Improving niche projections of plant species under climate change: Silene acaulis on the British Isles as a case study View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-04-26

AUTHORS

Alessandro Ferrarini, Mohammed H. S. A. Alsafran, Junhu Dai, Juha M. Alatalo

ABSTRACT

Empirical works to assist in choosing climatically relevant variables in the attempt to predict climate change impacts on plant species are limited. Further uncertainties arise in choice of an appropriate niche model. In this study we devised and tested a sharp methodological framework, based on stringent variable ranking and filtering and flexible model selection, to minimize uncertainty in both niche modelling and successive projection of plant species distributions. We used our approach to develop an accurate, parsimonious model of Silene acaulis (L.) presence/absence on the British Isles and to project its presence/absence under climate change. The approach suggests the importance of (a) defining a reduced set of climate variables, actually relevant to species presence/absence, from an extensive list of climate predictors, and (b) considering climate extremes instead of, or together with, climate averages in projections of plant species presence/absence under future climate scenarios. Our methodological approach reduced the number of relevant climate predictors by 95.23% (from 84 to only 4), while simultaneously achieving high cross-validated accuracy (97.84%) confirming enhanced model performance. Projections produced under different climate scenarios suggest that S. acaulis will likely face climate-driven fast decline in suitable areas on the British Isles, and that upward and northward shifts to occupy new climatically suitable areas are improbable in the future. Our results also imply that conservation measures for S. acaulis based upon assisted colonization are unlikely to succeed on the British Isles due to the absence of climatically suitable habitat, so different conservation actions (seed banks and/or botanical gardens) are needed. More... »

PAGES

1413-1423

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00382-018-4200-9

DOI

http://dx.doi.org/10.1007/s00382-018-4200-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103660147


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oceanography", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Via G. Saragat 4, I-43123, Parma, Italy", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Via G. Saragat 4, I-43123, Parma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ferrarini", 
        "givenName": "Alessandro", 
        "id": "sg:person.011377034611.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011377034611.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar", 
          "id": "http://www.grid.ac/institutes/grid.412603.2", 
          "name": [
            "Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alsafran", 
        "givenName": "Mohammed H. S. A.", 
        "id": "sg:person.013007731574.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013007731574.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.424975.9", 
          "name": [
            "Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dai", 
        "givenName": "Junhu", 
        "id": "sg:person.01024437570.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024437570.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar", 
          "id": "http://www.grid.ac/institutes/grid.412603.2", 
          "name": [
            "Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alatalo", 
        "givenName": "Juha M.", 
        "id": "sg:person.016235506511.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016235506511.49"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/srep21720", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041053665", 
          "https://doi.org/10.1038/srep21720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate1514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048952219", 
          "https://doi.org/10.1038/nclimate1514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050291775", 
          "https://doi.org/10.1038/nature09678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01894807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038147953", 
          "https://doi.org/10.1007/bf01894807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00116251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019422208", 
          "https://doi.org/10.1007/bf00116251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005595347", 
          "https://doi.org/10.1038/nature09439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-59119-2_166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036817214", 
          "https://doi.org/10.1007/3-540-59119-2_166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00994018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025150743", 
          "https://doi.org/10.1007/bf00994018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14952", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053680222", 
          "https://doi.org/10.1038/nature14952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep28542", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006765512", 
          "https://doi.org/10.1038/srep28542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010933404324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024739340", 
          "https://doi.org/10.1023/a:1010933404324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2193-1801-3-157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016576110", 
          "https://doi.org/10.1186/2193-1801-3-157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030525946", 
          "https://doi.org/10.1038/nature03972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/369448a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041860683", 
          "https://doi.org/10.1038/369448a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-04-26", 
    "datePublishedReg": "2018-04-26", 
    "description": "Empirical works to assist in choosing climatically relevant variables in the attempt to predict climate change impacts on plant species are limited. Further uncertainties arise in choice of an appropriate niche model. In this study we devised and tested a sharp methodological framework, based on stringent variable ranking and filtering and flexible model selection, to minimize uncertainty in both niche modelling and successive projection of plant species distributions. We used our approach to develop an accurate, parsimonious model of Silene acaulis (L.) presence/absence on the British Isles and to project its presence/absence under climate change. The approach suggests the importance of (a) defining a reduced set of climate variables, actually relevant to species presence/absence, from an extensive list of climate predictors, and (b) considering climate extremes instead of, or together with, climate averages in projections of plant species presence/absence under future climate scenarios. Our methodological approach reduced the number of relevant climate predictors by 95.23% (from 84 to only 4), while simultaneously achieving high cross-validated accuracy (97.84%) confirming enhanced model performance. Projections produced under different climate scenarios suggest that S. acaulis will likely face climate-driven fast decline in suitable areas on the British Isles, and that upward and northward shifts to occupy new climatically suitable areas are improbable in the future. Our results also imply that conservation measures for S. acaulis based upon assisted colonization are unlikely to succeed on the British Isles due to the absence of climatically suitable habitat, so different conservation actions (seed banks and/or botanical gardens) are needed.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00382-018-4200-9", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "52"
      }
    ], 
    "keywords": [
      "plant species", 
      "presence/absence", 
      "species presence/absence", 
      "plant species distribution", 
      "different conservation actions", 
      "suitable areas", 
      "assisted colonization", 
      "climate scenarios", 
      "niche modelling", 
      "suitable habitat", 
      "species distribution", 
      "niche models", 
      "conservation actions", 
      "niche projections", 
      "future climate scenarios", 
      "British Isles", 
      "climate change", 
      "conservation measures", 
      "acaulis", 
      "different climate scenarios", 
      "climate change impacts", 
      "species", 
      "climate predictors", 
      "change impacts", 
      "high cross-validated accuracy", 
      "climate variables", 
      "habitats", 
      "Silene", 
      "climate averages", 
      "northward shift", 
      "Isles", 
      "absence", 
      "climate extremes", 
      "colonization", 
      "cross-validated accuracy", 
      "further uncertainty", 
      "enhanced model performance", 
      "selection", 
      "extensive list", 
      "changes", 
      "decline", 
      "parsimonious model", 
      "faster decline", 
      "extremes", 
      "importance", 
      "study", 
      "action", 
      "area", 
      "shift", 
      "model selection", 
      "distribution", 
      "number", 
      "approach", 
      "list", 
      "methodological approach", 
      "impact", 
      "results", 
      "set", 
      "model", 
      "projections", 
      "scenarios", 
      "future", 
      "attempt", 
      "average", 
      "model performance", 
      "variables", 
      "ranking", 
      "methodological framework", 
      "modelling", 
      "variable ranking", 
      "choice", 
      "case study", 
      "predictors", 
      "measures", 
      "framework", 
      "filtering", 
      "relevant variables", 
      "uncertainty", 
      "successive projections", 
      "performance", 
      "accuracy", 
      "appropriate niche model", 
      "sharp methodological framework", 
      "stringent variable ranking", 
      "flexible model selection", 
      "Silene acaulis (L.) presence/absence", 
      "acaulis (L.) presence/absence", 
      "plant species presence/absence", 
      "relevant climate predictors", 
      "climate-driven fast decline"
    ], 
    "name": "Improving niche projections of plant species under climate change: Silene acaulis on the British Isles as a case study", 
    "pagination": "1413-1423", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103660147"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00382-018-4200-9"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00382-018-4200-9", 
      "https://app.dimensions.ai/details/publication/pub.1103660147"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_764.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00382-018-4200-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-018-4200-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-018-4200-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-018-4200-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-018-4200-9'


 

This table displays all metadata directly associated to this object as RDF triples.

239 TRIPLES      22 PREDICATES      131 URIs      107 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00382-018-4200-9 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 anzsrc-for:0405
4 anzsrc-for:0406
5 schema:author N3c77e7fb16fb449c9786b205cd257df2
6 schema:citation sg:pub.10.1007/3-540-59119-2_166
7 sg:pub.10.1007/bf00116251
8 sg:pub.10.1007/bf00994018
9 sg:pub.10.1007/bf01894807
10 sg:pub.10.1023/a:1010933404324
11 sg:pub.10.1038/369448a0
12 sg:pub.10.1038/nature03972
13 sg:pub.10.1038/nature09439
14 sg:pub.10.1038/nature09678
15 sg:pub.10.1038/nature14952
16 sg:pub.10.1038/nclimate1514
17 sg:pub.10.1038/srep21720
18 sg:pub.10.1038/srep28542
19 sg:pub.10.1186/2193-1801-3-157
20 schema:datePublished 2018-04-26
21 schema:datePublishedReg 2018-04-26
22 schema:description Empirical works to assist in choosing climatically relevant variables in the attempt to predict climate change impacts on plant species are limited. Further uncertainties arise in choice of an appropriate niche model. In this study we devised and tested a sharp methodological framework, based on stringent variable ranking and filtering and flexible model selection, to minimize uncertainty in both niche modelling and successive projection of plant species distributions. We used our approach to develop an accurate, parsimonious model of Silene acaulis (L.) presence/absence on the British Isles and to project its presence/absence under climate change. The approach suggests the importance of (a) defining a reduced set of climate variables, actually relevant to species presence/absence, from an extensive list of climate predictors, and (b) considering climate extremes instead of, or together with, climate averages in projections of plant species presence/absence under future climate scenarios. Our methodological approach reduced the number of relevant climate predictors by 95.23% (from 84 to only 4), while simultaneously achieving high cross-validated accuracy (97.84%) confirming enhanced model performance. Projections produced under different climate scenarios suggest that S. acaulis will likely face climate-driven fast decline in suitable areas on the British Isles, and that upward and northward shifts to occupy new climatically suitable areas are improbable in the future. Our results also imply that conservation measures for S. acaulis based upon assisted colonization are unlikely to succeed on the British Isles due to the absence of climatically suitable habitat, so different conservation actions (seed banks and/or botanical gardens) are needed.
23 schema:genre article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N2442551cbe6e436497b2770df6c24b55
27 N2beb207322a34df48594d9b0fe02df2e
28 sg:journal.1049631
29 schema:keywords British Isles
30 Isles
31 Silene
32 Silene acaulis (L.) presence/absence
33 absence
34 acaulis
35 acaulis (L.) presence/absence
36 accuracy
37 action
38 approach
39 appropriate niche model
40 area
41 assisted colonization
42 attempt
43 average
44 case study
45 change impacts
46 changes
47 choice
48 climate averages
49 climate change
50 climate change impacts
51 climate extremes
52 climate predictors
53 climate scenarios
54 climate variables
55 climate-driven fast decline
56 colonization
57 conservation actions
58 conservation measures
59 cross-validated accuracy
60 decline
61 different climate scenarios
62 different conservation actions
63 distribution
64 enhanced model performance
65 extensive list
66 extremes
67 faster decline
68 filtering
69 flexible model selection
70 framework
71 further uncertainty
72 future
73 future climate scenarios
74 habitats
75 high cross-validated accuracy
76 impact
77 importance
78 list
79 measures
80 methodological approach
81 methodological framework
82 model
83 model performance
84 model selection
85 modelling
86 niche modelling
87 niche models
88 niche projections
89 northward shift
90 number
91 parsimonious model
92 performance
93 plant species
94 plant species distribution
95 plant species presence/absence
96 predictors
97 presence/absence
98 projections
99 ranking
100 relevant climate predictors
101 relevant variables
102 results
103 scenarios
104 selection
105 set
106 sharp methodological framework
107 shift
108 species
109 species distribution
110 species presence/absence
111 stringent variable ranking
112 study
113 successive projections
114 suitable areas
115 suitable habitat
116 uncertainty
117 variable ranking
118 variables
119 schema:name Improving niche projections of plant species under climate change: Silene acaulis on the British Isles as a case study
120 schema:pagination 1413-1423
121 schema:productId Nd0836dbe92bb473ebfcd5d48eeff2368
122 Ne5a02f46905a40199696531bdf902fae
123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103660147
124 https://doi.org/10.1007/s00382-018-4200-9
125 schema:sdDatePublished 2021-12-01T19:39
126 schema:sdLicense https://scigraph.springernature.com/explorer/license/
127 schema:sdPublisher N519410ff95c5456fa56e50219f429265
128 schema:url https://doi.org/10.1007/s00382-018-4200-9
129 sgo:license sg:explorer/license/
130 sgo:sdDataset articles
131 rdf:type schema:ScholarlyArticle
132 N143902522b01497280643cb026233ba9 rdf:first sg:person.016235506511.49
133 rdf:rest rdf:nil
134 N2442551cbe6e436497b2770df6c24b55 schema:volumeNumber 52
135 rdf:type schema:PublicationVolume
136 N2beb207322a34df48594d9b0fe02df2e schema:issueNumber 3-4
137 rdf:type schema:PublicationIssue
138 N3c77e7fb16fb449c9786b205cd257df2 rdf:first sg:person.011377034611.19
139 rdf:rest N4ab71c67ebe946db8419a37b18b4d7b4
140 N4ab71c67ebe946db8419a37b18b4d7b4 rdf:first sg:person.013007731574.48
141 rdf:rest N7c3792bf5f534118834ca8ac5d6f4299
142 N519410ff95c5456fa56e50219f429265 schema:name Springer Nature - SN SciGraph project
143 rdf:type schema:Organization
144 N7c3792bf5f534118834ca8ac5d6f4299 rdf:first sg:person.01024437570.27
145 rdf:rest N143902522b01497280643cb026233ba9
146 Nd0836dbe92bb473ebfcd5d48eeff2368 schema:name dimensions_id
147 schema:value pub.1103660147
148 rdf:type schema:PropertyValue
149 Ne5a02f46905a40199696531bdf902fae schema:name doi
150 schema:value 10.1007/s00382-018-4200-9
151 rdf:type schema:PropertyValue
152 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
153 schema:name Earth Sciences
154 rdf:type schema:DefinedTerm
155 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
156 schema:name Atmospheric Sciences
157 rdf:type schema:DefinedTerm
158 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
159 schema:name Oceanography
160 rdf:type schema:DefinedTerm
161 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
162 schema:name Physical Geography and Environmental Geoscience
163 rdf:type schema:DefinedTerm
164 sg:journal.1049631 schema:issn 0930-7575
165 1432-0894
166 schema:name Climate Dynamics
167 schema:publisher Springer Nature
168 rdf:type schema:Periodical
169 sg:person.01024437570.27 schema:affiliation grid-institutes:grid.424975.9
170 schema:familyName Dai
171 schema:givenName Junhu
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024437570.27
173 rdf:type schema:Person
174 sg:person.011377034611.19 schema:affiliation grid-institutes:None
175 schema:familyName Ferrarini
176 schema:givenName Alessandro
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011377034611.19
178 rdf:type schema:Person
179 sg:person.013007731574.48 schema:affiliation grid-institutes:grid.412603.2
180 schema:familyName Alsafran
181 schema:givenName Mohammed H. S. A.
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013007731574.48
183 rdf:type schema:Person
184 sg:person.016235506511.49 schema:affiliation grid-institutes:grid.412603.2
185 schema:familyName Alatalo
186 schema:givenName Juha M.
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016235506511.49
188 rdf:type schema:Person
189 sg:pub.10.1007/3-540-59119-2_166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036817214
190 https://doi.org/10.1007/3-540-59119-2_166
191 rdf:type schema:CreativeWork
192 sg:pub.10.1007/bf00116251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019422208
193 https://doi.org/10.1007/bf00116251
194 rdf:type schema:CreativeWork
195 sg:pub.10.1007/bf00994018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025150743
196 https://doi.org/10.1007/bf00994018
197 rdf:type schema:CreativeWork
198 sg:pub.10.1007/bf01894807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038147953
199 https://doi.org/10.1007/bf01894807
200 rdf:type schema:CreativeWork
201 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
202 https://doi.org/10.1023/a:1010933404324
203 rdf:type schema:CreativeWork
204 sg:pub.10.1038/369448a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041860683
205 https://doi.org/10.1038/369448a0
206 rdf:type schema:CreativeWork
207 sg:pub.10.1038/nature03972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030525946
208 https://doi.org/10.1038/nature03972
209 rdf:type schema:CreativeWork
210 sg:pub.10.1038/nature09439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005595347
211 https://doi.org/10.1038/nature09439
212 rdf:type schema:CreativeWork
213 sg:pub.10.1038/nature09678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050291775
214 https://doi.org/10.1038/nature09678
215 rdf:type schema:CreativeWork
216 sg:pub.10.1038/nature14952 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053680222
217 https://doi.org/10.1038/nature14952
218 rdf:type schema:CreativeWork
219 sg:pub.10.1038/nclimate1514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048952219
220 https://doi.org/10.1038/nclimate1514
221 rdf:type schema:CreativeWork
222 sg:pub.10.1038/srep21720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041053665
223 https://doi.org/10.1038/srep21720
224 rdf:type schema:CreativeWork
225 sg:pub.10.1038/srep28542 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006765512
226 https://doi.org/10.1038/srep28542
227 rdf:type schema:CreativeWork
228 sg:pub.10.1186/2193-1801-3-157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016576110
229 https://doi.org/10.1186/2193-1801-3-157
230 rdf:type schema:CreativeWork
231 grid-institutes:None schema:alternateName Via G. Saragat 4, I-43123, Parma, Italy
232 schema:name Via G. Saragat 4, I-43123, Parma, Italy
233 rdf:type schema:Organization
234 grid-institutes:grid.412603.2 schema:alternateName Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
235 schema:name Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
236 rdf:type schema:Organization
237 grid-institutes:grid.424975.9 schema:alternateName Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
238 schema:name Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
239 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...