.09.009
21 https://doi.org/10.1016/j.gloplacha.2006.11.030
22 https://doi.org/10.1016/j.gloplacha.2016.12.009
23 https://doi.org/10.1016/j.scitotenv.2017.08.010
24 https://doi.org/10.1029/2009rg000314
25 https://doi.org/10.1080/00401706.1968.10490530
26 https://doi.org/10.1098/rsif.2013.1162
27 https://doi.org/10.1111/j.1600-0870.2005.00104.x
28 https://doi.org/10.1175/1520-0434(2000)015<0559:dotcrp>2.0.co;2
29 https://doi.org/10.1175/1520-0442(1994)007<1513:lsstcp>2.0.co;2
30 https://doi.org/10.1175/1520-0442(2003)016<4145:otrsop>2.0.co;2
31 https://doi.org/10.1175/1520-0450(1969)008<0985:assfpf>2.0.co;2
32 https://doi.org/10.1175/1520-0450(1973)012<0595:anvpot>2.0.co;2
33 https://doi.org/10.1175/1520-0477(1999)080<2313:sotehs>2.0.co;2
34 https://doi.org/10.1175/2008mwr2431.1
35 https://doi.org/10.1175/2008mwr2773.1
36 https://doi.org/10.1175/jamc-d-16-0204.1
37 https://doi.org/10.1175/jcli-d-15-0868.1
38 https://doi.org/10.1175/jcli-d-16-0652.1
39 https://doi.org/10.1175/mwr-d-11-00075.1
40 https://doi.org/10.1175/mwr-d-14-00210.1
41 https://doi.org/10.1175/mwr2904.1
42 https://doi.org/10.1175/mwr3402.1
43 https://doi.org/10.1214/15-aoas843
44 https://doi.org/10.3402/tellusa.v57i3.14665
45 https://doi.org/10.3402/tellusa.v57i3.14672
46 schema:datePublished 2019-02-05
47 schema:datePublishedReg 2019-02-05
48 schema:description This work presents a comprehensive intercomparison of different alternatives for the calibration of seasonal forecasts, ranging from simple bias adjustment (BA)—e.g. quantile mapping—to more sophisticated ensemble recalibration (RC) methods—e.g. non-homogeneous Gaussian regression, which build on the temporal correspondence between the climate model and the corresponding observations to generate reliable predictions. To be as critical as possible, we validate the raw model and the calibrated forecasts in terms of a number of metrics which take into account different aspects of forecast quality (association, accuracy, discrimination and reliability). We focus on one-month lead forecasts of precipitation and temperature from four state-of-the-art seasonal forecasting systems, three of them included in the Copernicus Climate Change Service dataset (ECMWF-SEAS5, UK Met Office-GloSea5 and Météo France-System5) for boreal winter and summer over two illustrative regions with different skill characteristics (Europe and Southeast Asia). Our results indicate that both BA and RC methods effectively correct the large raw model biases, which is of paramount importance for users, particularly when directly using the climate model outputs to run impact models, or when computing climate indices depending on absolute values/thresholds. However, except for particular regions and/or seasons (typically with high skill), there is only marginal added value—with respect to the raw model outputs—beyond this bias removal. For those cases, RC methods can outperform BA ones, mostly due to an improvement in reliability. Finally, we also show that whereas an increase in the number of members only modestly affects the results obtained from calibration, longer hindcast periods lead to improved forecast quality, particularly for RC methods.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree false
52 schema:isPartOf sg:journal.1049631
53 schema:name Bias adjustment and ensemble recalibration methods for seasonal forecasting: a comprehensive intercomparison using the C3S dataset
54 schema:pagination 1-19
55 schema:productId N021a240a1c3e473ebfce130e44756a53
56 N69f4e5720d83428880a3f3285a0d32d4
57 N95d93713e94d4080b106fca8aa3167c4
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111934813
59 https://doi.org/10.1007/s00382-019-04640-4
60 schema:sdDatePublished 2019-04-11T09:02
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N2b20448da6624d85b0f3bf50f1bb8d62
63 schema:url https://link.springer.com/10.1007%2Fs00382-019-04640-4
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N021a240a1c3e473ebfce130e44756a53 schema:name doi
68 schema:value 10.1007/s00382-019-04640-4
69 rdf:type schema:PropertyValue
70 N0829548494fe41e488584680e029238b rdf:first N308061089e894dde9107ffe3a5055ace
71 rdf:rest N7561d7ad1c5e47b0a068e764bdb0087e
72 N08a6b98b06ff441abbaa1e1f92441fa7 rdf:first N14c6f2919a3b46b5a9e8af9f9f46be72
73 rdf:rest N8a36d471e6cc45358f77317182035439
74 N14c6f2919a3b46b5a9e8af9f9f46be72 schema:affiliation https://www.grid.ac/institutes/grid.469494.2
75 schema:familyName Hemri
76 schema:givenName S.
77 rdf:type schema:Person
78 N25f101bf182047d7bbab4c2b1591d6fb schema:affiliation https://www.grid.ac/institutes/grid.42781.38
79 schema:familyName Brookshaw
80 schema:givenName A.
81 rdf:type schema:Person
82 N27c81299a7e74712b7c67bb57f979f75 rdf:first Naade57e69d5f496bbbadd3e4f5017ea1
83 rdf:rest Ndd9048414b334db486294c2afc6308d7
84 N2b20448da6624d85b0f3bf50f1bb8d62 schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 N308061089e894dde9107ffe3a5055ace schema:affiliation https://www.grid.ac/institutes/grid.42781.38
87 schema:familyName Penabad
88 schema:givenName E.
89 rdf:type schema:Person
90 N629d9ca470b348349edd0be0a6fab2a0 schema:affiliation https://www.grid.ac/institutes/grid.469953.4
91 schema:familyName Gutiérrez
92 schema:givenName J. M.
93 rdf:type schema:Person
94 N69f4e5720d83428880a3f3285a0d32d4 schema:name dimensions_id
95 schema:value pub.1111934813
96 rdf:type schema:PropertyValue
97 N7561d7ad1c5e47b0a068e764bdb0087e rdf:first N25f101bf182047d7bbab4c2b1591d6fb
98 rdf:rest rdf:nil
99 N8a36d471e6cc45358f77317182035439 rdf:first Nfe7919c6c48a405a9b2e0c7194d0dd67
100 rdf:rest Na02abfd946c7400c875b5b6ba55cc0b3
101 N95d93713e94d4080b106fca8aa3167c4 schema:name readcube_id
102 schema:value 5b3c5badfa3ad5aebf0e05548d9f07c5161704e53afd76be85a165054c554fd9
103 rdf:type schema:PropertyValue
104 Na02abfd946c7400c875b5b6ba55cc0b3 rdf:first Ncf41952ae21443efb5f0299c67fc6dd9
105 rdf:rest N0829548494fe41e488584680e029238b
106 Naade57e69d5f496bbbadd3e4f5017ea1 schema:affiliation https://www.grid.ac/institutes/grid.469953.4
107 schema:familyName Manzanas
108 schema:givenName R.
109 rdf:type schema:Person
110 Nb29f1d50b2204fb9b169a5cc88e3fa70 schema:affiliation https://www.grid.ac/institutes/grid.469494.2
111 schema:familyName Bhend
112 schema:givenName J.
113 rdf:type schema:Person
114 Ncf2adf9688e64835a8689b0a8398c99c rdf:first Nb29f1d50b2204fb9b169a5cc88e3fa70
115 rdf:rest N08a6b98b06ff441abbaa1e1f92441fa7
116 Ncf41952ae21443efb5f0299c67fc6dd9 schema:affiliation https://www.grid.ac/institutes/grid.10097.3f
117 schema:familyName Torralba
118 schema:givenName V.
119 rdf:type schema:Person
120 Ndd9048414b334db486294c2afc6308d7 rdf:first N629d9ca470b348349edd0be0a6fab2a0
121 rdf:rest Ncf2adf9688e64835a8689b0a8398c99c
122 Nfe7919c6c48a405a9b2e0c7194d0dd67 schema:affiliation https://www.grid.ac/institutes/grid.425902.8
123 schema:familyName Doblas-Reyes
124 schema:givenName F. J.
125 rdf:type schema:Person
126 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
127 schema:name Earth Sciences
128 rdf:type schema:DefinedTerm
129 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
130 schema:name Atmospheric Sciences
131 rdf:type schema:DefinedTerm
132 sg:journal.1049631 schema:issn 0930-7575
133 1432-0894
134 schema:name Climate Dynamics
135 rdf:type schema:Periodical
136 sg:pub.10.1007/s00382-013-1683-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033076144
137 https://doi.org/10.1007/s00382-013-1683-2
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/s00382-017-3668-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1084517707
140 https://doi.org/10.1007/s00382-017-3668-z
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/s00382-018-4226-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1103924891
143 https://doi.org/10.1007/s00382-018-4226-z
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s00704-009-0134-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027965373
146 https://doi.org/10.1007/s00704-009-0134-9
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/nclimate3418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092504071
149 https://doi.org/10.1038/nclimate3418
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1002/2013jd020680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019603863
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1002/2014gl061146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000298037
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1002/joc.5249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091517741
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1002/joc.5462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101718699
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1002/joc.5878 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107393014
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1002/qj.2975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006924236
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1002/qj.828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039601605
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1002/wcc.217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043013835
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.cliser.2017.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084917017
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.cliser.2017.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086044292
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.cliser.2017.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093125547
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.envsoft.2018.09.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107161595
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.gloplacha.2006.11.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038421763
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.gloplacha.2016.12.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033055634
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.scitotenv.2017.08.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091143478
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1029/2009rg000314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032135615
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1080/00401706.1968.10490530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058283932
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1098/rsif.2013.1162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014506299
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1111/j.1600-0870.2005.00104.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015724036
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1175/1520-0434(2000)015<0559:dotcrp>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031058864
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1175/1520-0442(1994)007<1513:lsstcp>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011785264
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1175/1520-0442(2003)016<4145:otrsop>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025442885
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1175/1520-0450(1969)008<0985:assfpf>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018743296
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1175/1520-0450(1973)012<0595:anvpot>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023865831
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1175/1520-0477(1999)080<2313:sotehs>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012066826
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1175/2008mwr2431.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029104429
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1175/2008mwr2773.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051378925
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1175/jamc-d-16-0204.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083939687
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1175/jcli-d-15-0868.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063455258
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1175/jcli-d-16-0652.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084787621
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1175/mwr-d-11-00075.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000390037
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1175/mwr-d-14-00210.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063455969
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1175/mwr2904.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031533304
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1175/mwr3402.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013837450
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1214/15-aoas843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064395040
220 rdf:type schema:CreativeWork
221 https://doi.org/10.3402/tellusa.v57i3.14665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071280277
222 rdf:type schema:CreativeWork
223 https://doi.org/10.3402/tellusa.v57i3.14672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071280284
224 rdf:type schema:CreativeWork
225 https://www.grid.ac/institutes/grid.10097.3f schema:alternateName Barcelona Supercomputing Center
226 schema:name Barcelona Supercomputing Center (BSC), Barcelona, Spain
227 rdf:type schema:Organization
228 https://www.grid.ac/institutes/grid.425902.8 schema:alternateName Institució Catalana de Recerca i Estudis Avançats
229 schema:name Barcelona Supercomputing Center (BSC), Barcelona, Spain
230 ICREA, Pg. Lluís Companys, 23 08010, Barcelona, Spain
231 rdf:type schema:Organization
232 https://www.grid.ac/institutes/grid.42781.38 schema:alternateName European Centre for Medium-Range Weather Forecasts
233 schema:name European Centre for Medium-Range Weather Forecasts (ECMWF), Reading, UK
234 rdf:type schema:Organization
235 https://www.grid.ac/institutes/grid.469494.2 schema:alternateName Federal Office of Meteorology and Climatology
236 schema:name Federal Office of Meteorology and Climatology MeteoSwiss, Zurich, Switzerland
237 rdf:type schema:Organization
238 https://www.grid.ac/institutes/grid.469953.4 schema:alternateName Institute of Physics of Cantabria
239 schema:name Meteorology Group, Institute of Physics of Cantabria (IFCA), CSIC-University of Cantabria, 39005, Santander, Spain
240 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...