Prediction and predictability of tropical intraseasonal convection: seasonal dependence and the Maritime Continent prediction barrier View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-10-11

AUTHORS

Shuguang Wang, Adam H. Sobel, Michael K. Tippett, Fréderic Vitart

ABSTRACT

Prediction and predictability of tropical intraseasonal convection in the WMO subseasonal to seasonal (S2S) forecast database is assessed using the real-time OLR based MJO (ROMI) index. ROMI prediction skill in the S2S models, as measured by the maximum lead time at which the bivariate correlation coefficient between forecasts and observations exceeds 0.6, ranges from ~ 15 to ~ 36 days in boreal winter, which is 5–10 days higher than the MJO circulation prediction skill based on the MJO RMM index. ROMI prediction skill is systematically lower by 5–10 days in summer than in winter. Predictability measures show similar seasonal contrast in the two seasons. These results indicate that intraseasonal convection is inherently less predictable in summer than in winter. Further evaluation of correlation skill assuming either perfect amplitude or perfect phase forecasts indicates that phase bias is the main contributor to skill degradation at longer forecast lead times. Nearly all the S2S models have lesser skill for target dates in which the MJO convection is centered over the Maritime Continent (MC) in boreal winter, and phase bias contributes to this MC prediction barrier. This issue is less prevalent in boreal summer. Many S2S models significantly underestimate ROMI amplitudes at longer forecast leads. Probabilistic evaluation of the S2S model skills in forecasting ROMI amplitude is further assessed using the ranked probability skill score (RPSS). RPSS varies significantly across models, from no skill to more than 30 days, which is partly due to model configuration and partly due to amplitude bias. Accounting for the systematic underestimates of the amplitude improves RPSS. More... »

PAGES

1-17

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00382-018-4492-9

DOI

http://dx.doi.org/10.1007/s00382-018-4492-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107553038


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Columbia University", 
          "id": "https://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Department of Applied Physics and Applied Mathematics, Columbia University, 10025, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Shuguang", 
        "id": "sg:person.015252562425.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015252562425.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lamont-Doherty Earth Observatory", 
          "id": "https://www.grid.ac/institutes/grid.473157.3", 
          "name": [
            "Department of Applied Physics and Applied Mathematics, Columbia University, 10025, New York, NY, USA", 
            "Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sobel", 
        "givenName": "Adam H.", 
        "id": "sg:person.0751020513.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751020513.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Columbia University", 
          "id": "https://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Department of Applied Physics and Applied Mathematics, Columbia University, 10025, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tippett", 
        "givenName": "Michael K.", 
        "id": "sg:person.011162453377.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011162453377.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Centre for Medium-Range Weather Forecasts", 
          "id": "https://www.grid.ac/institutes/grid.42781.38", 
          "name": [
            "European Centre for Medium-Range Weather Forecasts, Reading, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vitart", 
        "givenName": "Fr\u00e9deric", 
        "id": "sg:person.016103603413.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016103603413.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00382-013-1859-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002815733", 
          "https://doi.org/10.1007/s00382-013-1859-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-013-1859-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002815733", 
          "https://doi.org/10.1007/s00382-013-1859-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/bams-d-16-0017.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004447550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2008mwr2459.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004505280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-013-1806-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006688707", 
          "https://doi.org/10.1007/s00382-013-1806-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/3238.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009537501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2010bams2816.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010378912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2011mwr3571.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011168835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.1991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011566838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-13-00624.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012087493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.dynatmoce.2016.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014077823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.2256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014794635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-15-0862.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015767645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016673907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016673907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-14-00294.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016725072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/bams-84-1-33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017712882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-12-00074.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022454641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-15-0102.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026684354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2008jcli2515.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028885295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2014jd022374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030737885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(2004)132<1917:aarmmi>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030953686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/mwr-d-13-00292.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031117151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2016gl071423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031182870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2009mwr3082.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033808036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/bams-d-14-00139.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034528457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/grl.50244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034940673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-011-1159-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037820268", 
          "https://doi.org/10.1007/s00382-011-1159-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2007mwr2305.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038274331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jas-d-14-0052.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038363547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/bams-d-12-00026.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039893932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2010jcli3288.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040111907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/mwr-d-12-00327.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041013886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0469(1971)028<0702:doadoi>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041101818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2015ms000529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041867452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2015ms000529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041867452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0469(1982)039<2088:tdmamd>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043131995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-13-00480.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043221178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0469(1999)056<0374:ccewao>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045372336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-012-1544-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046603449", 
          "https://doi.org/10.1007/s00382-012-1544-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/mwr-d-13-00301.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046721235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/bams-d-12-00157.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048667516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-010-0754-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049534314", 
          "https://doi.org/10.1007/s00382-010-0754-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0469(1972)029<1109:dogscc>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053722730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2151/jmsj1965.57.3_227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084918172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.3079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085583405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.3085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085749897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2017gl074434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090738877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/mwr-d-17-0109.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090756971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2017gl075052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091829183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511564345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098698821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-17-0545.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101537095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/bams-d-17-0216.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101634619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/mwr-d-17-0261.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103212745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2018gl078321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105940953"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-10-11", 
    "datePublishedReg": "2018-10-11", 
    "description": "Prediction and predictability of tropical intraseasonal convection in the WMO subseasonal to seasonal (S2S) forecast database is assessed using the real-time OLR based MJO (ROMI) index. ROMI prediction skill in the S2S models, as measured by the maximum lead time at which the bivariate correlation coefficient between forecasts and observations exceeds 0.6, ranges from ~ 15 to ~ 36 days in boreal winter, which is 5\u201310 days higher than the MJO circulation prediction skill based on the MJO RMM index. ROMI prediction skill is systematically lower by 5\u201310 days in summer than in winter. Predictability measures show similar seasonal contrast in the two seasons. These results indicate that intraseasonal convection is inherently less predictable in summer than in winter. Further evaluation of correlation skill assuming either perfect amplitude or perfect phase forecasts indicates that phase bias is the main contributor to skill degradation at longer forecast lead times. Nearly all the S2S models have lesser skill for target dates in which the MJO convection is centered over the Maritime Continent (MC) in boreal winter, and phase bias contributes to this MC prediction barrier. This issue is less prevalent in boreal summer. Many S2S models significantly underestimate ROMI amplitudes at longer forecast leads. Probabilistic evaluation of the S2S model skills in forecasting ROMI amplitude is further assessed using the ranked probability skill score (RPSS). RPSS varies significantly across models, from no skill to more than 30 days, which is partly due to model configuration and partly due to amplitude bias. Accounting for the systematic underestimates of the amplitude improves RPSS.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00382-018-4492-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5019982", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5499250", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "type": "Periodical"
      }
    ], 
    "name": "Prediction and predictability of tropical intraseasonal convection: seasonal dependence and the Maritime Continent prediction barrier", 
    "pagination": "1-17", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9f1379b806f7f7a6bcda8f809ccaed7062dc157b08b442cf966d489d58005ba7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00382-018-4492-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107553038"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00382-018-4492-9", 
      "https://app.dimensions.ai/details/publication/pub.1107553038"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000605.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00382-018-4492-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-018-4492-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-018-4492-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-018-4492-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-018-4492-9'


 

This table displays all metadata directly associated to this object as RDF triples.

248 TRIPLES      21 PREDICATES      76 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00382-018-4492-9 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N30b2cf09c339423abf554cdbdcfe688d
4 schema:citation sg:pub.10.1007/s00382-010-0754-x
5 sg:pub.10.1007/s00382-011-1159-1
6 sg:pub.10.1007/s00382-012-1544-4
7 sg:pub.10.1007/s00382-013-1806-9
8 sg:pub.10.1007/s00382-013-1859-9
9 https://doi.org/10.1002/2014jd022374
10 https://doi.org/10.1002/2015ms000529
11 https://doi.org/10.1002/2016gl071423
12 https://doi.org/10.1002/2017gl074434
13 https://doi.org/10.1002/2017gl075052
14 https://doi.org/10.1002/grl.50244
15 https://doi.org/10.1002/qj.1991
16 https://doi.org/10.1002/qj.2256
17 https://doi.org/10.1002/qj.3079
18 https://doi.org/10.1002/qj.3085
19 https://doi.org/10.1002/qj.623
20 https://doi.org/10.1016/j.dynatmoce.2016.06.001
21 https://doi.org/10.1017/cbo9780511564345
22 https://doi.org/10.1029/2018gl078321
23 https://doi.org/10.1175/1520-0469(1971)028<0702:doadoi>2.0.co;2
24 https://doi.org/10.1175/1520-0469(1972)029<1109:dogscc>2.0.co;2
25 https://doi.org/10.1175/1520-0469(1982)039<2088:tdmamd>2.0.co;2
26 https://doi.org/10.1175/1520-0469(1999)056<0374:ccewao>2.0.co;2
27 https://doi.org/10.1175/1520-0493(2004)132<1917:aarmmi>2.0.co;2
28 https://doi.org/10.1175/2007mwr2305.1
29 https://doi.org/10.1175/2008jcli2515.1
30 https://doi.org/10.1175/2008mwr2459.1
31 https://doi.org/10.1175/2009mwr3082.1
32 https://doi.org/10.1175/2010bams2816.1
33 https://doi.org/10.1175/2010jcli3288.1
34 https://doi.org/10.1175/2011mwr3571.1
35 https://doi.org/10.1175/3238.1
36 https://doi.org/10.1175/bams-84-1-33
37 https://doi.org/10.1175/bams-d-12-00026.1
38 https://doi.org/10.1175/bams-d-12-00157.1
39 https://doi.org/10.1175/bams-d-14-00139.1
40 https://doi.org/10.1175/bams-d-16-0017.1
41 https://doi.org/10.1175/bams-d-17-0216.1
42 https://doi.org/10.1175/jas-d-14-0052.1
43 https://doi.org/10.1175/jcli-d-12-00074.1
44 https://doi.org/10.1175/jcli-d-13-00480.1
45 https://doi.org/10.1175/jcli-d-13-00624.1
46 https://doi.org/10.1175/jcli-d-14-00294.1
47 https://doi.org/10.1175/jcli-d-15-0102.1
48 https://doi.org/10.1175/jcli-d-15-0862.1
49 https://doi.org/10.1175/jcli-d-17-0545.1
50 https://doi.org/10.1175/mwr-d-12-00327.1
51 https://doi.org/10.1175/mwr-d-13-00292.1
52 https://doi.org/10.1175/mwr-d-13-00301.1
53 https://doi.org/10.1175/mwr-d-17-0109.1
54 https://doi.org/10.1175/mwr-d-17-0261.1
55 https://doi.org/10.2151/jmsj1965.57.3_227
56 schema:datePublished 2018-10-11
57 schema:datePublishedReg 2018-10-11
58 schema:description Prediction and predictability of tropical intraseasonal convection in the WMO subseasonal to seasonal (S2S) forecast database is assessed using the real-time OLR based MJO (ROMI) index. ROMI prediction skill in the S2S models, as measured by the maximum lead time at which the bivariate correlation coefficient between forecasts and observations exceeds 0.6, ranges from ~ 15 to ~ 36 days in boreal winter, which is 5–10 days higher than the MJO circulation prediction skill based on the MJO RMM index. ROMI prediction skill is systematically lower by 5–10 days in summer than in winter. Predictability measures show similar seasonal contrast in the two seasons. These results indicate that intraseasonal convection is inherently less predictable in summer than in winter. Further evaluation of correlation skill assuming either perfect amplitude or perfect phase forecasts indicates that phase bias is the main contributor to skill degradation at longer forecast lead times. Nearly all the S2S models have lesser skill for target dates in which the MJO convection is centered over the Maritime Continent (MC) in boreal winter, and phase bias contributes to this MC prediction barrier. This issue is less prevalent in boreal summer. Many S2S models significantly underestimate ROMI amplitudes at longer forecast leads. Probabilistic evaluation of the S2S model skills in forecasting ROMI amplitude is further assessed using the ranked probability skill score (RPSS). RPSS varies significantly across models, from no skill to more than 30 days, which is partly due to model configuration and partly due to amplitude bias. Accounting for the systematic underestimates of the amplitude improves RPSS.
59 schema:genre research_article
60 schema:inLanguage en
61 schema:isAccessibleForFree false
62 schema:isPartOf sg:journal.1049631
63 schema:name Prediction and predictability of tropical intraseasonal convection: seasonal dependence and the Maritime Continent prediction barrier
64 schema:pagination 1-17
65 schema:productId N66f0c873c0e346e1bc98a0bd1fe96a55
66 Nb5ccd062152043c68a043d26423f3591
67 Ne5539da650a94d85a1f9372401b55add
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107553038
69 https://doi.org/10.1007/s00382-018-4492-9
70 schema:sdDatePublished 2019-04-11T00:31
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher N35ebba274b79447a90153c49785accd4
73 schema:url https://link.springer.com/10.1007%2Fs00382-018-4492-9
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N1ea0d2199aab4a1092455d887d4911a6 rdf:first sg:person.016103603413.15
78 rdf:rest rdf:nil
79 N30b2cf09c339423abf554cdbdcfe688d rdf:first sg:person.015252562425.49
80 rdf:rest N63183859ac63415493739daec70e9ec1
81 N35ebba274b79447a90153c49785accd4 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N63183859ac63415493739daec70e9ec1 rdf:first sg:person.0751020513.48
84 rdf:rest Nfda81551af364b1f85f0b604434b6d7c
85 N66f0c873c0e346e1bc98a0bd1fe96a55 schema:name readcube_id
86 schema:value 9f1379b806f7f7a6bcda8f809ccaed7062dc157b08b442cf966d489d58005ba7
87 rdf:type schema:PropertyValue
88 Nb5ccd062152043c68a043d26423f3591 schema:name dimensions_id
89 schema:value pub.1107553038
90 rdf:type schema:PropertyValue
91 Ne5539da650a94d85a1f9372401b55add schema:name doi
92 schema:value 10.1007/s00382-018-4492-9
93 rdf:type schema:PropertyValue
94 Nfda81551af364b1f85f0b604434b6d7c rdf:first sg:person.011162453377.16
95 rdf:rest N1ea0d2199aab4a1092455d887d4911a6
96 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
97 schema:name Information and Computing Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
100 schema:name Artificial Intelligence and Image Processing
101 rdf:type schema:DefinedTerm
102 sg:grant.5019982 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-018-4492-9
103 rdf:type schema:MonetaryGrant
104 sg:grant.5499250 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-018-4492-9
105 rdf:type schema:MonetaryGrant
106 sg:journal.1049631 schema:issn 0930-7575
107 1432-0894
108 schema:name Climate Dynamics
109 rdf:type schema:Periodical
110 sg:person.011162453377.16 schema:affiliation https://www.grid.ac/institutes/grid.21729.3f
111 schema:familyName Tippett
112 schema:givenName Michael K.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011162453377.16
114 rdf:type schema:Person
115 sg:person.015252562425.49 schema:affiliation https://www.grid.ac/institutes/grid.21729.3f
116 schema:familyName Wang
117 schema:givenName Shuguang
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015252562425.49
119 rdf:type schema:Person
120 sg:person.016103603413.15 schema:affiliation https://www.grid.ac/institutes/grid.42781.38
121 schema:familyName Vitart
122 schema:givenName Fréderic
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016103603413.15
124 rdf:type schema:Person
125 sg:person.0751020513.48 schema:affiliation https://www.grid.ac/institutes/grid.473157.3
126 schema:familyName Sobel
127 schema:givenName Adam H.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751020513.48
129 rdf:type schema:Person
130 sg:pub.10.1007/s00382-010-0754-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049534314
131 https://doi.org/10.1007/s00382-010-0754-x
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/s00382-011-1159-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037820268
134 https://doi.org/10.1007/s00382-011-1159-1
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/s00382-012-1544-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046603449
137 https://doi.org/10.1007/s00382-012-1544-4
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/s00382-013-1806-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006688707
140 https://doi.org/10.1007/s00382-013-1806-9
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/s00382-013-1859-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002815733
143 https://doi.org/10.1007/s00382-013-1859-9
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1002/2014jd022374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030737885
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1002/2015ms000529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041867452
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1002/2016gl071423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031182870
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1002/2017gl074434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090738877
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1002/2017gl075052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091829183
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1002/grl.50244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034940673
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1002/qj.1991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011566838
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1002/qj.2256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014794635
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1002/qj.3079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085583405
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1002/qj.3085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085749897
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1002/qj.623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016673907
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.dynatmoce.2016.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014077823
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1017/cbo9780511564345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098698821
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1029/2018gl078321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105940953
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1175/1520-0469(1971)028<0702:doadoi>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041101818
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1175/1520-0469(1972)029<1109:dogscc>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053722730
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1175/1520-0469(1982)039<2088:tdmamd>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043131995
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1175/1520-0469(1999)056<0374:ccewao>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045372336
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1175/1520-0493(2004)132<1917:aarmmi>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030953686
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1175/2007mwr2305.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038274331
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1175/2008jcli2515.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028885295
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1175/2008mwr2459.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004505280
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1175/2009mwr3082.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033808036
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1175/2010bams2816.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010378912
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1175/2010jcli3288.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040111907
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1175/2011mwr3571.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011168835
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1175/3238.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009537501
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1175/bams-84-1-33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017712882
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1175/bams-d-12-00026.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039893932
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1175/bams-d-12-00157.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048667516
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1175/bams-d-14-00139.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034528457
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1175/bams-d-16-0017.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004447550
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1175/bams-d-17-0216.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101634619
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1175/jas-d-14-0052.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038363547
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1175/jcli-d-12-00074.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022454641
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1175/jcli-d-13-00480.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043221178
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1175/jcli-d-13-00624.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012087493
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1175/jcli-d-14-00294.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016725072
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1175/jcli-d-15-0102.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026684354
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1175/jcli-d-15-0862.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015767645
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1175/jcli-d-17-0545.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101537095
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1175/mwr-d-12-00327.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041013886
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1175/mwr-d-13-00292.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031117151
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1175/mwr-d-13-00301.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046721235
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1175/mwr-d-17-0109.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090756971
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1175/mwr-d-17-0261.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103212745
236 rdf:type schema:CreativeWork
237 https://doi.org/10.2151/jmsj1965.57.3_227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084918172
238 rdf:type schema:CreativeWork
239 https://www.grid.ac/institutes/grid.21729.3f schema:alternateName Columbia University
240 schema:name Department of Applied Physics and Applied Mathematics, Columbia University, 10025, New York, NY, USA
241 rdf:type schema:Organization
242 https://www.grid.ac/institutes/grid.42781.38 schema:alternateName European Centre for Medium-Range Weather Forecasts
243 schema:name European Centre for Medium-Range Weather Forecasts, Reading, UK
244 rdf:type schema:Organization
245 https://www.grid.ac/institutes/grid.473157.3 schema:alternateName Lamont-Doherty Earth Observatory
246 schema:name Department of Applied Physics and Applied Mathematics, Columbia University, 10025, New York, NY, USA
247 Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
248 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...