Global evaluation of atmospheric river subseasonal prediction skill View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Michael J. DeFlorio, Duane E. Waliser, Bin Guan, F. Martin Ralph, Frédéric Vitart

ABSTRACT

Subseasonal-to-Seasonal (S2S) forecasts of weather and climate extremes are being increasingly demanded by water resource managers, operational forecasters, and other users in the applications community. This study uses hindcast data from the European Centre for Medium-Range Weather Forecasts (ECMWF) S2S forecast system to evaluate global subseasonal prediction skill of atmospheric rivers (ARs), which are intense lower tropospheric plumes of moisture transport that often project strongly onto extreme precipitation. An aggregate quantity is introduced to assess AR subseasonal prediction skill, defined as the number of AR days occurring over a week-long period (AR1wk occurrence). The observed pattern of seasonal mean AR1wk occurrence strongly resembles the general pattern of daily AR frequency. The ECMWF S2S forecast system generally shows positive (negative) biases relative to reanalysis in the mid-latitude regions in summer (winter) of up to 0.5–1.0 AR days in AR1wk occurrence in regions of highest AR activity. ECMWF AR1wk occurrence forecast skill outperforms a reference forecast based on monthly climatology of AR1wk occurrence at week-3 (14–20 days) lead over a number of subtropical to midlatitude regions, with slightly better skill evident in wintertime. The magnitude and subseasonal forecast skill of AR1wk occurrence are shown to vary interannually, and both quantities are modulated during certain phases of the El Niño–Southern Oscillation, Arctic Oscillation, Pacific–North America teleconnection pattern, and Madden–Julian Oscillation. More... »

PAGES

3039-3060

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00382-018-4309-x

DOI

http://dx.doi.org/10.1007/s00382-018-4309-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105013639


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "California Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive M/S 300-330, 91109, Pasadena, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "DeFlorio", 
        "givenName": "Michael J.", 
        "id": "sg:person.015441224151.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015441224151.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive M/S 300-330, 91109, Pasadena, CA, USA", 
            "Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Waliser", 
        "givenName": "Duane E.", 
        "id": "sg:person.01112400134.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112400134.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive M/S 300-330, 91109, Pasadena, CA, USA", 
            "Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guan", 
        "givenName": "Bin", 
        "id": "sg:person.011541436207.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011541436207.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, San Diego", 
          "id": "https://www.grid.ac/institutes/grid.266100.3", 
          "name": [
            "Center for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ralph", 
        "givenName": "F. Martin", 
        "id": "sg:person.013717525763.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013717525763.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Centre for Medium-Range Weather Forecasts", 
          "id": "https://www.grid.ac/institutes/grid.42781.38", 
          "name": [
            "European Centre for Medium-Range Weather Forecasts, Reading, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vitart", 
        "givenName": "Fr\u00e9d\u00e9ric", 
        "id": "sg:person.016103603413.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016103603413.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.3390/w3020445", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001460406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/bams-d-16-0017.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004447550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/mwr-d-15-0279.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007230663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-15-0655.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011882701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2008gl036445", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013006498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/waf-d-13-00025.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013623266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/mwr-d-11-00087.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014283774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2014gl060881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015148679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2015jd023379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019101066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2478/v10117-011-0021-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022912686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2014gl060299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026202997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2016gl070086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027134379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2016wr019033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029999732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2016wr019033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029999732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2016wr019033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029999732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/wrcr.20537", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030456204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms6382", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030492768", 
          "https://doi.org/10.1038/ncomms6382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(2004)132<1917:aarmmi>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030953686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jhm-d-14-0195.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031837158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-012-1322-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034269385", 
          "https://doi.org/10.1007/s00382-012-1322-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2010gl044696", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034302023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-016-3264-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039236540", 
          "https://doi.org/10.1007/s00382-016-3264-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-016-3264-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039236540", 
          "https://doi.org/10.1007/s00382-016-3264-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039601605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-13-00597.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044377605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(1998)126<0725:apafmf>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045222293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/grl.50636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045477371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(2004)132<1721:sacaoo>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045790080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2016gl067765", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046369416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2014jd021470", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048893280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2015jd024257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049320191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2007jhm855.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051765821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/mwr-d-13-00019.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052608605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2011jhm1358.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053180578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3402/tellusa.v34i6.10836", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071279199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-16-0386.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083783182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo2894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083883827", 
          "https://doi.org/10.1038/ngeo2894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00704-017-2071-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083886272", 
          "https://doi.org/10.1007/s00704-017-2071-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00704-017-2071-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083886272", 
          "https://doi.org/10.1007/s00704-017-2071-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jhm-d-16-0219.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083939733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-017-3582-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084021257", 
          "https://doi.org/10.1007/s00382-017-3582-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-017-3582-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084021257", 
          "https://doi.org/10.1007/s00382-017-3582-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-16-0875.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084868809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11069-017-2867-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085043798", 
          "https://doi.org/10.1007/s11069-017-2867-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11069-017-2867-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085043798", 
          "https://doi.org/10.1007/s11069-017-2867-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.3079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085583405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2017gl074434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090738877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-16-0836.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090809984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2017gl074175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090952412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/joc.5229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091085439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2017gl074882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092139920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41612-017-0008-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099816475", 
          "https://doi.org/10.1038/s41612-017-0008-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jhm-d-17-0135.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100301951"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "Subseasonal-to-Seasonal (S2S) forecasts of weather and climate extremes are being increasingly demanded by water resource managers, operational forecasters, and other users in the applications community. This study uses hindcast data from the European Centre for Medium-Range Weather Forecasts (ECMWF) S2S forecast system to evaluate global subseasonal prediction skill of atmospheric rivers (ARs), which are intense lower tropospheric plumes of moisture transport that often project strongly onto extreme precipitation. An aggregate quantity is introduced to assess AR subseasonal prediction skill, defined as the number of AR days occurring over a week-long period (AR1wk occurrence). The observed pattern of seasonal mean AR1wk occurrence strongly resembles the general pattern of daily AR frequency. The ECMWF S2S forecast system generally shows positive (negative) biases relative to reanalysis in the mid-latitude regions in summer (winter) of up to 0.5\u20131.0 AR days in AR1wk occurrence in regions of highest AR activity. ECMWF AR1wk occurrence forecast skill outperforms a reference forecast based on monthly climatology of AR1wk occurrence at week-3 (14\u201320 days) lead over a number of subtropical to midlatitude regions, with slightly better skill evident in wintertime. The magnitude and subseasonal forecast skill of AR1wk occurrence are shown to vary interannually, and both quantities are modulated during certain phases of the El Ni\u00f1o\u2013Southern Oscillation, Arctic Oscillation, Pacific\u2013North America teleconnection pattern, and Madden\u2013Julian Oscillation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00382-018-4309-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5-6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "52"
      }
    ], 
    "name": "Global evaluation of atmospheric river subseasonal prediction skill", 
    "pagination": "3039-3060", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "abf798f62bb8d719bce3ac478881f6f37190749e56d67082ef279c9b26201330"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00382-018-4309-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105013639"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00382-018-4309-x", 
      "https://app.dimensions.ai/details/publication/pub.1105013639"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000360_0000000360/records_118342_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00382-018-4309-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-018-4309-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-018-4309-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-018-4309-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-018-4309-x'


 

This table displays all metadata directly associated to this object as RDF triples.

248 TRIPLES      21 PREDICATES      74 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00382-018-4309-x schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author Nc0149793d62643e0a91c11a014c034eb
4 schema:citation sg:pub.10.1007/s00382-012-1322-3
5 sg:pub.10.1007/s00382-016-3264-7
6 sg:pub.10.1007/s00382-017-3582-4
7 sg:pub.10.1007/s00704-017-2071-3
8 sg:pub.10.1007/s11069-017-2867-6
9 sg:pub.10.1038/ncomms6382
10 sg:pub.10.1038/ngeo2894
11 sg:pub.10.1038/s41612-017-0008-2
12 https://doi.org/10.1002/2014gl060299
13 https://doi.org/10.1002/2014gl060881
14 https://doi.org/10.1002/2014jd021470
15 https://doi.org/10.1002/2015jd023379
16 https://doi.org/10.1002/2015jd024257
17 https://doi.org/10.1002/2016gl067765
18 https://doi.org/10.1002/2016gl070086
19 https://doi.org/10.1002/2016wr019033
20 https://doi.org/10.1002/2017gl074175
21 https://doi.org/10.1002/2017gl074434
22 https://doi.org/10.1002/2017gl074882
23 https://doi.org/10.1002/grl.50636
24 https://doi.org/10.1002/joc.5229
25 https://doi.org/10.1002/qj.3079
26 https://doi.org/10.1002/qj.828
27 https://doi.org/10.1002/wrcr.20537
28 https://doi.org/10.1029/2008gl036445
29 https://doi.org/10.1029/2010gl044696
30 https://doi.org/10.1175/1520-0493(1998)126<0725:apafmf>2.0.co;2
31 https://doi.org/10.1175/1520-0493(2004)132<1721:sacaoo>2.0.co;2
32 https://doi.org/10.1175/1520-0493(2004)132<1917:aarmmi>2.0.co;2
33 https://doi.org/10.1175/2007jhm855.1
34 https://doi.org/10.1175/2011jhm1358.1
35 https://doi.org/10.1175/bams-d-16-0017.1
36 https://doi.org/10.1175/jcli-d-13-00597.1
37 https://doi.org/10.1175/jcli-d-15-0655.1
38 https://doi.org/10.1175/jcli-d-16-0386.1
39 https://doi.org/10.1175/jcli-d-16-0836.1
40 https://doi.org/10.1175/jcli-d-16-0875.1
41 https://doi.org/10.1175/jhm-d-14-0195.1
42 https://doi.org/10.1175/jhm-d-16-0219.1
43 https://doi.org/10.1175/jhm-d-17-0135.1
44 https://doi.org/10.1175/mwr-d-11-00087.1
45 https://doi.org/10.1175/mwr-d-13-00019.1
46 https://doi.org/10.1175/mwr-d-15-0279.1
47 https://doi.org/10.1175/waf-d-13-00025.1
48 https://doi.org/10.2478/v10117-011-0021-1
49 https://doi.org/10.3390/w3020445
50 https://doi.org/10.3402/tellusa.v34i6.10836
51 schema:datePublished 2019-03
52 schema:datePublishedReg 2019-03-01
53 schema:description Subseasonal-to-Seasonal (S2S) forecasts of weather and climate extremes are being increasingly demanded by water resource managers, operational forecasters, and other users in the applications community. This study uses hindcast data from the European Centre for Medium-Range Weather Forecasts (ECMWF) S2S forecast system to evaluate global subseasonal prediction skill of atmospheric rivers (ARs), which are intense lower tropospheric plumes of moisture transport that often project strongly onto extreme precipitation. An aggregate quantity is introduced to assess AR subseasonal prediction skill, defined as the number of AR days occurring over a week-long period (AR1wk occurrence). The observed pattern of seasonal mean AR1wk occurrence strongly resembles the general pattern of daily AR frequency. The ECMWF S2S forecast system generally shows positive (negative) biases relative to reanalysis in the mid-latitude regions in summer (winter) of up to 0.5–1.0 AR days in AR1wk occurrence in regions of highest AR activity. ECMWF AR1wk occurrence forecast skill outperforms a reference forecast based on monthly climatology of AR1wk occurrence at week-3 (14–20 days) lead over a number of subtropical to midlatitude regions, with slightly better skill evident in wintertime. The magnitude and subseasonal forecast skill of AR1wk occurrence are shown to vary interannually, and both quantities are modulated during certain phases of the El Niño–Southern Oscillation, Arctic Oscillation, Pacific–North America teleconnection pattern, and Madden–Julian Oscillation.
54 schema:genre research_article
55 schema:inLanguage en
56 schema:isAccessibleForFree false
57 schema:isPartOf N5f4030db3a934d7e9b4f38a308e15aa5
58 Ned8a1c8f5a76481e8266c00deec1d2ed
59 sg:journal.1049631
60 schema:name Global evaluation of atmospheric river subseasonal prediction skill
61 schema:pagination 3039-3060
62 schema:productId N7ccead977fee422b94cf234535fb964b
63 N93263aad67024194baedcd13a5bca872
64 Nd5409118c1054a688a8f9c4ec1d00b9e
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105013639
66 https://doi.org/10.1007/s00382-018-4309-x
67 schema:sdDatePublished 2019-04-11T12:07
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher N27b3dadf5d784a1ca50628dcded656de
70 schema:url https://link.springer.com/10.1007%2Fs00382-018-4309-x
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N1b1f990ebb0746b0801a6f05ad2c1241 rdf:first sg:person.013717525763.50
75 rdf:rest N8f5419caec8546a7ab2f0c7bb998c91a
76 N27b3dadf5d784a1ca50628dcded656de schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 N5d60bd6d31d34443a701c0392bf98a61 rdf:first sg:person.01112400134.33
79 rdf:rest Na6d0b0be6969482abeb05f1753a50b5e
80 N5f4030db3a934d7e9b4f38a308e15aa5 schema:volumeNumber 52
81 rdf:type schema:PublicationVolume
82 N7ccead977fee422b94cf234535fb964b schema:name readcube_id
83 schema:value abf798f62bb8d719bce3ac478881f6f37190749e56d67082ef279c9b26201330
84 rdf:type schema:PropertyValue
85 N8f5419caec8546a7ab2f0c7bb998c91a rdf:first sg:person.016103603413.15
86 rdf:rest rdf:nil
87 N93263aad67024194baedcd13a5bca872 schema:name dimensions_id
88 schema:value pub.1105013639
89 rdf:type schema:PropertyValue
90 Na6d0b0be6969482abeb05f1753a50b5e rdf:first sg:person.011541436207.46
91 rdf:rest N1b1f990ebb0746b0801a6f05ad2c1241
92 Nc0149793d62643e0a91c11a014c034eb rdf:first sg:person.015441224151.20
93 rdf:rest N5d60bd6d31d34443a701c0392bf98a61
94 Nd5409118c1054a688a8f9c4ec1d00b9e schema:name doi
95 schema:value 10.1007/s00382-018-4309-x
96 rdf:type schema:PropertyValue
97 Ned8a1c8f5a76481e8266c00deec1d2ed schema:issueNumber 5-6
98 rdf:type schema:PublicationIssue
99 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
100 schema:name Earth Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
103 schema:name Atmospheric Sciences
104 rdf:type schema:DefinedTerm
105 sg:journal.1049631 schema:issn 0930-7575
106 1432-0894
107 schema:name Climate Dynamics
108 rdf:type schema:Periodical
109 sg:person.01112400134.33 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
110 schema:familyName Waliser
111 schema:givenName Duane E.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112400134.33
113 rdf:type schema:Person
114 sg:person.011541436207.46 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
115 schema:familyName Guan
116 schema:givenName Bin
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011541436207.46
118 rdf:type schema:Person
119 sg:person.013717525763.50 schema:affiliation https://www.grid.ac/institutes/grid.266100.3
120 schema:familyName Ralph
121 schema:givenName F. Martin
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013717525763.50
123 rdf:type schema:Person
124 sg:person.015441224151.20 schema:affiliation https://www.grid.ac/institutes/grid.20861.3d
125 schema:familyName DeFlorio
126 schema:givenName Michael J.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015441224151.20
128 rdf:type schema:Person
129 sg:person.016103603413.15 schema:affiliation https://www.grid.ac/institutes/grid.42781.38
130 schema:familyName Vitart
131 schema:givenName Frédéric
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016103603413.15
133 rdf:type schema:Person
134 sg:pub.10.1007/s00382-012-1322-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034269385
135 https://doi.org/10.1007/s00382-012-1322-3
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s00382-016-3264-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039236540
138 https://doi.org/10.1007/s00382-016-3264-7
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s00382-017-3582-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084021257
141 https://doi.org/10.1007/s00382-017-3582-4
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/s00704-017-2071-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083886272
144 https://doi.org/10.1007/s00704-017-2071-3
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/s11069-017-2867-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085043798
147 https://doi.org/10.1007/s11069-017-2867-6
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/ncomms6382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030492768
150 https://doi.org/10.1038/ncomms6382
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/ngeo2894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083883827
153 https://doi.org/10.1038/ngeo2894
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/s41612-017-0008-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099816475
156 https://doi.org/10.1038/s41612-017-0008-2
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1002/2014gl060299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026202997
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1002/2014gl060881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015148679
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1002/2014jd021470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048893280
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1002/2015jd023379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019101066
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1002/2015jd024257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049320191
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1002/2016gl067765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046369416
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1002/2016gl070086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027134379
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1002/2016wr019033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029999732
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1002/2017gl074175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090952412
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1002/2017gl074434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090738877
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1002/2017gl074882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092139920
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1002/grl.50636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045477371
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1002/joc.5229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091085439
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1002/qj.3079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085583405
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1002/qj.828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039601605
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1002/wrcr.20537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030456204
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1029/2008gl036445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013006498
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1029/2010gl044696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034302023
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1175/1520-0493(1998)126<0725:apafmf>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045222293
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1175/1520-0493(2004)132<1721:sacaoo>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045790080
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1175/1520-0493(2004)132<1917:aarmmi>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030953686
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1175/2007jhm855.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051765821
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1175/2011jhm1358.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053180578
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1175/bams-d-16-0017.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004447550
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1175/jcli-d-13-00597.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044377605
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1175/jcli-d-15-0655.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011882701
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1175/jcli-d-16-0386.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083783182
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1175/jcli-d-16-0836.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090809984
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1175/jcli-d-16-0875.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084868809
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1175/jhm-d-14-0195.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031837158
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1175/jhm-d-16-0219.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083939733
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1175/jhm-d-17-0135.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100301951
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1175/mwr-d-11-00087.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014283774
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1175/mwr-d-13-00019.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052608605
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1175/mwr-d-15-0279.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007230663
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1175/waf-d-13-00025.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013623266
229 rdf:type schema:CreativeWork
230 https://doi.org/10.2478/v10117-011-0021-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022912686
231 rdf:type schema:CreativeWork
232 https://doi.org/10.3390/w3020445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001460406
233 rdf:type schema:CreativeWork
234 https://doi.org/10.3402/tellusa.v34i6.10836 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071279199
235 rdf:type schema:CreativeWork
236 https://www.grid.ac/institutes/grid.19006.3e schema:alternateName University of California Los Angeles
237 schema:name Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive M/S 300-330, 91109, Pasadena, CA, USA
238 Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA
239 rdf:type schema:Organization
240 https://www.grid.ac/institutes/grid.20861.3d schema:alternateName California Institute of Technology
241 schema:name Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive M/S 300-330, 91109, Pasadena, CA, USA
242 rdf:type schema:Organization
243 https://www.grid.ac/institutes/grid.266100.3 schema:alternateName University of California, San Diego
244 schema:name Center for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA
245 rdf:type schema:Organization
246 https://www.grid.ac/institutes/grid.42781.38 schema:alternateName European Centre for Medium-Range Weather Forecasts
247 schema:name European Centre for Medium-Range Weather Forecasts, Reading, UK
248 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...