Tibetan Plateau capacitor effect during the summer preceding ENSO: from the Yellow River climate perspective View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-09-13

AUTHORS

Rui Jin, Zhiwei Wu, Peng Zhang

ABSTRACT

It is well recognized that El Niño-Southern Oscillation (ENSO) may exert a direct impact on the East Asian summer monsoon rainfall through modulating the Philippine Sea anticyclone variability. Such ENSO associated influence is evident in the monsoon region, i.e., Southeast China, the Yangtze River, Korean Peninsula and Japan. It remains unclear whether and how this ENSO related effect can reach the Yellow River region, a monsoon/arid transition region. In this study, results show that the year-to-year variations of the Yellow River summer rainfall can be indirectly influenced by ENSO, during its developing phase. The western Tibetan Plateau snow cover (WTPSC) may act as a “capacitor”, helping ENSO signal to reach the Yellow River region. During the El Niño developing spring, the associated diabatic heating in Pacific region can excite an anomalous cyclone over the plateau and anomalous upward flows over the western plateau. Such circulation configuration favors an excessive WTPSC anomaly in spring. The more WTPSC may increase the surface albedo, decrease the absorbed net shortwave radiation and in turn intensify the WTPSC. Through such snow-albedo feedback process, the excessive WTPSC anomaly may strengthen and persist through summer, which may induce two noticeable wave trains in the upper and lower troposphere propagating northeastward to the Yellow River region. Associated with the wave trains, a low pressure anomaly prevails over northeast China. To the southwest side of the anomalous low pressure, the abnormal northerly wind may bring large volumes of dry cold air with little moisture to the Yellow River region, leading to the anomalous drought there. During the La Niña developing summer, the situation tends to be opposite. As such, the ENSO associated influence is tied to the interannual variations of the following summer Yellow River precipitation, with the development of ENSO from spring. More... »

PAGES

57-71

References to SciGraph publications

  • 1993-02. Large scale aspects of India-China summer monsoon rainfall in ADVANCES IN ATMOSPHERIC SCIENCES
  • 2007-11. Detection, causes and projection of climate change over China: An overview of recent progress in ADVANCES IN ATMOSPHERIC SCIENCES
  • 2007-06-27. Climatological aspects of Hadley, Walker and monsoon circulations in two phases of the Pacific Decadal Oscillation in THEORETICAL AND APPLIED CLIMATOLOGY
  • 1999-05. Changes of Climate Extremes in China in CLIMATIC CHANGE
  • 2007-11. Recent progress in the impact of the Tibetan Plateau on climate in China in ADVANCES IN ATMOSPHERIC SCIENCES
  • 2015-02-10. The influence of the Interdecadal Pacific Oscillation on Temperature and Precipitation over the Globe in CLIMATE DYNAMICS
  • 1999-05. A diagnostic study of the impact of El Niño on the precipitation in China in ADVANCES IN ATMOSPHERIC SCIENCES
  • 2014-09-24. Combined interplay of the Atlantic multidecadal oscillation and the interdecadal Pacific oscillation on rainfall and its extremes over Indian subcontinent in CLIMATE DYNAMICS
  • 2011-02-04. The interannual variability of summer rainfall in the arid and semiarid regions of Northern China and its association with the northern hemisphere circumglobal teleconnection in ADVANCES IN ATMOSPHERIC SCIENCES
  • 2015-07-26. Can the Tibetan Plateau snow cover influence the interannual variations of Eurasian heat wave frequency? in CLIMATE DYNAMICS
  • 2014-05-15. The summer snow cover anomaly over the Tibetan Plateau and its association with simultaneous precipitation over the mei-yu-baiu region in ADVANCES IN ATMOSPHERIC SCIENCES
  • 2004-02. An index measuring the interannual variation of the East Asian summer monsoon—The EAP index in ADVANCES IN ATMOSPHERIC SCIENCES
  • 2005-05-13. Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia in CLIMATE DYNAMICS
  • 2012-07-11. Possible association of the western Tibetan Plateau snow cover with the decadal to interdecadal variations of northern China heatwave frequency in CLIMATE DYNAMICS
  • 2004-06-01. Progress in the study on the formation of the summertime subtropical anticyclone in ADVANCES IN ATMOSPHERIC SCIENCES
  • 1989-02. The influence of ENSO on the summer climate change in China and its mechanism in ADVANCES IN ATMOSPHERIC SCIENCES
  • 2009-03-27. Tropical pacific and its global impacts in THEORETICAL AND APPLIED CLIMATOLOGY
  • 2003-05-14. Pacific decadal oscillation and variability of the Indian summer monsoon rainfall in CLIMATE DYNAMICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00382-017-3906-4

    DOI

    http://dx.doi.org/10.1007/s00382-017-3906-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1091599760


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atmospheric Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "College of Atmospheric Science and Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, 210044, Nanjing, Jiangsu, China", 
              "id": "http://www.grid.ac/institutes/grid.260478.f", 
              "name": [
                "College of Atmospheric Science and Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, 210044, Nanjing, Jiangsu, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jin", 
            "givenName": "Rui", 
            "id": "sg:person.013616370722.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013616370722.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Atmospheric Sciences (IAS), Fudan University, 200433, Shanghai, China", 
              "id": "http://www.grid.ac/institutes/grid.8547.e", 
              "name": [
                "Institute of Atmospheric Sciences (IAS), Fudan University, 200433, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wu", 
            "givenName": "Zhiwei", 
            "id": "sg:person.013216316256.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013216316256.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "College of Atmospheric Science and Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, 210044, Nanjing, Jiangsu, China", 
              "id": "http://www.grid.ac/institutes/grid.260478.f", 
              "name": [
                "College of Atmospheric Science and Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, 210044, Nanjing, Jiangsu, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Peng", 
            "id": "sg:person.013055570171.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013055570171.28"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00382-012-1439-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032682657", 
              "https://doi.org/10.1007/s00382-012-1439-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-015-2775-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018577169", 
              "https://doi.org/10.1007/s00382-015-2775-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02915562", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016775563", 
              "https://doi.org/10.1007/bf02915562"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00376-007-1060-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013993395", 
              "https://doi.org/10.1007/s00376-007-1060-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00376-013-3183-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014784455", 
              "https://doi.org/10.1007/s00376-013-3183-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00704-009-0132-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043464200", 
              "https://doi.org/10.1007/s00704-009-0132-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1005428602279", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012099220", 
              "https://doi.org/10.1023/a:1005428602279"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02973084", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038683982", 
              "https://doi.org/10.1007/bf02973084"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-004-0488-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031015569", 
              "https://doi.org/10.1007/s00382-004-0488-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00704-007-0301-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030898827", 
              "https://doi.org/10.1007/s00704-007-0301-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-003-0330-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047086068", 
              "https://doi.org/10.1007/s00382-003-0330-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02915679", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053269369", 
              "https://doi.org/10.1007/bf02915679"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00376-007-0954-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032352260", 
              "https://doi.org/10.1007/s00376-007-0954-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-014-2333-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001270547", 
              "https://doi.org/10.1007/s00382-014-2333-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02656915", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005052654", 
              "https://doi.org/10.1007/bf02656915"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00376-010-9225-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026575042", 
              "https://doi.org/10.1007/s00376-010-9225-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-015-2500-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037009698", 
              "https://doi.org/10.1007/s00382-015-2500-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02656955", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022027208", 
              "https://doi.org/10.1007/bf02656955"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-09-13", 
        "datePublishedReg": "2017-09-13", 
        "description": "It is well recognized that El Ni\u00f1o-Southern Oscillation (ENSO) may exert a direct impact on the East Asian summer monsoon rainfall through modulating the Philippine Sea anticyclone variability. Such ENSO associated influence is evident in the monsoon region, i.e., Southeast China, the Yangtze River, Korean Peninsula and Japan. It remains unclear whether and how this ENSO related effect can reach the Yellow River region, a monsoon/arid transition region. In this study, results show that the year-to-year variations of the Yellow River summer rainfall can be indirectly influenced by ENSO, during its developing phase. The western Tibetan Plateau snow cover (WTPSC) may act as a \u201ccapacitor\u201d, helping ENSO signal to reach the Yellow River region. During the El Ni\u00f1o developing spring, the associated diabatic heating in Pacific region can excite an anomalous cyclone over the plateau and anomalous upward flows over the western plateau. Such circulation configuration favors an excessive WTPSC anomaly in spring. The more WTPSC may increase the surface albedo, decrease the absorbed net shortwave radiation and in turn intensify the WTPSC. Through such snow-albedo feedback process, the excessive WTPSC anomaly may strengthen and persist through summer, which may induce two noticeable wave trains in the upper and lower troposphere propagating northeastward to the Yellow River region. Associated with the wave trains, a low pressure anomaly prevails over northeast China. To the southwest side of the anomalous low pressure, the abnormal northerly wind may bring large volumes of dry cold air with little moisture to the Yellow River region, leading to the anomalous drought there. During the La Ni\u00f1a developing summer, the situation tends to be opposite. As such, the ENSO associated influence is tied to the interannual variations of the following summer Yellow River precipitation, with the development of ENSO from spring.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00382-017-3906-4", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8233570", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8373179", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8373958", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1049631", 
            "issn": [
              "0930-7575", 
              "1432-0894"
            ], 
            "name": "Climate Dynamics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "51"
          }
        ], 
        "keywords": [
          "El Ni\u00f1o\u2013Southern Oscillation", 
          "Yellow River region", 
          "River region", 
          "wave train", 
          "development of ENSO", 
          "East Asian summer monsoon rainfall", 
          "Asian summer monsoon rainfall", 
          "Tibetan Plateau snow cover", 
          "Ni\u00f1o\u2013Southern Oscillation", 
          "low pressure anomaly", 
          "anomalous low pressure", 
          "summer monsoon rainfall", 
          "net shortwave radiation", 
          "monsoon rainfall", 
          "monsoon region", 
          "ENSO signal", 
          "anomalous cyclone", 
          "La Ni\u00f1a", 
          "El Ni\u00f1o", 
          "pressure anomalies", 
          "northerly winds", 
          "lower troposphere", 
          "summer rainfall", 
          "western plateau", 
          "shortwave radiation", 
          "interannual variations", 
          "diabatic heating", 
          "circulation configuration", 
          "southwest side", 
          "surface albedo", 
          "dry cold air", 
          "anomalous drought", 
          "snow cover", 
          "Southeast China", 
          "Yangtze River", 
          "climate perspective", 
          "Korean Peninsula", 
          "year variation", 
          "cold air", 
          "Northeast China", 
          "little moisture", 
          "Pacific region", 
          "feedback processes", 
          "capacitor effect", 
          "summer", 
          "anomalies", 
          "rainfall", 
          "spring", 
          "plateau", 
          "large volumes", 
          "region", 
          "low pressure", 
          "Ni\u00f1a", 
          "northeastward", 
          "Ni\u00f1o", 
          "China", 
          "troposphere", 
          "cyclones", 
          "albedo", 
          "Peninsula", 
          "precipitation", 
          "River", 
          "wind", 
          "variation", 
          "cover", 
          "drought", 
          "moisture", 
          "variability", 
          "direct impact", 
          "transition region", 
          "oscillations", 
          "Japan", 
          "influence", 
          "air", 
          "heating", 
          "radiation", 
          "train", 
          "impact", 
          "phase", 
          "side", 
          "years", 
          "process", 
          "volume", 
          "turn", 
          "pressure", 
          "signals", 
          "results", 
          "effect", 
          "study", 
          "configuration", 
          "development", 
          "situation", 
          "perspective", 
          "capacitors"
        ], 
        "name": "Tibetan Plateau capacitor effect during the summer preceding ENSO: from the Yellow River climate perspective", 
        "pagination": "57-71", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1091599760"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00382-017-3906-4"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00382-017-3906-4", 
          "https://app.dimensions.ai/details/publication/pub.1091599760"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:36", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_742.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00382-017-3906-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-017-3906-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-017-3906-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-017-3906-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-017-3906-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    246 TRIPLES      21 PREDICATES      136 URIs      110 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00382-017-3906-4 schema:about anzsrc-for:04
    2 anzsrc-for:0401
    3 schema:author N69a078e6ba9046d088aad571df9ef570
    4 schema:citation sg:pub.10.1007/bf02656915
    5 sg:pub.10.1007/bf02656955
    6 sg:pub.10.1007/bf02915562
    7 sg:pub.10.1007/bf02915679
    8 sg:pub.10.1007/bf02973084
    9 sg:pub.10.1007/s00376-007-0954-4
    10 sg:pub.10.1007/s00376-007-1060-3
    11 sg:pub.10.1007/s00376-010-9225-x
    12 sg:pub.10.1007/s00376-013-3183-z
    13 sg:pub.10.1007/s00382-003-0330-8
    14 sg:pub.10.1007/s00382-004-0488-8
    15 sg:pub.10.1007/s00382-012-1439-4
    16 sg:pub.10.1007/s00382-014-2333-z
    17 sg:pub.10.1007/s00382-015-2500-x
    18 sg:pub.10.1007/s00382-015-2775-y
    19 sg:pub.10.1007/s00704-007-0301-9
    20 sg:pub.10.1007/s00704-009-0132-y
    21 sg:pub.10.1023/a:1005428602279
    22 schema:datePublished 2017-09-13
    23 schema:datePublishedReg 2017-09-13
    24 schema:description It is well recognized that El Niño-Southern Oscillation (ENSO) may exert a direct impact on the East Asian summer monsoon rainfall through modulating the Philippine Sea anticyclone variability. Such ENSO associated influence is evident in the monsoon region, i.e., Southeast China, the Yangtze River, Korean Peninsula and Japan. It remains unclear whether and how this ENSO related effect can reach the Yellow River region, a monsoon/arid transition region. In this study, results show that the year-to-year variations of the Yellow River summer rainfall can be indirectly influenced by ENSO, during its developing phase. The western Tibetan Plateau snow cover (WTPSC) may act as a “capacitor”, helping ENSO signal to reach the Yellow River region. During the El Niño developing spring, the associated diabatic heating in Pacific region can excite an anomalous cyclone over the plateau and anomalous upward flows over the western plateau. Such circulation configuration favors an excessive WTPSC anomaly in spring. The more WTPSC may increase the surface albedo, decrease the absorbed net shortwave radiation and in turn intensify the WTPSC. Through such snow-albedo feedback process, the excessive WTPSC anomaly may strengthen and persist through summer, which may induce two noticeable wave trains in the upper and lower troposphere propagating northeastward to the Yellow River region. Associated with the wave trains, a low pressure anomaly prevails over northeast China. To the southwest side of the anomalous low pressure, the abnormal northerly wind may bring large volumes of dry cold air with little moisture to the Yellow River region, leading to the anomalous drought there. During the La Niña developing summer, the situation tends to be opposite. As such, the ENSO associated influence is tied to the interannual variations of the following summer Yellow River precipitation, with the development of ENSO from spring.
    25 schema:genre article
    26 schema:isAccessibleForFree false
    27 schema:isPartOf N1c443c9075174f1bbf2bce955b66c5b7
    28 N5938ef49833f43a0902cfa79d080b9f9
    29 sg:journal.1049631
    30 schema:keywords Asian summer monsoon rainfall
    31 China
    32 ENSO signal
    33 East Asian summer monsoon rainfall
    34 El Niño
    35 El Niño–Southern Oscillation
    36 Japan
    37 Korean Peninsula
    38 La Niña
    39 Niña
    40 Niño
    41 Niño–Southern Oscillation
    42 Northeast China
    43 Pacific region
    44 Peninsula
    45 River
    46 River region
    47 Southeast China
    48 Tibetan Plateau snow cover
    49 Yangtze River
    50 Yellow River region
    51 air
    52 albedo
    53 anomalies
    54 anomalous cyclone
    55 anomalous drought
    56 anomalous low pressure
    57 capacitor effect
    58 capacitors
    59 circulation configuration
    60 climate perspective
    61 cold air
    62 configuration
    63 cover
    64 cyclones
    65 development
    66 development of ENSO
    67 diabatic heating
    68 direct impact
    69 drought
    70 dry cold air
    71 effect
    72 feedback processes
    73 heating
    74 impact
    75 influence
    76 interannual variations
    77 large volumes
    78 little moisture
    79 low pressure
    80 low pressure anomaly
    81 lower troposphere
    82 moisture
    83 monsoon rainfall
    84 monsoon region
    85 net shortwave radiation
    86 northeastward
    87 northerly winds
    88 oscillations
    89 perspective
    90 phase
    91 plateau
    92 precipitation
    93 pressure
    94 pressure anomalies
    95 process
    96 radiation
    97 rainfall
    98 region
    99 results
    100 shortwave radiation
    101 side
    102 signals
    103 situation
    104 snow cover
    105 southwest side
    106 spring
    107 study
    108 summer
    109 summer monsoon rainfall
    110 summer rainfall
    111 surface albedo
    112 train
    113 transition region
    114 troposphere
    115 turn
    116 variability
    117 variation
    118 volume
    119 wave train
    120 western plateau
    121 wind
    122 year variation
    123 years
    124 schema:name Tibetan Plateau capacitor effect during the summer preceding ENSO: from the Yellow River climate perspective
    125 schema:pagination 57-71
    126 schema:productId N0e452741f7cd4d5ba2b42d01d6acabec
    127 N5104d5121e544bb88ee23393cb9fde10
    128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091599760
    129 https://doi.org/10.1007/s00382-017-3906-4
    130 schema:sdDatePublished 2022-12-01T06:36
    131 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    132 schema:sdPublisher N5a31305b38be4449b20801dc9529c7f8
    133 schema:url https://doi.org/10.1007/s00382-017-3906-4
    134 sgo:license sg:explorer/license/
    135 sgo:sdDataset articles
    136 rdf:type schema:ScholarlyArticle
    137 N0e452741f7cd4d5ba2b42d01d6acabec schema:name dimensions_id
    138 schema:value pub.1091599760
    139 rdf:type schema:PropertyValue
    140 N1c443c9075174f1bbf2bce955b66c5b7 schema:volumeNumber 51
    141 rdf:type schema:PublicationVolume
    142 N5104d5121e544bb88ee23393cb9fde10 schema:name doi
    143 schema:value 10.1007/s00382-017-3906-4
    144 rdf:type schema:PropertyValue
    145 N58717c8a7f384037ad3ccf0892b0dc41 rdf:first sg:person.013216316256.65
    146 rdf:rest Nfea4121948bc41b8a56723188ba927c8
    147 N5938ef49833f43a0902cfa79d080b9f9 schema:issueNumber 1-2
    148 rdf:type schema:PublicationIssue
    149 N5a31305b38be4449b20801dc9529c7f8 schema:name Springer Nature - SN SciGraph project
    150 rdf:type schema:Organization
    151 N69a078e6ba9046d088aad571df9ef570 rdf:first sg:person.013616370722.26
    152 rdf:rest N58717c8a7f384037ad3ccf0892b0dc41
    153 Nfea4121948bc41b8a56723188ba927c8 rdf:first sg:person.013055570171.28
    154 rdf:rest rdf:nil
    155 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    156 schema:name Earth Sciences
    157 rdf:type schema:DefinedTerm
    158 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
    159 schema:name Atmospheric Sciences
    160 rdf:type schema:DefinedTerm
    161 sg:grant.8233570 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-017-3906-4
    162 rdf:type schema:MonetaryGrant
    163 sg:grant.8373179 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-017-3906-4
    164 rdf:type schema:MonetaryGrant
    165 sg:grant.8373958 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-017-3906-4
    166 rdf:type schema:MonetaryGrant
    167 sg:journal.1049631 schema:issn 0930-7575
    168 1432-0894
    169 schema:name Climate Dynamics
    170 schema:publisher Springer Nature
    171 rdf:type schema:Periodical
    172 sg:person.013055570171.28 schema:affiliation grid-institutes:grid.260478.f
    173 schema:familyName Zhang
    174 schema:givenName Peng
    175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013055570171.28
    176 rdf:type schema:Person
    177 sg:person.013216316256.65 schema:affiliation grid-institutes:grid.8547.e
    178 schema:familyName Wu
    179 schema:givenName Zhiwei
    180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013216316256.65
    181 rdf:type schema:Person
    182 sg:person.013616370722.26 schema:affiliation grid-institutes:grid.260478.f
    183 schema:familyName Jin
    184 schema:givenName Rui
    185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013616370722.26
    186 rdf:type schema:Person
    187 sg:pub.10.1007/bf02656915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005052654
    188 https://doi.org/10.1007/bf02656915
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/bf02656955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022027208
    191 https://doi.org/10.1007/bf02656955
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/bf02915562 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016775563
    194 https://doi.org/10.1007/bf02915562
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/bf02915679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053269369
    197 https://doi.org/10.1007/bf02915679
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/bf02973084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038683982
    200 https://doi.org/10.1007/bf02973084
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/s00376-007-0954-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032352260
    203 https://doi.org/10.1007/s00376-007-0954-4
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/s00376-007-1060-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013993395
    206 https://doi.org/10.1007/s00376-007-1060-3
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/s00376-010-9225-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026575042
    209 https://doi.org/10.1007/s00376-010-9225-x
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1007/s00376-013-3183-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1014784455
    212 https://doi.org/10.1007/s00376-013-3183-z
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1007/s00382-003-0330-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047086068
    215 https://doi.org/10.1007/s00382-003-0330-8
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1007/s00382-004-0488-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031015569
    218 https://doi.org/10.1007/s00382-004-0488-8
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1007/s00382-012-1439-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032682657
    221 https://doi.org/10.1007/s00382-012-1439-4
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1007/s00382-014-2333-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1001270547
    224 https://doi.org/10.1007/s00382-014-2333-z
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1007/s00382-015-2500-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1037009698
    227 https://doi.org/10.1007/s00382-015-2500-x
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1007/s00382-015-2775-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1018577169
    230 https://doi.org/10.1007/s00382-015-2775-y
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1007/s00704-007-0301-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030898827
    233 https://doi.org/10.1007/s00704-007-0301-9
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1007/s00704-009-0132-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1043464200
    236 https://doi.org/10.1007/s00704-009-0132-y
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1023/a:1005428602279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012099220
    239 https://doi.org/10.1023/a:1005428602279
    240 rdf:type schema:CreativeWork
    241 grid-institutes:grid.260478.f schema:alternateName College of Atmospheric Science and Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, 210044, Nanjing, Jiangsu, China
    242 schema:name College of Atmospheric Science and Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, 210044, Nanjing, Jiangsu, China
    243 rdf:type schema:Organization
    244 grid-institutes:grid.8547.e schema:alternateName Institute of Atmospheric Sciences (IAS), Fudan University, 200433, Shanghai, China
    245 schema:name Institute of Atmospheric Sciences (IAS), Fudan University, 200433, Shanghai, China
    246 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...