The dominant role of the atmospheric component of coupled models in ENSO amplitude simulations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Yanli Tang, Lijuan Li, Bin Wang, Pengfei Lin, Lin Chen, Feng Xie, Wenjie Dong, Kun Xia

ABSTRACT

To explore the relative contributions of the atmospheric and oceanic components of coupled models to ENSO amplitude simulations, we innovatively “assembled” four coupled models and performed analyses on their ENSO simulations. Specifically, the atmospheric and oceanic components of two commonly used coupled models are cross-coupled to construct four parent models. Based on the simulated ENSO amplitude, the four parent models are classified into two groups: Grid-point Atmospheric Model of IAP LASG Version 2 (GAMIL2)-based models whose ENSO amplitudes are comparable to (although slightly weaker than) observations, and Community Atmosphere Model Version 4.0 (CAM4)-based models whose ENSO amplitudes reach up to twice those of observations. The BJ-index analysis reveals that the atmospheric components modulate ENSO amplitude by affecting the atmospheric thermodynamic (TD) feedback and the oceanic thermocline (TH) feedback. The TD feedback biases in the CAM4-based models are attributable to an overly negative low-cloud fraction feedback and low-cloud liquid water feedback in the Niño-3 region. The underestimated TH feedback in the GAMIL2-based models is due to an underestimated mean upwelling (w¯), while the seemingly accurate TH term in the CAM4-based models is the result of compensation by an overestimated regression of zonal tilt of the thermocline on the equatorial zonal wind stress (βh) and an underestimated w¯. Furthermore, βh dominates TH differences in the two atmospheric groups, and is mainly associated with the normalized wind stress anomaly over the Niño-4 region and the vertical ocean subsurface temperature structure. More... »

PAGES

4833-4847

References to SciGraph publications

  • 2016-10. Improved ENSO simulation from climate system model FGOALS-g1.0 to FGOALS-g2 in CLIMATE DYNAMICS
  • 2014-09. Response of El Niño sea surface temperature variability to greenhouse warming in NATURE CLIMATE CHANGE
  • 2011-04. An ENSO stability analysis. Part II: results from the twentieth and twenty-first century simulations of the CMIP3 models in CLIMATE DYNAMICS
  • 2013-02. Inverse relationship between the equatorial eastern Pacific annual-cycle and ENSO amplitudes in a coupled general circulation model in CLIMATE DYNAMICS
  • 2007-05-24. Intense hurricane activity over the past 5,000 years controlled by El Niño and the West African monsoon in NATURE
  • 2016-02. Amplification of El Nino by cloud longwave coupling to atmospheric circulation in NATURE GEOSCIENCE
  • 2013-05. The flexible global ocean-atmosphere-land system model, Grid-point Version 2: FGOALS-g2 in ADVANCES IN ATMOSPHERIC SCIENCES
  • 2017-12. Mean Bias in Seasonal Forecast Model and ENSO Prediction Error in SCIENTIFIC REPORTS
  • 2012-06. The baseline evaluation of LASG/IAP climate system ocean model (LICOM) version 2 in ACTA METEOROLOGICA SINICA
  • 2008-05. The variation of ENSO characteristics associated with atmospheric parameter perturbations in a coupled model in CLIMATE DYNAMICS
  • 2004-01. Design of a new dynamical core for global atmospheric models based on some efficient numerical methods in SCIENCE IN CHINA SERIES A MATHEMATICS
  • 2011-04. An ENSO stability analysis. Part I: results from a hybrid coupled model in CLIMATE DYNAMICS
  • 2017-12. A possible explanation for the divergent projection of ENSO amplitude change under global warming in CLIMATE DYNAMICS
  • 2014-04. ENSO representation in climate models: from CMIP3 to CMIP5 in CLIMATE DYNAMICS
  • 2006-03. El Niño–mean state–seasonal cycle interactions in a multi-model ensemble in CLIMATE DYNAMICS
  • 2011-08. Variability and decline in the number of severe tropical cyclones making land-fall over eastern Australia since the late nineteenth century in CLIMATE DYNAMICS
  • 2012-09. Reduction of the thermocline feedback associated with mean SST bias in ENSO simulation in CLIMATE DYNAMICS
  • 2001-04. Factors that affect the amplitude of El Nino in global coupled climate models in CLIMATE DYNAMICS
  • 2018-08. Obtaining the correct sea surface temperature: bias correction of regional climate model data for the Mediterranean Sea in CLIMATE DYNAMICS
  • 2015-05. Strong influence of westerly wind bursts on El Nino diversity in NATURE GEOSCIENCE
  • 2013-05. Evaluation of grid-point atmospheric model of IAP LASG version 2 (GAMIL2) in ADVANCES IN ATMOSPHERIC SCIENCES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00382-018-4416-8

    DOI

    http://dx.doi.org/10.1007/s00382-018-4416-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1106386445


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atmospheric Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute of Atmospheric Physics", 
              "id": "https://www.grid.ac/institutes/grid.424023.3", 
              "name": [
                "State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tang", 
            "givenName": "Yanli", 
            "id": "sg:person.013510521305.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013510521305.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Atmospheric Physics", 
              "id": "https://www.grid.ac/institutes/grid.424023.3", 
              "name": [
                "State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Lijuan", 
            "id": "sg:person.012006623431.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012006623431.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tsinghua University", 
              "id": "https://www.grid.ac/institutes/grid.12527.33", 
              "name": [
                "State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China", 
                "Ministry of Education Key Laboratory for Earth System Modeling, Center of Earth System Science (CESS), Tsinghua University, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Bin", 
            "id": "sg:person.01014342272.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014342272.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Atmospheric Physics", 
              "id": "https://www.grid.ac/institutes/grid.424023.3", 
              "name": [
                "State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lin", 
            "givenName": "Pengfei", 
            "id": "sg:person.012757000741.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012757000741.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Hawaii at Manoa", 
              "id": "https://www.grid.ac/institutes/grid.410445.0", 
              "name": [
                "International Pacific Research Center, and School of Ocean and Earth Science and Technology, University of Hawai\u2019i at M\u0101noa, 2525 Correa Rd., 96822, Honolulu, HI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Lin", 
            "id": "sg:person.01326471243.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326471243.94"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Atmospheric Physics", 
              "id": "https://www.grid.ac/institutes/grid.424023.3", 
              "name": [
                "State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xie", 
            "givenName": "Feng", 
            "id": "sg:person.011540463262.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011540463262.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sun Yat-sen University", 
              "id": "https://www.grid.ac/institutes/grid.12981.33", 
              "name": [
                "School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dong", 
            "givenName": "Wenjie", 
            "id": "sg:person.012322517777.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012322517777.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Atmospheric Physics", 
              "id": "https://www.grid.ac/institutes/grid.424023.3", 
              "name": [
                "State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xia", 
            "givenName": "Kun", 
            "id": "sg:person.011121170271.60", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011121170271.60"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1002/asl2.523", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003820875"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/1520-0477(1999)080<2261:aiucfi>2.0.co;2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004855127"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-010-0796-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004946886", 
              "https://doi.org/10.1007/s00382-010-0796-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00376-013-2157-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005187513", 
              "https://doi.org/10.1007/s00376-013-2157-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/1520-0469(1997)054<0830:aeorpf>2.0.co;2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005425789"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-007-0313-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005813768", 
              "https://doi.org/10.1007/s00382-007-0313-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-007-0313-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005813768", 
              "https://doi.org/10.1007/s00382-007-0313-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/jcli-d-14-00439.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007400489"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0308-521x(01)00058-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007737784"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/2006gl027221", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009821711"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1256/qj.04.176", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010291660"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1256/qj.04.176", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010291660"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/2008jcli2267.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013464041"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/2008jcli2244.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013795744"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/2010gl044082", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014134003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/2008jcli2827.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014314543"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1132588", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015053580"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/2009jcli2815.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016770697"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-011-1164-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017080588", 
              "https://doi.org/10.1007/s00382-011-1164-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/jcli-3260.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017574667"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/jcli-d-12-00758.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018442618"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/2007mwr1978.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019758689"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-012-1403-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021964431", 
              "https://doi.org/10.1007/s00382-012-1403-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo2399", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022920192", 
              "https://doi.org/10.1038/ngeo2399"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/jcli-d-15-0276.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025099616"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/2008jcli1701.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025346003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/jcli-d-11-00178.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025559753"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/2010jc006695", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025959841"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-013-1783-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026200117", 
              "https://doi.org/10.1007/s00382-013-1783-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate2326", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026787589", 
              "https://doi.org/10.1038/nclimate2326"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/qj.200212857901", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027666764"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13351-012-0305-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029521571", 
              "https://doi.org/10.1007/s13351-012-0305-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-016-3049-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029708170", 
              "https://doi.org/10.1007/s00382-016-3049-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-016-3049-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029708170", 
              "https://doi.org/10.1007/s00382-016-3049-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-016-3049-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029708170", 
              "https://doi.org/10.1007/s00382-016-3049-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00376-012-2140-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033011793", 
              "https://doi.org/10.1007/s00376-012-2140-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/pl00007929", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034842545", 
              "https://doi.org/10.1007/pl00007929"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo2630", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036044993", 
              "https://doi.org/10.1038/ngeo2630"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-005-0084-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037739585", 
              "https://doi.org/10.1007/s00382-005-0084-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-005-0084-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037739585", 
              "https://doi.org/10.1007/s00382-005-0084-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/2012gl052759", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038834036"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/1520-0442(2003)016<2827:troacm>2.0.co;2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039163077"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/jcli3869.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039212590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/jcli-d-12-00575.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039696004"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-010-0883-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039787471", 
              "https://doi.org/10.1007/s00382-010-0883-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-016-2988-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041746452", 
              "https://doi.org/10.1007/s00382-016-2988-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/1520-0442(2001)014<3421:crotaz>2.0.co;2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042312619"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/2008jcli2292.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043955669"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/jcli3835.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044643736"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/jcli-d-12-00236.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045021840"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/asl.637", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045301482"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/qj.49710644905", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045847914"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/jcli-d-13-00632.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045977093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/1520-0485(1981)011<0176:troeot>2.0.co;2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047289090"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/2010gl044888", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047666576"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-010-0872-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049798282", 
              "https://doi.org/10.1007/s00382-010-0872-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05834", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050446527", 
              "https://doi.org/10.1038/nature05834"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/2015gl064853", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053333406"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.274.5284.76", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062554323"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1360/04za0001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065069662", 
              "https://doi.org/10.1360/04za0001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-017-3544-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084021234", 
              "https://doi.org/10.1007/s00382-017-3544-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-017-3544-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084021234", 
              "https://doi.org/10.1007/s00382-017-3544-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/2017gl073203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085202827"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-017-05221-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090717736", 
              "https://doi.org/10.1038/s41598-017-05221-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/jcli-d-17-0331.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092719401"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/asl.789", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092726303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/atmos9070275", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105698600"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-04", 
        "datePublishedReg": "2019-04-01", 
        "description": "To explore the relative contributions of the atmospheric and oceanic components of coupled models to ENSO amplitude simulations, we innovatively \u201cassembled\u201d four coupled models and performed analyses on their ENSO simulations. Specifically, the atmospheric and oceanic components of two commonly used coupled models are cross-coupled to construct four parent models. Based on the simulated ENSO amplitude, the four parent models are classified into two groups: Grid-point Atmospheric Model of IAP LASG Version 2 (GAMIL2)-based models whose ENSO amplitudes are comparable to (although slightly weaker than) observations, and Community Atmosphere Model Version 4.0 (CAM4)-based models whose ENSO amplitudes reach up to twice those of observations. The BJ-index analysis reveals that the atmospheric components modulate ENSO amplitude by affecting the atmospheric thermodynamic (TD) feedback and the oceanic thermocline (TH) feedback. The TD feedback biases in the CAM4-based models are attributable to an overly negative low-cloud fraction feedback and low-cloud liquid water feedback in the Ni\u00f1o-3 region. The underestimated TH feedback in the GAMIL2-based models is due to an underestimated mean upwelling (w\u00af), while the seemingly accurate TH term in the CAM4-based models is the result of compensation by an overestimated regression of zonal tilt of the thermocline on the equatorial zonal wind stress (\u03b2h) and an underestimated w\u00af. Furthermore, \u03b2h dominates TH differences in the two atmospheric groups, and is mainly associated with the normalized wind stress anomaly over the Ni\u00f1o-4 region and the vertical ocean subsurface temperature structure.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00382-018-4416-8", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1049631", 
            "issn": [
              "0930-7575", 
              "1432-0894"
            ], 
            "name": "Climate Dynamics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7-8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "52"
          }
        ], 
        "name": "The dominant role of the atmospheric component of coupled models in ENSO amplitude simulations", 
        "pagination": "4833-4847", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "2f853f83d7b8d27ba6d5a91a967ec31f519eb1d849dcaeca93cf42040ce3a950"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00382-018-4416-8"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1106386445"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00382-018-4416-8", 
          "https://app.dimensions.ai/details/publication/pub.1106386445"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:19", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78953_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00382-018-4416-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-018-4416-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-018-4416-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-018-4416-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-018-4416-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    324 TRIPLES      21 PREDICATES      88 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00382-018-4416-8 schema:about anzsrc-for:04
    2 anzsrc-for:0401
    3 schema:author N766ab420ec6741dea00f32fc6fef57dc
    4 schema:citation sg:pub.10.1007/pl00007929
    5 sg:pub.10.1007/s00376-012-2140-6
    6 sg:pub.10.1007/s00376-013-2157-5
    7 sg:pub.10.1007/s00382-005-0084-6
    8 sg:pub.10.1007/s00382-007-0313-2
    9 sg:pub.10.1007/s00382-010-0796-0
    10 sg:pub.10.1007/s00382-010-0872-5
    11 sg:pub.10.1007/s00382-010-0883-2
    12 sg:pub.10.1007/s00382-011-1164-4
    13 sg:pub.10.1007/s00382-012-1403-3
    14 sg:pub.10.1007/s00382-013-1783-z
    15 sg:pub.10.1007/s00382-016-2988-8
    16 sg:pub.10.1007/s00382-016-3049-z
    17 sg:pub.10.1007/s00382-017-3544-x
    18 sg:pub.10.1007/s13351-012-0305-y
    19 sg:pub.10.1038/nature05834
    20 sg:pub.10.1038/nclimate2326
    21 sg:pub.10.1038/ngeo2399
    22 sg:pub.10.1038/ngeo2630
    23 sg:pub.10.1038/s41598-017-05221-3
    24 sg:pub.10.1360/04za0001
    25 https://doi.org/10.1002/2015gl064853
    26 https://doi.org/10.1002/2017gl073203
    27 https://doi.org/10.1002/asl.637
    28 https://doi.org/10.1002/asl.789
    29 https://doi.org/10.1002/asl2.523
    30 https://doi.org/10.1002/qj.200212857901
    31 https://doi.org/10.1002/qj.49710644905
    32 https://doi.org/10.1016/s0308-521x(01)00058-0
    33 https://doi.org/10.1029/2006gl027221
    34 https://doi.org/10.1029/2010gl044082
    35 https://doi.org/10.1029/2010gl044888
    36 https://doi.org/10.1029/2010jc006695
    37 https://doi.org/10.1029/2012gl052759
    38 https://doi.org/10.1126/science.1132588
    39 https://doi.org/10.1126/science.274.5284.76
    40 https://doi.org/10.1175/1520-0442(2001)014<3421:crotaz>2.0.co;2
    41 https://doi.org/10.1175/1520-0442(2003)016<2827:troacm>2.0.co;2
    42 https://doi.org/10.1175/1520-0469(1997)054<0830:aeorpf>2.0.co;2
    43 https://doi.org/10.1175/1520-0477(1999)080<2261:aiucfi>2.0.co;2
    44 https://doi.org/10.1175/1520-0485(1981)011<0176:troeot>2.0.co;2
    45 https://doi.org/10.1175/2007mwr1978.1
    46 https://doi.org/10.1175/2008jcli1701.1
    47 https://doi.org/10.1175/2008jcli2244.1
    48 https://doi.org/10.1175/2008jcli2267.1
    49 https://doi.org/10.1175/2008jcli2292.1
    50 https://doi.org/10.1175/2008jcli2827.1
    51 https://doi.org/10.1175/2009jcli2815.1
    52 https://doi.org/10.1175/jcli-3260.1
    53 https://doi.org/10.1175/jcli-d-11-00178.1
    54 https://doi.org/10.1175/jcli-d-12-00236.1
    55 https://doi.org/10.1175/jcli-d-12-00575.1
    56 https://doi.org/10.1175/jcli-d-12-00758.1
    57 https://doi.org/10.1175/jcli-d-13-00632.1
    58 https://doi.org/10.1175/jcli-d-14-00439.1
    59 https://doi.org/10.1175/jcli-d-15-0276.1
    60 https://doi.org/10.1175/jcli-d-17-0331.1
    61 https://doi.org/10.1175/jcli3835.1
    62 https://doi.org/10.1175/jcli3869.1
    63 https://doi.org/10.1256/qj.04.176
    64 https://doi.org/10.3390/atmos9070275
    65 schema:datePublished 2019-04
    66 schema:datePublishedReg 2019-04-01
    67 schema:description To explore the relative contributions of the atmospheric and oceanic components of coupled models to ENSO amplitude simulations, we innovatively “assembled” four coupled models and performed analyses on their ENSO simulations. Specifically, the atmospheric and oceanic components of two commonly used coupled models are cross-coupled to construct four parent models. Based on the simulated ENSO amplitude, the four parent models are classified into two groups: Grid-point Atmospheric Model of IAP LASG Version 2 (GAMIL2)-based models whose ENSO amplitudes are comparable to (although slightly weaker than) observations, and Community Atmosphere Model Version 4.0 (CAM4)-based models whose ENSO amplitudes reach up to twice those of observations. The BJ-index analysis reveals that the atmospheric components modulate ENSO amplitude by affecting the atmospheric thermodynamic (TD) feedback and the oceanic thermocline (TH) feedback. The TD feedback biases in the CAM4-based models are attributable to an overly negative low-cloud fraction feedback and low-cloud liquid water feedback in the Niño-3 region. The underestimated TH feedback in the GAMIL2-based models is due to an underestimated mean upwelling (w¯), while the seemingly accurate TH term in the CAM4-based models is the result of compensation by an overestimated regression of zonal tilt of the thermocline on the equatorial zonal wind stress (βh) and an underestimated w¯. Furthermore, βh dominates TH differences in the two atmospheric groups, and is mainly associated with the normalized wind stress anomaly over the Niño-4 region and the vertical ocean subsurface temperature structure.
    68 schema:genre research_article
    69 schema:inLanguage en
    70 schema:isAccessibleForFree false
    71 schema:isPartOf N4a1c7fc5cd124911b940fec3c74a8616
    72 Nb8c6a4ffa6104923a1708af928a87d2f
    73 sg:journal.1049631
    74 schema:name The dominant role of the atmospheric component of coupled models in ENSO amplitude simulations
    75 schema:pagination 4833-4847
    76 schema:productId N7dbcb7d5dbe34e0a8946bb3b7c63144e
    77 N9999eae509d9434795875eeacac25014
    78 Nf88bd71b894840a1b6000fce1af56f37
    79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106386445
    80 https://doi.org/10.1007/s00382-018-4416-8
    81 schema:sdDatePublished 2019-04-11T13:19
    82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    83 schema:sdPublisher Nf5b4203f22f248c39c078da4d111a3d2
    84 schema:url https://link.springer.com/10.1007%2Fs00382-018-4416-8
    85 sgo:license sg:explorer/license/
    86 sgo:sdDataset articles
    87 rdf:type schema:ScholarlyArticle
    88 N2b52a6206f32435bab2d22189b0b9f80 rdf:first sg:person.01014342272.95
    89 rdf:rest N332c1c5a67fe4288a2f9bb2ad105c502
    90 N332c1c5a67fe4288a2f9bb2ad105c502 rdf:first sg:person.012757000741.04
    91 rdf:rest Nff39bc22a51c4f30baf81da8e4edbb1d
    92 N342b903acab84202874d9e595e772604 rdf:first sg:person.012322517777.49
    93 rdf:rest Nf64ba21dac964e2ca1c4c8f92a1cf12a
    94 N4a1c7fc5cd124911b940fec3c74a8616 schema:issueNumber 7-8
    95 rdf:type schema:PublicationIssue
    96 N766ab420ec6741dea00f32fc6fef57dc rdf:first sg:person.013510521305.75
    97 rdf:rest N7f8e37be9bb84a62b6a936b7b0e6be6a
    98 N7dbcb7d5dbe34e0a8946bb3b7c63144e schema:name readcube_id
    99 schema:value 2f853f83d7b8d27ba6d5a91a967ec31f519eb1d849dcaeca93cf42040ce3a950
    100 rdf:type schema:PropertyValue
    101 N7f8e37be9bb84a62b6a936b7b0e6be6a rdf:first sg:person.012006623431.23
    102 rdf:rest N2b52a6206f32435bab2d22189b0b9f80
    103 N9999eae509d9434795875eeacac25014 schema:name dimensions_id
    104 schema:value pub.1106386445
    105 rdf:type schema:PropertyValue
    106 Nb8c6a4ffa6104923a1708af928a87d2f schema:volumeNumber 52
    107 rdf:type schema:PublicationVolume
    108 Nf5b4203f22f248c39c078da4d111a3d2 schema:name Springer Nature - SN SciGraph project
    109 rdf:type schema:Organization
    110 Nf64ba21dac964e2ca1c4c8f92a1cf12a rdf:first sg:person.011121170271.60
    111 rdf:rest rdf:nil
    112 Nf88bd71b894840a1b6000fce1af56f37 schema:name doi
    113 schema:value 10.1007/s00382-018-4416-8
    114 rdf:type schema:PropertyValue
    115 Nfacab2dad40641bf809579420e565e2d rdf:first sg:person.011540463262.90
    116 rdf:rest N342b903acab84202874d9e595e772604
    117 Nff39bc22a51c4f30baf81da8e4edbb1d rdf:first sg:person.01326471243.94
    118 rdf:rest Nfacab2dad40641bf809579420e565e2d
    119 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    120 schema:name Earth Sciences
    121 rdf:type schema:DefinedTerm
    122 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
    123 schema:name Atmospheric Sciences
    124 rdf:type schema:DefinedTerm
    125 sg:journal.1049631 schema:issn 0930-7575
    126 1432-0894
    127 schema:name Climate Dynamics
    128 rdf:type schema:Periodical
    129 sg:person.01014342272.95 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
    130 schema:familyName Wang
    131 schema:givenName Bin
    132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014342272.95
    133 rdf:type schema:Person
    134 sg:person.011121170271.60 schema:affiliation https://www.grid.ac/institutes/grid.424023.3
    135 schema:familyName Xia
    136 schema:givenName Kun
    137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011121170271.60
    138 rdf:type schema:Person
    139 sg:person.011540463262.90 schema:affiliation https://www.grid.ac/institutes/grid.424023.3
    140 schema:familyName Xie
    141 schema:givenName Feng
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011540463262.90
    143 rdf:type schema:Person
    144 sg:person.012006623431.23 schema:affiliation https://www.grid.ac/institutes/grid.424023.3
    145 schema:familyName Li
    146 schema:givenName Lijuan
    147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012006623431.23
    148 rdf:type schema:Person
    149 sg:person.012322517777.49 schema:affiliation https://www.grid.ac/institutes/grid.12981.33
    150 schema:familyName Dong
    151 schema:givenName Wenjie
    152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012322517777.49
    153 rdf:type schema:Person
    154 sg:person.012757000741.04 schema:affiliation https://www.grid.ac/institutes/grid.424023.3
    155 schema:familyName Lin
    156 schema:givenName Pengfei
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012757000741.04
    158 rdf:type schema:Person
    159 sg:person.01326471243.94 schema:affiliation https://www.grid.ac/institutes/grid.410445.0
    160 schema:familyName Chen
    161 schema:givenName Lin
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326471243.94
    163 rdf:type schema:Person
    164 sg:person.013510521305.75 schema:affiliation https://www.grid.ac/institutes/grid.424023.3
    165 schema:familyName Tang
    166 schema:givenName Yanli
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013510521305.75
    168 rdf:type schema:Person
    169 sg:pub.10.1007/pl00007929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034842545
    170 https://doi.org/10.1007/pl00007929
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/s00376-012-2140-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033011793
    173 https://doi.org/10.1007/s00376-012-2140-6
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/s00376-013-2157-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005187513
    176 https://doi.org/10.1007/s00376-013-2157-5
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/s00382-005-0084-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037739585
    179 https://doi.org/10.1007/s00382-005-0084-6
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/s00382-007-0313-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005813768
    182 https://doi.org/10.1007/s00382-007-0313-2
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/s00382-010-0796-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004946886
    185 https://doi.org/10.1007/s00382-010-0796-0
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/s00382-010-0872-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049798282
    188 https://doi.org/10.1007/s00382-010-0872-5
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/s00382-010-0883-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039787471
    191 https://doi.org/10.1007/s00382-010-0883-2
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/s00382-011-1164-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017080588
    194 https://doi.org/10.1007/s00382-011-1164-4
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/s00382-012-1403-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021964431
    197 https://doi.org/10.1007/s00382-012-1403-3
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/s00382-013-1783-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1026200117
    200 https://doi.org/10.1007/s00382-013-1783-z
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/s00382-016-2988-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041746452
    203 https://doi.org/10.1007/s00382-016-2988-8
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/s00382-016-3049-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1029708170
    206 https://doi.org/10.1007/s00382-016-3049-z
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/s00382-017-3544-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1084021234
    209 https://doi.org/10.1007/s00382-017-3544-x
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1007/s13351-012-0305-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1029521571
    212 https://doi.org/10.1007/s13351-012-0305-y
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1038/nature05834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050446527
    215 https://doi.org/10.1038/nature05834
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1038/nclimate2326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026787589
    218 https://doi.org/10.1038/nclimate2326
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1038/ngeo2399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022920192
    221 https://doi.org/10.1038/ngeo2399
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1038/ngeo2630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036044993
    224 https://doi.org/10.1038/ngeo2630
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1038/s41598-017-05221-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090717736
    227 https://doi.org/10.1038/s41598-017-05221-3
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1360/04za0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065069662
    230 https://doi.org/10.1360/04za0001
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1002/2015gl064853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053333406
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1002/2017gl073203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085202827
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1002/asl.637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045301482
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1002/asl.789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092726303
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1002/asl2.523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003820875
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1002/qj.200212857901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027666764
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1002/qj.49710644905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045847914
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1016/s0308-521x(01)00058-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007737784
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1029/2006gl027221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009821711
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1029/2010gl044082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014134003
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1029/2010gl044888 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047666576
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1029/2010jc006695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025959841
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1029/2012gl052759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038834036
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1126/science.1132588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015053580
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1126/science.274.5284.76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062554323
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1175/1520-0442(2001)014<3421:crotaz>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042312619
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1175/1520-0442(2003)016<2827:troacm>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039163077
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1175/1520-0469(1997)054<0830:aeorpf>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005425789
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1175/1520-0477(1999)080<2261:aiucfi>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004855127
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1175/1520-0485(1981)011<0176:troeot>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047289090
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.1175/2007mwr1978.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019758689
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.1175/2008jcli1701.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025346003
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.1175/2008jcli2244.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013795744
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.1175/2008jcli2267.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013464041
    279 rdf:type schema:CreativeWork
    280 https://doi.org/10.1175/2008jcli2292.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043955669
    281 rdf:type schema:CreativeWork
    282 https://doi.org/10.1175/2008jcli2827.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014314543
    283 rdf:type schema:CreativeWork
    284 https://doi.org/10.1175/2009jcli2815.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016770697
    285 rdf:type schema:CreativeWork
    286 https://doi.org/10.1175/jcli-3260.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017574667
    287 rdf:type schema:CreativeWork
    288 https://doi.org/10.1175/jcli-d-11-00178.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025559753
    289 rdf:type schema:CreativeWork
    290 https://doi.org/10.1175/jcli-d-12-00236.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045021840
    291 rdf:type schema:CreativeWork
    292 https://doi.org/10.1175/jcli-d-12-00575.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039696004
    293 rdf:type schema:CreativeWork
    294 https://doi.org/10.1175/jcli-d-12-00758.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018442618
    295 rdf:type schema:CreativeWork
    296 https://doi.org/10.1175/jcli-d-13-00632.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045977093
    297 rdf:type schema:CreativeWork
    298 https://doi.org/10.1175/jcli-d-14-00439.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007400489
    299 rdf:type schema:CreativeWork
    300 https://doi.org/10.1175/jcli-d-15-0276.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025099616
    301 rdf:type schema:CreativeWork
    302 https://doi.org/10.1175/jcli-d-17-0331.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092719401
    303 rdf:type schema:CreativeWork
    304 https://doi.org/10.1175/jcli3835.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044643736
    305 rdf:type schema:CreativeWork
    306 https://doi.org/10.1175/jcli3869.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039212590
    307 rdf:type schema:CreativeWork
    308 https://doi.org/10.1256/qj.04.176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010291660
    309 rdf:type schema:CreativeWork
    310 https://doi.org/10.3390/atmos9070275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105698600
    311 rdf:type schema:CreativeWork
    312 https://www.grid.ac/institutes/grid.12527.33 schema:alternateName Tsinghua University
    313 schema:name Ministry of Education Key Laboratory for Earth System Modeling, Center of Earth System Science (CESS), Tsinghua University, Beijing, China
    314 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China
    315 rdf:type schema:Organization
    316 https://www.grid.ac/institutes/grid.12981.33 schema:alternateName Sun Yat-sen University
    317 schema:name School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, China
    318 rdf:type schema:Organization
    319 https://www.grid.ac/institutes/grid.410445.0 schema:alternateName University of Hawaii at Manoa
    320 schema:name International Pacific Research Center, and School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, 2525 Correa Rd., 96822, Honolulu, HI, USA
    321 rdf:type schema:Organization
    322 https://www.grid.ac/institutes/grid.424023.3 schema:alternateName Institute of Atmospheric Physics
    323 schema:name State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China
    324 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...