Tree-ring reconstructions of cool season temperature for far southeastern Australia, 1731–2007 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01-11

AUTHORS

K. J. Allen, K. J. Anchukaitis, M. G. Grose, G. Lee, E. R. Cook, J. S. Risbey, T. J. O’Kane, D. Monselesan, A. O’Grady, S. Larsen, P. J. Baker

ABSTRACT

At the global scale, reconstructions of cool season temperature over past centuries are relatively rare. Here we present 277-year reconstructions of cool season (July–October) temperatures for southern Australia based on three different data sets: a spatial field reconstruction based on highly resolved temperature data from the Australian Water Availability Product data; reconstructions for the four southeast Australian states based on the Berkeley Earth mean temperature data for each state; and reconstructions for individual stations in southeastern Australia from the Australian Bureau of Meteorology’s Australian Climate Observations Reference Network–Surface Air Temperature data. Our reconstructions typically capture 25–50% of the variation over the late twentieth Century calibration period and are strongest for the southern state of Tasmania and the southeastern part of mainland Australia. All three use Tasmanian tree-rings sensitive to cool season temperatures and display similar variability. In the context of our reconstructions, the persistent warming in the observed record since ~ 1950 is unprecedented. While the low frequency variability of winter temperatures is generally in step with that in summer (December–February) temperatures, high frequency variability is not, illustrating the need for seasonal reconstructions to help improve understanding of variability in inter-seasonal dynamics and the historical importance of this on the environment. The reconstructions covary with changes in the Southern Annular Mode and may be useful for future reconstructions of this phenomenon. More... »

PAGES

569-583

References to SciGraph publications

  • 2012-10-28. Unusual Southern Hemisphere tree growth patterns induced by changes in the Southern Annular Mode in NATURE GEOSCIENCE
  • 2011-11-06. Regional-scale winter-spring temperature variability and chilling damage dynamics over the past two centuries in southeastern China in CLIMATE DYNAMICS
  • 2009-08-28. Five centuries of Stockholm winter/spring temperatures reconstructed from documentary evidence and instrumental observations in CLIMATIC CHANGE
  • 2015-08-15. On the dynamics of persistent states and their secular trends in the waveguides of the Southern Hemisphere troposphere in CLIMATE DYNAMICS
  • 2010-03-28. Non-uniform interhemispheric temperature trends over the past 550 years in CLIMATE DYNAMICS
  • 2004-04. The Changing Nature of Australian Droughts in CLIMATIC CHANGE
  • 2009-12-31. Australian east coast rainfall decline related to large scale climate drivers in CLIMATE DYNAMICS
  • 2010-03-28. Multiproxy summer and winter surface air temperature field reconstructions for southern South America covering the past centuries in CLIMATE DYNAMICS
  • 2000-02. Warm-season temperatures since 1600 BC reconstructed from Tasmanian tree rings and their relationship to large-scale sea surface temperature anomalies in CLIMATE DYNAMICS
  • 2017-07-11. A global multiproxy database for temperature reconstructions of the Common Era in SCIENTIFIC DATA
  • 2008-01. Asymmetric variability between maximum and minimum temperatures in Northeastern Tibetan Plateau: Evidence from tree rings in SCIENCE CHINA EARTH SCIENCES
  • 2009-09-30. Monthly, seasonal and annual temperature reconstructions for Central Europe derived from documentary evidence and instrumental records since AD 1500 in CLIMATIC CHANGE
  • 2018-03-13. Global warming in the context of 2000 years of Australian alpine temperature and snow cover in SCIENTIFIC REPORTS
  • 2011-02-12. The potential to reconstruct broadscale climate indices associated with southeast Australian droughts from Athrotaxis species, Tasmania in CLIMATE DYNAMICS
  • 2014-03-30. Inter-hemispheric temperature variability over the past millennium in NATURE CLIMATE CHANGE
  • 1997-07. A CHANGING TEMPERATURE RESPONSE WITH ELEVATION FOR LAGAROSTROBOS FRANKLINII IN TASMANIA, AUSTRALIA in CLIMATIC CHANGE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00382-018-04602-2

    DOI

    http://dx.doi.org/10.1007/s00382-018-04602-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111365637


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Geography and Environmental Geoscience", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Centre of Excellence for Australian Biodiversity and Heritage, University of New South Wales, 2052, Sydney, NSW, Australia", 
              "id": "http://www.grid.ac/institutes/grid.1005.4", 
              "name": [
                "School of Ecosystem and Forest Science, University of Melbourne, 3121, Richmond, VIC, Australia", 
                "Centre of Excellence for Australian Biodiversity and Heritage, University of New South Wales, 2052, Sydney, NSW, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Allen", 
            "givenName": "K. J.", 
            "id": "sg:person.012241343527.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012241343527.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Geography and Development, University of Arizona, Tucson, AZ, USA", 
              "id": "http://www.grid.ac/institutes/grid.134563.6", 
              "name": [
                "School of Geography and Development, University of Arizona, Tucson, AZ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Anchukaitis", 
            "givenName": "K. J.", 
            "id": "sg:person.013204527225.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013204527225.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CSIRO Oceans and Atmosphere, 7000, Hobart, TAS, Australia", 
              "id": "http://www.grid.ac/institutes/grid.492990.f", 
              "name": [
                "CSIRO Oceans and Atmosphere, 7000, Hobart, TAS, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Grose", 
            "givenName": "M. G.", 
            "id": "sg:person.013310220341.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013310220341.70"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Antarctic Climate and Ecosystems Research Centre, University of Tasmania, 7000, Hobart, Australia", 
              "id": "http://www.grid.ac/institutes/grid.1009.8", 
              "name": [
                "Antarctic Climate and Ecosystems Research Centre, University of Tasmania, 7000, Hobart, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "G.", 
            "id": "sg:person.0762234136.64", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762234136.64"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tree-ring Laboratory, Lamont-Doherty Earth Observatory, 10964, New York, USA", 
              "id": "http://www.grid.ac/institutes/grid.473157.3", 
              "name": [
                "Tree-ring Laboratory, Lamont-Doherty Earth Observatory, 10964, New York, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cook", 
            "givenName": "E. R.", 
            "id": "sg:person.01104173064.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104173064.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CSIRO Oceans and Atmosphere, 7000, Hobart, TAS, Australia", 
              "id": "http://www.grid.ac/institutes/grid.492990.f", 
              "name": [
                "CSIRO Oceans and Atmosphere, 7000, Hobart, TAS, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Risbey", 
            "givenName": "J. S.", 
            "id": "sg:person.013150567533.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013150567533.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CSIRO Oceans and Atmosphere, 7000, Hobart, TAS, Australia", 
              "id": "http://www.grid.ac/institutes/grid.492990.f", 
              "name": [
                "CSIRO Oceans and Atmosphere, 7000, Hobart, TAS, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "O\u2019Kane", 
            "givenName": "T. J.", 
            "id": "sg:person.013013767340.60", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013013767340.60"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CSIRO Oceans and Atmosphere, 7000, Hobart, TAS, Australia", 
              "id": "http://www.grid.ac/institutes/grid.492990.f", 
              "name": [
                "CSIRO Oceans and Atmosphere, 7000, Hobart, TAS, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Monselesan", 
            "givenName": "D.", 
            "id": "sg:person.013157126305.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013157126305.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CSIRO Land and Water, 7005, Hobart, TAS, Australia", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "CSIRO Land and Water, 7005, Hobart, TAS, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "O\u2019Grady", 
            "givenName": "A.", 
            "id": "sg:person.01011655406.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011655406.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Marine Research, 5817, Bergen, Norway", 
              "id": "http://www.grid.ac/institutes/grid.10917.3e", 
              "name": [
                "Institute of Marine Research, 5817, Bergen, Norway"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Larsen", 
            "givenName": "S.", 
            "id": "sg:person.011250423747.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011250423747.53"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Ecosystem and Forest Science, University of Melbourne, 3121, Richmond, VIC, Australia", 
              "id": "http://www.grid.ac/institutes/grid.1008.9", 
              "name": [
                "School of Ecosystem and Forest Science, University of Melbourne, 3121, Richmond, VIC, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Baker", 
            "givenName": "P. J.", 
            "id": "sg:person.016622206527.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016622206527.40"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s003820050006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014449832", 
              "https://doi.org/10.1007/s003820050006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:clim.0000018515.46344.6d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028235195", 
              "https://doi.org/10.1023/b:clim.0000018515.46344.6d"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-011-1232-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042039974", 
              "https://doi.org/10.1007/s00382-011-1232-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo1613", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033727820", 
              "https://doi.org/10.1038/ngeo1613"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-018-22766-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101459076", 
              "https://doi.org/10.1038/s41598-018-22766-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-010-0793-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031707741", 
              "https://doi.org/10.1007/s00382-010-0793-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1005322332230", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023042846", 
              "https://doi.org/10.1023/a:1005322332230"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate2174", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041547048", 
              "https://doi.org/10.1038/nclimate2174"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11430-007-0154-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031521392", 
              "https://doi.org/10.1007/s11430-007-0154-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-009-9724-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051262503", 
              "https://doi.org/10.1007/s10584-009-9724-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-015-2786-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039405950", 
              "https://doi.org/10.1007/s00382-015-2786-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-009-9650-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023275231", 
              "https://doi.org/10.1007/s10584-009-9650-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-011-1011-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008770483", 
              "https://doi.org/10.1007/s00382-011-1011-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sdata.2017.88", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090578763", 
              "https://doi.org/10.1038/sdata.2017.88"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-009-0726-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023534926", 
              "https://doi.org/10.1007/s00382-009-0726-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-010-0794-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029055418", 
              "https://doi.org/10.1007/s00382-010-0794-2"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-01-11", 
        "datePublishedReg": "2019-01-11", 
        "description": "At the global scale, reconstructions of cool season temperature over past centuries are relatively rare. Here we present 277-year reconstructions of cool season (July\u2013October) temperatures for southern Australia based on three different data sets: a spatial field reconstruction based on highly resolved temperature data from the Australian Water Availability Product data; reconstructions for the four southeast Australian states based on the Berkeley Earth mean temperature data for each state; and reconstructions for individual stations in southeastern Australia from the Australian Bureau of Meteorology\u2019s Australian Climate Observations Reference Network\u2013Surface Air Temperature data. Our reconstructions typically capture 25\u201350% of the variation over the late twentieth Century calibration period and are strongest for the southern state of Tasmania and the southeastern part of mainland Australia. All three use Tasmanian tree-rings sensitive to cool season temperatures and display similar variability. In the context of our reconstructions, the persistent warming in the observed record since ~\u20091950 is unprecedented. While the low frequency variability of winter temperatures is generally in step with that in summer (December\u2013February) temperatures, high frequency variability is not, illustrating the need for seasonal reconstructions to help improve understanding of variability in inter-seasonal dynamics and the historical importance of this on the environment. The reconstructions covary with changes in the Southern Annular Mode and may be useful for future reconstructions of this phenomenon.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00382-018-04602-2", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1049631", 
            "issn": [
              "0930-7575", 
              "1432-0894"
            ], 
            "name": "Climate Dynamics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "53"
          }
        ], 
        "keywords": [
          "cool season temperature", 
          "season temperature", 
          "temperature data", 
          "frequency variability", 
          "Southern Annular Mode", 
          "tree-ring reconstructions", 
          "low-frequency variability", 
          "high-frequency variability", 
          "air temperature data", 
          "inter-seasonal dynamics", 
          "Berkeley Earth", 
          "Annular Mode", 
          "persistent warming", 
          "seasonal reconstructions", 
          "observed records", 
          "southeastern part", 
          "calibration period", 
          "understanding of variability", 
          "southeastern Australia", 
          "individual stations", 
          "winter temperatures", 
          "global scale", 
          "southern Australia", 
          "similar variability", 
          "future reconstruction", 
          "Australian Bureau", 
          "mainland Australia", 
          "past century", 
          "variability", 
          "field reconstruction", 
          "different data sets", 
          "Australia", 
          "data sets", 
          "spatial field reconstruction", 
          "reconstruction", 
          "warming", 
          "Earth", 
          "Tasmania", 
          "temperature", 
          "stations", 
          "records", 
          "data", 
          "variation", 
          "historical importance", 
          "scale", 
          "century", 
          "period", 
          "Bureau", 
          "part", 
          "dynamics", 
          "product data", 
          "environment", 
          "changes", 
          "understanding", 
          "importance", 
          "southern states", 
          "state", 
          "phenomenon", 
          "set", 
          "Australian states", 
          "mode", 
          "context", 
          "step", 
          "need"
        ], 
        "name": "Tree-ring reconstructions of cool season temperature for far southeastern Australia, 1731\u20132007", 
        "pagination": "569-583", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111365637"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00382-018-04602-2"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00382-018-04602-2", 
          "https://app.dimensions.ai/details/publication/pub.1111365637"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:39", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_791.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00382-018-04602-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-018-04602-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-018-04602-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-018-04602-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-018-04602-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    277 TRIPLES      21 PREDICATES      104 URIs      80 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00382-018-04602-2 schema:about anzsrc-for:04
    2 anzsrc-for:0406
    3 schema:author N01e9fb07b66b496fbaa58c3ee92df0ef
    4 schema:citation sg:pub.10.1007/s00382-009-0726-1
    5 sg:pub.10.1007/s00382-010-0793-3
    6 sg:pub.10.1007/s00382-010-0794-2
    7 sg:pub.10.1007/s00382-011-1011-7
    8 sg:pub.10.1007/s00382-011-1232-9
    9 sg:pub.10.1007/s00382-015-2786-8
    10 sg:pub.10.1007/s003820050006
    11 sg:pub.10.1007/s10584-009-9650-y
    12 sg:pub.10.1007/s10584-009-9724-x
    13 sg:pub.10.1007/s11430-007-0154-1
    14 sg:pub.10.1023/a:1005322332230
    15 sg:pub.10.1023/b:clim.0000018515.46344.6d
    16 sg:pub.10.1038/nclimate2174
    17 sg:pub.10.1038/ngeo1613
    18 sg:pub.10.1038/s41598-018-22766-z
    19 sg:pub.10.1038/sdata.2017.88
    20 schema:datePublished 2019-01-11
    21 schema:datePublishedReg 2019-01-11
    22 schema:description At the global scale, reconstructions of cool season temperature over past centuries are relatively rare. Here we present 277-year reconstructions of cool season (July–October) temperatures for southern Australia based on three different data sets: a spatial field reconstruction based on highly resolved temperature data from the Australian Water Availability Product data; reconstructions for the four southeast Australian states based on the Berkeley Earth mean temperature data for each state; and reconstructions for individual stations in southeastern Australia from the Australian Bureau of Meteorology’s Australian Climate Observations Reference Network–Surface Air Temperature data. Our reconstructions typically capture 25–50% of the variation over the late twentieth Century calibration period and are strongest for the southern state of Tasmania and the southeastern part of mainland Australia. All three use Tasmanian tree-rings sensitive to cool season temperatures and display similar variability. In the context of our reconstructions, the persistent warming in the observed record since ~ 1950 is unprecedented. While the low frequency variability of winter temperatures is generally in step with that in summer (December–February) temperatures, high frequency variability is not, illustrating the need for seasonal reconstructions to help improve understanding of variability in inter-seasonal dynamics and the historical importance of this on the environment. The reconstructions covary with changes in the Southern Annular Mode and may be useful for future reconstructions of this phenomenon.
    23 schema:genre article
    24 schema:isAccessibleForFree false
    25 schema:isPartOf N43a167c39c6140dc9e18bc848a9d5efc
    26 Na7a782e41bdb4eb6bf159ccc4217b2a2
    27 sg:journal.1049631
    28 schema:keywords Annular Mode
    29 Australia
    30 Australian Bureau
    31 Australian states
    32 Berkeley Earth
    33 Bureau
    34 Earth
    35 Southern Annular Mode
    36 Tasmania
    37 air temperature data
    38 calibration period
    39 century
    40 changes
    41 context
    42 cool season temperature
    43 data
    44 data sets
    45 different data sets
    46 dynamics
    47 environment
    48 field reconstruction
    49 frequency variability
    50 future reconstruction
    51 global scale
    52 high-frequency variability
    53 historical importance
    54 importance
    55 individual stations
    56 inter-seasonal dynamics
    57 low-frequency variability
    58 mainland Australia
    59 mode
    60 need
    61 observed records
    62 part
    63 past century
    64 period
    65 persistent warming
    66 phenomenon
    67 product data
    68 reconstruction
    69 records
    70 scale
    71 season temperature
    72 seasonal reconstructions
    73 set
    74 similar variability
    75 southeastern Australia
    76 southeastern part
    77 southern Australia
    78 southern states
    79 spatial field reconstruction
    80 state
    81 stations
    82 step
    83 temperature
    84 temperature data
    85 tree-ring reconstructions
    86 understanding
    87 understanding of variability
    88 variability
    89 variation
    90 warming
    91 winter temperatures
    92 schema:name Tree-ring reconstructions of cool season temperature for far southeastern Australia, 1731–2007
    93 schema:pagination 569-583
    94 schema:productId N6f204b9d80014e3a8e8e680b4d669dd0
    95 Ncc6c87c0f3f947deb3fb87a3f4730281
    96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111365637
    97 https://doi.org/10.1007/s00382-018-04602-2
    98 schema:sdDatePublished 2022-12-01T06:39
    99 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    100 schema:sdPublisher N50697323cf0d4ff9b1c13a6a6363c772
    101 schema:url https://doi.org/10.1007/s00382-018-04602-2
    102 sgo:license sg:explorer/license/
    103 sgo:sdDataset articles
    104 rdf:type schema:ScholarlyArticle
    105 N01e9fb07b66b496fbaa58c3ee92df0ef rdf:first sg:person.012241343527.43
    106 rdf:rest N4ba1793082d143dd88c64a422013d341
    107 N0206a5e5381449dea5b8faa7d36b262b rdf:first sg:person.013150567533.80
    108 rdf:rest N1acbd9ee15a34c9988324797f975e48d
    109 N0e6fea4ac9d4473ab462e8dcee8ffcd2 rdf:first sg:person.013157126305.06
    110 rdf:rest Ne810d63770104b6783473ba78c642491
    111 N11f76f98480448d0b4a7d43f4f408606 rdf:first sg:person.01104173064.88
    112 rdf:rest N0206a5e5381449dea5b8faa7d36b262b
    113 N1acbd9ee15a34c9988324797f975e48d rdf:first sg:person.013013767340.60
    114 rdf:rest N0e6fea4ac9d4473ab462e8dcee8ffcd2
    115 N1baf01a574794bad916ed5ab684a3edd rdf:first sg:person.0762234136.64
    116 rdf:rest N11f76f98480448d0b4a7d43f4f408606
    117 N43a167c39c6140dc9e18bc848a9d5efc schema:volumeNumber 53
    118 rdf:type schema:PublicationVolume
    119 N4ba1793082d143dd88c64a422013d341 rdf:first sg:person.013204527225.25
    120 rdf:rest Nba3ea88bcd57474684116b7ee86af800
    121 N50697323cf0d4ff9b1c13a6a6363c772 schema:name Springer Nature - SN SciGraph project
    122 rdf:type schema:Organization
    123 N5c762ee12f5e4ae79bf1720c1d143053 rdf:first sg:person.016622206527.40
    124 rdf:rest rdf:nil
    125 N6f204b9d80014e3a8e8e680b4d669dd0 schema:name doi
    126 schema:value 10.1007/s00382-018-04602-2
    127 rdf:type schema:PropertyValue
    128 N8a3e33d7b1454c6986a093a8ed824c4b rdf:first sg:person.011250423747.53
    129 rdf:rest N5c762ee12f5e4ae79bf1720c1d143053
    130 Na7a782e41bdb4eb6bf159ccc4217b2a2 schema:issueNumber 1-2
    131 rdf:type schema:PublicationIssue
    132 Nba3ea88bcd57474684116b7ee86af800 rdf:first sg:person.013310220341.70
    133 rdf:rest N1baf01a574794bad916ed5ab684a3edd
    134 Ncc6c87c0f3f947deb3fb87a3f4730281 schema:name dimensions_id
    135 schema:value pub.1111365637
    136 rdf:type schema:PropertyValue
    137 Ne810d63770104b6783473ba78c642491 rdf:first sg:person.01011655406.21
    138 rdf:rest N8a3e33d7b1454c6986a093a8ed824c4b
    139 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    140 schema:name Earth Sciences
    141 rdf:type schema:DefinedTerm
    142 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
    143 schema:name Physical Geography and Environmental Geoscience
    144 rdf:type schema:DefinedTerm
    145 sg:journal.1049631 schema:issn 0930-7575
    146 1432-0894
    147 schema:name Climate Dynamics
    148 schema:publisher Springer Nature
    149 rdf:type schema:Periodical
    150 sg:person.01011655406.21 schema:affiliation grid-institutes:None
    151 schema:familyName O’Grady
    152 schema:givenName A.
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011655406.21
    154 rdf:type schema:Person
    155 sg:person.01104173064.88 schema:affiliation grid-institutes:grid.473157.3
    156 schema:familyName Cook
    157 schema:givenName E. R.
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104173064.88
    159 rdf:type schema:Person
    160 sg:person.011250423747.53 schema:affiliation grid-institutes:grid.10917.3e
    161 schema:familyName Larsen
    162 schema:givenName S.
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011250423747.53
    164 rdf:type schema:Person
    165 sg:person.012241343527.43 schema:affiliation grid-institutes:grid.1005.4
    166 schema:familyName Allen
    167 schema:givenName K. J.
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012241343527.43
    169 rdf:type schema:Person
    170 sg:person.013013767340.60 schema:affiliation grid-institutes:grid.492990.f
    171 schema:familyName O’Kane
    172 schema:givenName T. J.
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013013767340.60
    174 rdf:type schema:Person
    175 sg:person.013150567533.80 schema:affiliation grid-institutes:grid.492990.f
    176 schema:familyName Risbey
    177 schema:givenName J. S.
    178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013150567533.80
    179 rdf:type schema:Person
    180 sg:person.013157126305.06 schema:affiliation grid-institutes:grid.492990.f
    181 schema:familyName Monselesan
    182 schema:givenName D.
    183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013157126305.06
    184 rdf:type schema:Person
    185 sg:person.013204527225.25 schema:affiliation grid-institutes:grid.134563.6
    186 schema:familyName Anchukaitis
    187 schema:givenName K. J.
    188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013204527225.25
    189 rdf:type schema:Person
    190 sg:person.013310220341.70 schema:affiliation grid-institutes:grid.492990.f
    191 schema:familyName Grose
    192 schema:givenName M. G.
    193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013310220341.70
    194 rdf:type schema:Person
    195 sg:person.016622206527.40 schema:affiliation grid-institutes:grid.1008.9
    196 schema:familyName Baker
    197 schema:givenName P. J.
    198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016622206527.40
    199 rdf:type schema:Person
    200 sg:person.0762234136.64 schema:affiliation grid-institutes:grid.1009.8
    201 schema:familyName Lee
    202 schema:givenName G.
    203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762234136.64
    204 rdf:type schema:Person
    205 sg:pub.10.1007/s00382-009-0726-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023534926
    206 https://doi.org/10.1007/s00382-009-0726-1
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/s00382-010-0793-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031707741
    209 https://doi.org/10.1007/s00382-010-0793-3
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1007/s00382-010-0794-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029055418
    212 https://doi.org/10.1007/s00382-010-0794-2
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1007/s00382-011-1011-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008770483
    215 https://doi.org/10.1007/s00382-011-1011-7
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1007/s00382-011-1232-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042039974
    218 https://doi.org/10.1007/s00382-011-1232-9
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1007/s00382-015-2786-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039405950
    221 https://doi.org/10.1007/s00382-015-2786-8
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1007/s003820050006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014449832
    224 https://doi.org/10.1007/s003820050006
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1007/s10584-009-9650-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1023275231
    227 https://doi.org/10.1007/s10584-009-9650-y
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1007/s10584-009-9724-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051262503
    230 https://doi.org/10.1007/s10584-009-9724-x
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1007/s11430-007-0154-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031521392
    233 https://doi.org/10.1007/s11430-007-0154-1
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1023/a:1005322332230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023042846
    236 https://doi.org/10.1023/a:1005322332230
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1023/b:clim.0000018515.46344.6d schema:sameAs https://app.dimensions.ai/details/publication/pub.1028235195
    239 https://doi.org/10.1023/b:clim.0000018515.46344.6d
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1038/nclimate2174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041547048
    242 https://doi.org/10.1038/nclimate2174
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1038/ngeo1613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033727820
    245 https://doi.org/10.1038/ngeo1613
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1038/s41598-018-22766-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1101459076
    248 https://doi.org/10.1038/s41598-018-22766-z
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1038/sdata.2017.88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090578763
    251 https://doi.org/10.1038/sdata.2017.88
    252 rdf:type schema:CreativeWork
    253 grid-institutes:None schema:alternateName CSIRO Land and Water, 7005, Hobart, TAS, Australia
    254 schema:name CSIRO Land and Water, 7005, Hobart, TAS, Australia
    255 rdf:type schema:Organization
    256 grid-institutes:grid.1005.4 schema:alternateName Centre of Excellence for Australian Biodiversity and Heritage, University of New South Wales, 2052, Sydney, NSW, Australia
    257 schema:name Centre of Excellence for Australian Biodiversity and Heritage, University of New South Wales, 2052, Sydney, NSW, Australia
    258 School of Ecosystem and Forest Science, University of Melbourne, 3121, Richmond, VIC, Australia
    259 rdf:type schema:Organization
    260 grid-institutes:grid.1008.9 schema:alternateName School of Ecosystem and Forest Science, University of Melbourne, 3121, Richmond, VIC, Australia
    261 schema:name School of Ecosystem and Forest Science, University of Melbourne, 3121, Richmond, VIC, Australia
    262 rdf:type schema:Organization
    263 grid-institutes:grid.1009.8 schema:alternateName Antarctic Climate and Ecosystems Research Centre, University of Tasmania, 7000, Hobart, Australia
    264 schema:name Antarctic Climate and Ecosystems Research Centre, University of Tasmania, 7000, Hobart, Australia
    265 rdf:type schema:Organization
    266 grid-institutes:grid.10917.3e schema:alternateName Institute of Marine Research, 5817, Bergen, Norway
    267 schema:name Institute of Marine Research, 5817, Bergen, Norway
    268 rdf:type schema:Organization
    269 grid-institutes:grid.134563.6 schema:alternateName School of Geography and Development, University of Arizona, Tucson, AZ, USA
    270 schema:name School of Geography and Development, University of Arizona, Tucson, AZ, USA
    271 rdf:type schema:Organization
    272 grid-institutes:grid.473157.3 schema:alternateName Tree-ring Laboratory, Lamont-Doherty Earth Observatory, 10964, New York, USA
    273 schema:name Tree-ring Laboratory, Lamont-Doherty Earth Observatory, 10964, New York, USA
    274 rdf:type schema:Organization
    275 grid-institutes:grid.492990.f schema:alternateName CSIRO Oceans and Atmosphere, 7000, Hobart, TAS, Australia
    276 schema:name CSIRO Oceans and Atmosphere, 7000, Hobart, TAS, Australia
    277 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...