Timescales of AMOC decline in response to fresh water forcing View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-12-13

AUTHORS

Laura C. Jackson, Richard A. Wood

ABSTRACT

The Atlantic meridional overturning circulation (AMOC) is predicted to weaken over the coming century due to warming from greenhouse gases and increased input of fresh water into the North Atlantic, however there is considerable uncertainty as to the amount and rate of AMOC weakening. Understanding what controls the rate and timescale of AMOC weakening may help to reduce this uncertainty and hence reduce the uncertainty surrounding associated impacts. As a first step towards this we consider the timescales associated with weakening in response to idealized freshening scenarios. Here we explore timescales of AMOC weakening in response to a freshening of the North Atlantic in a suite of experiments with an eddy-permitting global climate model (GCM). When the rate of fresh water added to the North Atlantic is small (0.1 Sv; 1 Sv =1×106\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$=1\times 10^6$$\end{document} m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^3$$\end{document}/s), the timescale of AMOC weakening depends mainly on the rate of fresh water input itself and can be longer than a century. When the rate of fresh water added is large (≥\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ge$$\end{document} 0.3 Sv) however, the timescale is a few decades and is insensitive to the actual rate of fresh water input. This insensitivity is because with a greater rate of fresh water input the advective feedbacks become more important at exporting fresh anomalies, so the rate of freshening is similar. We find advective feedbacks from: an export of fresh anomalies by the mean flow; less volume import through the Bering Strait; a weakening AMOC transporting less subtropical water northwards; and anomalous subtropical circulations which amplify export of the fresh anomalies. This latter circulation change is driven itself by the presence of fresh anomalies exported from the subpolar gyre through geostrophy. This feedback has not been identified in previous model studies and when the rate of freshening is strong it is found to dominate the total export of fresh anomalies, and hence the timescale of AMOC decline. Although results may be model dependent, qualitatively similar mechanisms are also found in a single experiment with a different GCM. More... »

PAGES

1333-1350

References to SciGraph publications

  • 2002-09. Ocean circulation and climate during the past 120,000 years in NATURE
  • 2016-06-20. Emerging impact of Greenland meltwater on deepwater formation in the North Atlantic Ocean in NATURE GEOSCIENCE
  • 2014-11-05. Multimodel analysis on the response of the AMOC under an increase of radiative forcing and its symmetrical reversal in CLIMATE DYNAMICS
  • 2014-08-26. On the reduced sensitivity of the Atlantic overturning to Greenland ice sheet melting in projections: a multi-model assessment in CLIMATE DYNAMICS
  • 2003-11-04. The role of the Atlantic freshwater balance in the hysteresis of the meridional overturning circulation in CLIMATE DYNAMICS
  • 1996-11. On the freshwater forcing and transport of the Atlantic thermohaline circulation in CLIMATE DYNAMICS
  • 2016-10-01. Ocean and atmosphere feedbacks affecting AMOC hysteresis in a GCM in CLIMATE DYNAMICS
  • 2016-01-30. Stable AMOC off state in an eddy-permitting coupled climate model in CLIMATE DYNAMICS
  • 2004-04. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes in NATURE
  • 2011-06-26. Built for stability in NATURE GEOSCIENCE
  • 2012-11-08. Meridional overturning circulation: stability and ocean feedbacks in a box model in CLIMATE DYNAMICS
  • 2000-02. The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments in CLIMATE DYNAMICS
  • 2007-05-03. Quantifying the AMOC feedbacks during a 2×CO2 stabilization experiment with land-ice melting in CLIMATE DYNAMICS
  • 2012-09-04. Decadal fingerprints of freshwater discharge around Greenland in a multi-model ensemble in CLIMATE DYNAMICS
  • 2016-05-26. Uncertainty in twenty-first century projections of the Atlantic Meridional Overturning Circulation in CMIP3 and CMIP5 models in CLIMATE DYNAMICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00382-017-3957-6

    DOI

    http://dx.doi.org/10.1007/s00382-017-3957-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1099696786


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Geography and Environmental Geoscience", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Met Office Hadley Centre, Exeter, UK", 
              "id": "http://www.grid.ac/institutes/grid.17100.37", 
              "name": [
                "Met Office Hadley Centre, Exeter, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jackson", 
            "givenName": "Laura C.", 
            "id": "sg:person.016212657271.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016212657271.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Met Office Hadley Centre, Exeter, UK", 
              "id": "http://www.grid.ac/institutes/grid.17100.37", 
              "name": [
                "Met Office Hadley Centre, Exeter, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wood", 
            "givenName": "Richard A.", 
            "id": "sg:person.015637061237.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015637061237.00"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s003820050144", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009461489", 
              "https://doi.org/10.1007/s003820050144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052931301", 
              "https://doi.org/10.1038/nature01090"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-003-0359-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043514443", 
              "https://doi.org/10.1007/s00382-003-0359-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02494", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049594132", 
              "https://doi.org/10.1038/nature02494"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo2740", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012118390", 
              "https://doi.org/10.1038/ngeo2740"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-014-2391-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021514378", 
              "https://doi.org/10.1007/s00382-014-2391-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-012-1479-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018743258", 
              "https://doi.org/10.1007/s00382-012-1479-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-007-0250-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017654922", 
              "https://doi.org/10.1007/s00382-007-0250-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003820050010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015242699", 
              "https://doi.org/10.1007/s003820050010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-016-3336-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001059196", 
              "https://doi.org/10.1007/s00382-016-3336-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-016-3180-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019962848", 
              "https://doi.org/10.1007/s00382-016-3180-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-016-2975-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017826529", 
              "https://doi.org/10.1007/s00382-016-2975-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo1200", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034811920", 
              "https://doi.org/10.1038/ngeo1200"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-012-1576-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021392807", 
              "https://doi.org/10.1007/s00382-012-1576-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-014-2270-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039475685", 
              "https://doi.org/10.1007/s00382-014-2270-x"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-12-13", 
        "datePublishedReg": "2017-12-13", 
        "description": "The Atlantic meridional overturning circulation (AMOC) is predicted to weaken over the coming century due to warming from greenhouse gases and increased input of fresh water into the North Atlantic, however there is considerable uncertainty as to the amount and rate of AMOC weakening. Understanding what controls the rate and timescale of AMOC weakening may help to reduce this uncertainty and hence reduce the uncertainty surrounding associated impacts. As a first step towards this we consider the timescales associated with weakening in response to idealized freshening scenarios. Here we explore timescales of AMOC weakening in response to a freshening of the North Atlantic in a suite of experiments with an eddy-permitting global climate model (GCM). When the rate of fresh water added to the North Atlantic is small (0.1 Sv; 1 Sv =1\u00d7106\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$=1\\times 10^6$$\\end{document} m3\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$^3$$\\end{document}/s), the timescale of AMOC weakening depends mainly on the rate of fresh water input itself and can be longer than a century. When the rate of fresh water added is large (\u2265\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\ge$$\\end{document} 0.3 Sv) however, the timescale is a few decades and is insensitive to the actual rate of fresh water input. This insensitivity is because with a greater rate of fresh water input the advective feedbacks become more important at exporting fresh anomalies, so the rate of freshening is similar. We find advective feedbacks from: an export of fresh anomalies by the mean flow; less volume import through the Bering Strait; a weakening AMOC transporting less subtropical water northwards; and anomalous subtropical circulations which amplify export of the fresh anomalies. This latter circulation change is driven itself by the presence of fresh anomalies exported from the subpolar gyre through geostrophy. This feedback has not been identified in previous model studies and when the rate of freshening is strong it is found to dominate the total export of fresh anomalies, and hence the timescale of AMOC decline. Although results may be model dependent, qualitatively similar mechanisms are also found in a single experiment with a different GCM.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00382-017-3957-6", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7037241", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1049631", 
            "issn": [
              "0930-7575", 
              "1432-0894"
            ], 
            "name": "Climate Dynamics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "51"
          }
        ], 
        "keywords": [
          "Atlantic Meridional Overturning Circulation", 
          "global climate models", 
          "freshwater input", 
          "fresh anomalies", 
          "AMOC weakening", 
          "North Atlantic", 
          "water input", 
          "freshwater", 
          "AMOC decline", 
          "advective feedback", 
          "different global climate models", 
          "meridional overturning circulation", 
          "suite of experiments", 
          "previous model studies", 
          "overturning circulation", 
          "subpolar gyre", 
          "water northward", 
          "circulation changes", 
          "subtropical circulation", 
          "climate models", 
          "Bering Strait", 
          "coming century", 
          "freshening", 
          "greenhouse gases", 
          "Atlantic", 
          "timescales", 
          "anomalies", 
          "mean flow", 
          "weakening", 
          "considerable uncertainty", 
          "model studies", 
          "water", 
          "total exports", 
          "circulation", 
          "export", 
          "input", 
          "gyre", 
          "northward", 
          "Strait", 
          "geostrophy", 
          "uncertainty", 
          "suite", 
          "actual rate", 
          "century", 
          "feedback", 
          "gases", 
          "flow", 
          "greater rate", 
          "model", 
          "scenarios", 
          "decline", 
          "changes", 
          "rate", 
          "impact", 
          "decades", 
          "amount", 
          "similar mechanism", 
          "response", 
          "experiments", 
          "first step", 
          "presence", 
          "results", 
          "study", 
          "import", 
          "mechanism", 
          "step", 
          "insensitivity", 
          "single experiment", 
          "eddy-permitting global climate model", 
          "rate of freshening", 
          "less volume import", 
          "volume import", 
          "less subtropical water northwards", 
          "subtropical water northwards", 
          "anomalous subtropical circulations", 
          "latter circulation change"
        ], 
        "name": "Timescales of AMOC decline in response to fresh water forcing", 
        "pagination": "1333-1350", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1099696786"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00382-017-3957-6"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00382-017-3957-6", 
          "https://app.dimensions.ai/details/publication/pub.1099696786"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:30", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_738.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00382-017-3957-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-017-3957-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-017-3957-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-017-3957-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-017-3957-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    203 TRIPLES      22 PREDICATES      116 URIs      93 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00382-017-3957-6 schema:about anzsrc-for:04
    2 anzsrc-for:0406
    3 schema:author N6d70e39fdab748d786783f9c4343c50a
    4 schema:citation sg:pub.10.1007/s00382-003-0359-8
    5 sg:pub.10.1007/s00382-007-0250-0
    6 sg:pub.10.1007/s00382-012-1479-9
    7 sg:pub.10.1007/s00382-012-1576-9
    8 sg:pub.10.1007/s00382-014-2270-x
    9 sg:pub.10.1007/s00382-014-2391-2
    10 sg:pub.10.1007/s00382-016-2975-0
    11 sg:pub.10.1007/s00382-016-3180-x
    12 sg:pub.10.1007/s00382-016-3336-8
    13 sg:pub.10.1007/s003820050010
    14 sg:pub.10.1007/s003820050144
    15 sg:pub.10.1038/nature01090
    16 sg:pub.10.1038/nature02494
    17 sg:pub.10.1038/ngeo1200
    18 sg:pub.10.1038/ngeo2740
    19 schema:datePublished 2017-12-13
    20 schema:datePublishedReg 2017-12-13
    21 schema:description The Atlantic meridional overturning circulation (AMOC) is predicted to weaken over the coming century due to warming from greenhouse gases and increased input of fresh water into the North Atlantic, however there is considerable uncertainty as to the amount and rate of AMOC weakening. Understanding what controls the rate and timescale of AMOC weakening may help to reduce this uncertainty and hence reduce the uncertainty surrounding associated impacts. As a first step towards this we consider the timescales associated with weakening in response to idealized freshening scenarios. Here we explore timescales of AMOC weakening in response to a freshening of the North Atlantic in a suite of experiments with an eddy-permitting global climate model (GCM). When the rate of fresh water added to the North Atlantic is small (0.1 Sv; 1 Sv =1×106\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$=1\times 10^6$$\end{document} m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^3$$\end{document}/s), the timescale of AMOC weakening depends mainly on the rate of fresh water input itself and can be longer than a century. When the rate of fresh water added is large (≥\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ge$$\end{document} 0.3 Sv) however, the timescale is a few decades and is insensitive to the actual rate of fresh water input. This insensitivity is because with a greater rate of fresh water input the advective feedbacks become more important at exporting fresh anomalies, so the rate of freshening is similar. We find advective feedbacks from: an export of fresh anomalies by the mean flow; less volume import through the Bering Strait; a weakening AMOC transporting less subtropical water northwards; and anomalous subtropical circulations which amplify export of the fresh anomalies. This latter circulation change is driven itself by the presence of fresh anomalies exported from the subpolar gyre through geostrophy. This feedback has not been identified in previous model studies and when the rate of freshening is strong it is found to dominate the total export of fresh anomalies, and hence the timescale of AMOC decline. Although results may be model dependent, qualitatively similar mechanisms are also found in a single experiment with a different GCM.
    22 schema:genre article
    23 schema:inLanguage en
    24 schema:isAccessibleForFree false
    25 schema:isPartOf N707e0d2f723243f8aafb09be7a63fc0b
    26 N83bada59668d421db3f4e5e82222e34b
    27 sg:journal.1049631
    28 schema:keywords AMOC decline
    29 AMOC weakening
    30 Atlantic
    31 Atlantic Meridional Overturning Circulation
    32 Bering Strait
    33 North Atlantic
    34 Strait
    35 actual rate
    36 advective feedback
    37 amount
    38 anomalies
    39 anomalous subtropical circulations
    40 century
    41 changes
    42 circulation
    43 circulation changes
    44 climate models
    45 coming century
    46 considerable uncertainty
    47 decades
    48 decline
    49 different global climate models
    50 eddy-permitting global climate model
    51 experiments
    52 export
    53 feedback
    54 first step
    55 flow
    56 fresh anomalies
    57 freshening
    58 freshwater
    59 freshwater input
    60 gases
    61 geostrophy
    62 global climate models
    63 greater rate
    64 greenhouse gases
    65 gyre
    66 impact
    67 import
    68 input
    69 insensitivity
    70 latter circulation change
    71 less subtropical water northwards
    72 less volume import
    73 mean flow
    74 mechanism
    75 meridional overturning circulation
    76 model
    77 model studies
    78 northward
    79 overturning circulation
    80 presence
    81 previous model studies
    82 rate
    83 rate of freshening
    84 response
    85 results
    86 scenarios
    87 similar mechanism
    88 single experiment
    89 step
    90 study
    91 subpolar gyre
    92 subtropical circulation
    93 subtropical water northwards
    94 suite
    95 suite of experiments
    96 timescales
    97 total exports
    98 uncertainty
    99 volume import
    100 water
    101 water input
    102 water northward
    103 weakening
    104 schema:name Timescales of AMOC decline in response to fresh water forcing
    105 schema:pagination 1333-1350
    106 schema:productId N33efa29b212d4f4782787db24bea524e
    107 Nb953633452804478876eaaf0637cab0a
    108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099696786
    109 https://doi.org/10.1007/s00382-017-3957-6
    110 schema:sdDatePublished 2021-11-01T18:30
    111 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    112 schema:sdPublisher Nf7b9840aee6b4a70bfd93eda8a1c420a
    113 schema:url https://doi.org/10.1007/s00382-017-3957-6
    114 sgo:license sg:explorer/license/
    115 sgo:sdDataset articles
    116 rdf:type schema:ScholarlyArticle
    117 N33efa29b212d4f4782787db24bea524e schema:name dimensions_id
    118 schema:value pub.1099696786
    119 rdf:type schema:PropertyValue
    120 N6d70e39fdab748d786783f9c4343c50a rdf:first sg:person.016212657271.09
    121 rdf:rest Nbda97cf6aefc4db0b10314dcba21f737
    122 N707e0d2f723243f8aafb09be7a63fc0b schema:issueNumber 4
    123 rdf:type schema:PublicationIssue
    124 N83bada59668d421db3f4e5e82222e34b schema:volumeNumber 51
    125 rdf:type schema:PublicationVolume
    126 Nb953633452804478876eaaf0637cab0a schema:name doi
    127 schema:value 10.1007/s00382-017-3957-6
    128 rdf:type schema:PropertyValue
    129 Nbda97cf6aefc4db0b10314dcba21f737 rdf:first sg:person.015637061237.00
    130 rdf:rest rdf:nil
    131 Nf7b9840aee6b4a70bfd93eda8a1c420a schema:name Springer Nature - SN SciGraph project
    132 rdf:type schema:Organization
    133 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    134 schema:name Earth Sciences
    135 rdf:type schema:DefinedTerm
    136 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
    137 schema:name Physical Geography and Environmental Geoscience
    138 rdf:type schema:DefinedTerm
    139 sg:grant.7037241 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-017-3957-6
    140 rdf:type schema:MonetaryGrant
    141 sg:journal.1049631 schema:issn 0930-7575
    142 1432-0894
    143 schema:name Climate Dynamics
    144 schema:publisher Springer Nature
    145 rdf:type schema:Periodical
    146 sg:person.015637061237.00 schema:affiliation grid-institutes:grid.17100.37
    147 schema:familyName Wood
    148 schema:givenName Richard A.
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015637061237.00
    150 rdf:type schema:Person
    151 sg:person.016212657271.09 schema:affiliation grid-institutes:grid.17100.37
    152 schema:familyName Jackson
    153 schema:givenName Laura C.
    154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016212657271.09
    155 rdf:type schema:Person
    156 sg:pub.10.1007/s00382-003-0359-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043514443
    157 https://doi.org/10.1007/s00382-003-0359-8
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/s00382-007-0250-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017654922
    160 https://doi.org/10.1007/s00382-007-0250-0
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/s00382-012-1479-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018743258
    163 https://doi.org/10.1007/s00382-012-1479-9
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/s00382-012-1576-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021392807
    166 https://doi.org/10.1007/s00382-012-1576-9
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/s00382-014-2270-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039475685
    169 https://doi.org/10.1007/s00382-014-2270-x
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/s00382-014-2391-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021514378
    172 https://doi.org/10.1007/s00382-014-2391-2
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/s00382-016-2975-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017826529
    175 https://doi.org/10.1007/s00382-016-2975-0
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/s00382-016-3180-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019962848
    178 https://doi.org/10.1007/s00382-016-3180-x
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1007/s00382-016-3336-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001059196
    181 https://doi.org/10.1007/s00382-016-3336-8
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/s003820050010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015242699
    184 https://doi.org/10.1007/s003820050010
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/s003820050144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009461489
    187 https://doi.org/10.1007/s003820050144
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1038/nature01090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052931301
    190 https://doi.org/10.1038/nature01090
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1038/nature02494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049594132
    193 https://doi.org/10.1038/nature02494
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1038/ngeo1200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034811920
    196 https://doi.org/10.1038/ngeo1200
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1038/ngeo2740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012118390
    199 https://doi.org/10.1038/ngeo2740
    200 rdf:type schema:CreativeWork
    201 grid-institutes:grid.17100.37 schema:alternateName Met Office Hadley Centre, Exeter, UK
    202 schema:name Met Office Hadley Centre, Exeter, UK
    203 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...