Effect of the tropical Pacific and Indian Ocean warming since the late 1970s on wintertime Northern Hemispheric atmospheric circulation and ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-07-10

AUTHORS

Cuijiao Chu, Xiu-Qun Yang, Xuguang Sun, Dejian Yang, Yiquan Jiang, Tao Feng, Jin Liang

ABSTRACT

Observation reveals that the tropical Pacific-Indian Ocean (TPIO) has experienced a pronounced interdecadal warming since the end of the 1970s. Meanwhile, the wintertime midlatitude Northern Hemispheric atmospheric circulation and East Asian climate have also undergone substantial interdecadal changes. The effect of the TPIO warming on these interdecadal changes are identified by a suite of AMIP-type atmospheric general circulation model experiments in which the model is integrated from September 1948 to December 1999 with prescribed historical, observed realistic sea surface temperature (SST) in a specific region and climatological SST elsewhere. Results show that the TPIO warming reproduces quite well the observed Northern Hemispheric wintertime interdecadal changes, suggesting that these interdecadal changes primarily originate from the TPIO warming. However, each sub-region of TPIO has its own distinct contribution. Comparatively, the tropical central-eastern Pacific (TCEP) and tropical western Pacific (TWP) warming makes dominant contributions to the observed positive-phase PNA-like interdecadal anomaly over the North Pacific sector, while the tropical Indian Ocean (TIO) warming tends to cancel these contributions. Meanwhile, the TIO and TWP warming makes dominant contributions to the observed positive NAO-like interdecadal anomaly over the North Atlantic sector as well as the interdecadal anomalies over the Eurasian sector, although the TWP warming’s contribution is relatively small. These remote responses are directly attributed to the TPIO warming-induced tropical convection, rainfall and diabatic heating increases, in which the TIO warming has the most significant effect. Moreover, the TPIO warming excites a Gill-type pattern anomaly over the tropical western Pacific, with a low-level anticyclonic circulation anomaly over the Philippine Sea. Of three sub-regions, the TIO warming dominates such a pattern, although the TWP warming tends to cancel this effect. The anticyclonic circulation anomaly intensifies the southwesterly flow that transfers more moisture from the Bay of Bengal to East Asia and considerably increases the winter precipitation over the southern East Asia. This is strongly supported by the observational fact that there has been a significant interdecadal increase of winter precipitation over the southern China since the end of the 1970s. More... »

PAGES

3031-3048

References to SciGraph publications

  • 2008. Regional Climate Studies of China in NONE
  • 2004-06-22. Twentieth century North Atlantic climate change. Part II: Understanding the effect of Indian Ocean warming in CLIMATE DYNAMICS
  • 2013-02-13. Response of Northern Hemisphere storm tracks to Indian-western Pacific Ocean warming in atmospheric general circulation models in CLIMATE DYNAMICS
  • 2008-06. Improved estimates of upper-ocean warming and multi-decadal sea-level rise in NATURE
  • 2016-02-04. Indo-western Pacific ocean capacitor and coherent climate anomalies in post-ENSO summer: A review in ADVANCES IN ATMOSPHERIC SCIENCES
  • 2015-03-26. Is the interdecadal variation of the summer rainfall over eastern China associated with SST? in CLIMATE DYNAMICS
  • 2001-06-01. Ecological effects of the North Atlantic Oscillation in OECOLOGIA
  • 2004-07-28. Twentieth century north atlantic climate change. Part I: assessing determinism in CLIMATE DYNAMICS
  • 2015-12-21. Structure and dynamics of decadal anomalies in the wintertime midlatitude North Pacific ocean–atmosphere system in CLIMATE DYNAMICS
  • 2008-09-09. The CLIVAR C20C project: skill of simulating Indian monsoon rainfall on interannual to decadal timescales. Does GHG forcing play a role? in CLIMATE DYNAMICS
  • 1994-03. Decadal atmosphere-ocean variations in the Pacific in CLIMATE DYNAMICS
  • 2014-05-01. Modulation of the Pacific Decadal Oscillation on the summer precipitation over East China: a comparison of observations to 600-years control run of Bergen Climate Model in CLIMATE DYNAMICS
  • 2009-03-31. Interdecadal shift in the relationship between the East Asian summer monsoon and the tropical Indian Ocean in CLIMATE DYNAMICS
  • 1999-09. A dipole mode in the tropical Indian Ocean in NATURE
  • 2003-09. Joint propagating patterns of SST and SLP anomalies in the North Pacific on bidecadal and pentadecadal timescales in ADVANCES IN ATMOSPHERIC SCIENCES
  • 2011-04. Interdecadal change of the relationship between the tropical Indian ocean dipole mode and the summer climate anomaly in China in JOURNAL OF METEOROLOGICAL RESEARCH
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00382-017-3790-y

    DOI

    http://dx.doi.org/10.1007/s00382-017-3790-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1090584955


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atmospheric Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oceanography", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "CMA-NJU Joint Laboratory for Climate Prediction Studies, Jiangsu Collaborative Innovation Center of Climate Change, School of Atmospheric Sciences, Nanjing University, 210023, Nanjing, China", 
              "id": "http://www.grid.ac/institutes/grid.41156.37", 
              "name": [
                "CMA-NJU Joint Laboratory for Climate Prediction Studies, Jiangsu Collaborative Innovation Center of Climate Change, School of Atmospheric Sciences, Nanjing University, 210023, Nanjing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chu", 
            "givenName": "Cuijiao", 
            "id": "sg:person.016446074003.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016446074003.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CMA-NJU Joint Laboratory for Climate Prediction Studies, Jiangsu Collaborative Innovation Center of Climate Change, School of Atmospheric Sciences, Nanjing University, 210023, Nanjing, China", 
              "id": "http://www.grid.ac/institutes/grid.41156.37", 
              "name": [
                "CMA-NJU Joint Laboratory for Climate Prediction Studies, Jiangsu Collaborative Innovation Center of Climate Change, School of Atmospheric Sciences, Nanjing University, 210023, Nanjing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yang", 
            "givenName": "Xiu-Qun", 
            "id": "sg:person.012640355635.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012640355635.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CMA-NJU Joint Laboratory for Climate Prediction Studies, Jiangsu Collaborative Innovation Center of Climate Change, School of Atmospheric Sciences, Nanjing University, 210023, Nanjing, China", 
              "id": "http://www.grid.ac/institutes/grid.41156.37", 
              "name": [
                "CMA-NJU Joint Laboratory for Climate Prediction Studies, Jiangsu Collaborative Innovation Center of Climate Change, School of Atmospheric Sciences, Nanjing University, 210023, Nanjing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sun", 
            "givenName": "Xuguang", 
            "id": "sg:person.010217401645.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010217401645.99"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CMA-NJU Joint Laboratory for Climate Prediction Studies, Jiangsu Collaborative Innovation Center of Climate Change, School of Atmospheric Sciences, Nanjing University, 210023, Nanjing, China", 
              "id": "http://www.grid.ac/institutes/grid.41156.37", 
              "name": [
                "CMA-NJU Joint Laboratory for Climate Prediction Studies, Jiangsu Collaborative Innovation Center of Climate Change, School of Atmospheric Sciences, Nanjing University, 210023, Nanjing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yang", 
            "givenName": "Dejian", 
            "id": "sg:person.015033752307.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015033752307.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CMA-NJU Joint Laboratory for Climate Prediction Studies, Jiangsu Collaborative Innovation Center of Climate Change, School of Atmospheric Sciences, Nanjing University, 210023, Nanjing, China", 
              "id": "http://www.grid.ac/institutes/grid.41156.37", 
              "name": [
                "CMA-NJU Joint Laboratory for Climate Prediction Studies, Jiangsu Collaborative Innovation Center of Climate Change, School of Atmospheric Sciences, Nanjing University, 210023, Nanjing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jiang", 
            "givenName": "Yiquan", 
            "id": "sg:person.010256303171.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010256303171.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CMA-NJU Joint Laboratory for Climate Prediction Studies, Jiangsu Collaborative Innovation Center of Climate Change, School of Atmospheric Sciences, Nanjing University, 210023, Nanjing, China", 
              "id": "http://www.grid.ac/institutes/grid.41156.37", 
              "name": [
                "CMA-NJU Joint Laboratory for Climate Prediction Studies, Jiangsu Collaborative Innovation Center of Climate Change, School of Atmospheric Sciences, Nanjing University, 210023, Nanjing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Feng", 
            "givenName": "Tao", 
            "id": "sg:person.014326775420.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014326775420.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CMA-NJU Joint Laboratory for Climate Prediction Studies, Jiangsu Collaborative Innovation Center of Climate Change, School of Atmospheric Sciences, Nanjing University, 210023, Nanjing, China", 
              "id": "http://www.grid.ac/institutes/grid.41156.37", 
              "name": [
                "CMA-NJU Joint Laboratory for Climate Prediction Studies, Jiangsu Collaborative Innovation Center of Climate Change, School of Atmospheric Sciences, Nanjing University, 210023, Nanjing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liang", 
            "givenName": "Jin", 
            "id": "sg:person.012404174471.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012404174471.21"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00204745", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021084561", 
              "https://doi.org/10.1007/bf00204745"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-013-1687-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040411873", 
              "https://doi.org/10.1007/s00382-013-1687-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02915396", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038714562", 
              "https://doi.org/10.1007/bf02915396"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13351-011-0021-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038847624", 
              "https://doi.org/10.1007/s13351-011-0021-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-004-0433-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002830907", 
              "https://doi.org/10.1007/s00382-004-0433-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07080", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049656749", 
              "https://doi.org/10.1038/nature07080"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-015-2946-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033022569", 
              "https://doi.org/10.1007/s00382-015-2946-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-014-2141-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022964653", 
              "https://doi.org/10.1007/s00382-014-2141-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-004-0432-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037195455", 
              "https://doi.org/10.1007/s00382-004-0432-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00376-015-5192-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042600090", 
              "https://doi.org/10.1007/s00376-015-5192-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s004420100655", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028078805", 
              "https://doi.org/10.1007/s004420100655"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-008-0462-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032072631", 
              "https://doi.org/10.1007/s00382-008-0462-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-009-0555-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044522726", 
              "https://doi.org/10.1007/s00382-009-0555-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-79242-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046066673", 
              "https://doi.org/10.1007/978-3-540-79242-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/43854", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031405299", 
              "https://doi.org/10.1038/43854"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-015-2574-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003970744", 
              "https://doi.org/10.1007/s00382-015-2574-5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-07-10", 
        "datePublishedReg": "2017-07-10", 
        "description": "Observation reveals that the tropical Pacific-Indian Ocean (TPIO) has experienced a pronounced interdecadal warming since the end of the 1970s. Meanwhile, the wintertime midlatitude Northern Hemispheric atmospheric circulation and East Asian climate have also undergone substantial interdecadal changes. The effect of the TPIO warming on these interdecadal changes are identified by a suite of AMIP-type atmospheric general circulation model experiments in which the model is integrated from September 1948 to December 1999 with prescribed historical, observed realistic sea surface temperature (SST) in a specific region and climatological SST elsewhere. Results show that the TPIO warming reproduces quite well the observed Northern Hemispheric wintertime interdecadal changes, suggesting that these interdecadal changes primarily originate from the TPIO warming. However, each sub-region of TPIO has its own distinct contribution. Comparatively, the tropical central-eastern Pacific (TCEP) and tropical western Pacific (TWP) warming makes dominant contributions to the observed positive-phase PNA-like interdecadal anomaly over the North Pacific sector, while the tropical Indian Ocean (TIO) warming tends to cancel these contributions. Meanwhile, the TIO and TWP warming makes dominant contributions to the observed positive NAO-like interdecadal anomaly over the North Atlantic sector as well as the interdecadal anomalies over the Eurasian sector, although the TWP warming\u2019s contribution is relatively small. These remote responses are directly attributed to the TPIO warming-induced tropical convection, rainfall and diabatic heating increases, in which the TIO warming has the most significant effect. Moreover, the TPIO warming excites a Gill-type pattern anomaly over the tropical western Pacific, with a low-level anticyclonic circulation anomaly over the Philippine Sea. Of three sub-regions, the TIO warming dominates such a pattern, although the TWP warming tends to cancel this effect. The anticyclonic circulation anomaly intensifies the southwesterly flow that transfers more moisture from the Bay of Bengal to East Asia and considerably increases the winter precipitation over the southern East Asia. This is strongly supported by the observational fact that there has been a significant interdecadal increase of winter precipitation over the southern China since the end of the 1970s.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00382-017-3790-y", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8231502", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8235604", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8224856", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1049631", 
            "issn": [
              "0930-7575", 
              "1432-0894"
            ], 
            "name": "Climate Dynamics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7-8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "50"
          }
        ], 
        "keywords": [
          "tropical Pacific-Indian Ocean", 
          "sea surface temperature", 
          "tropical central-eastern Pacific", 
          "anticyclonic circulation anomaly", 
          "interdecadal change", 
          "atmospheric circulation", 
          "circulation anomalies", 
          "winter precipitation", 
          "atmospheric general circulation model experiments", 
          "realistic sea surface temperatures", 
          "tropical Indian Ocean warming", 
          "climatological sea surface temperatures", 
          "general circulation model experiments", 
          "western Pacific warming", 
          "East Asian climate", 
          "Indian Ocean warming", 
          "North Atlantic sector", 
          "central-eastern Pacific", 
          "Pacific-Indian Ocean", 
          "North Pacific sector", 
          "tropical western Pacific", 
          "Bay of Bengal", 
          "East Asia", 
          "southern East Asia", 
          "TIO warming", 
          "Asian climate", 
          "Pacific warming", 
          "Atlantic sector", 
          "Eurasian sector", 
          "interdecadal increase", 
          "Pacific sector", 
          "tropical convection", 
          "Philippine Sea", 
          "tropical Pacific", 
          "southwesterly flow", 
          "remote response", 
          "western Pacific", 
          "Indian Ocean", 
          "ocean warming", 
          "surface temperature", 
          "more moisture", 
          "warming", 
          "pattern anomalies", 
          "dominant contribution", 
          "Pacific", 
          "model experiments", 
          "southern China", 
          "own distinct contribution", 
          "anomalies", 
          "Ocean", 
          "heating increases", 
          "observational facts", 
          "precipitation", 
          "circulation", 
          "late 1970s", 
          "Asia", 
          "rainfall", 
          "Sea", 
          "climate", 
          "Bay", 
          "Bengal", 
          "suite", 
          "moisture", 
          "convection", 
          "TWP", 
          "changes", 
          "contribution", 
          "specific regions", 
          "dominates", 
          "China", 
          "region", 
          "flow", 
          "sector", 
          "temperature", 
          "patterns", 
          "increase", 
          "end", 
          "distinct contributions", 
          "model", 
          "effect", 
          "experiments", 
          "results", 
          "response", 
          "significant effect", 
          "fact", 
          "TiO", 
          "observations"
        ], 
        "name": "Effect of the tropical Pacific and Indian Ocean warming since the late 1970s on wintertime Northern Hemispheric atmospheric circulation and East Asian climate interdecadal changes", 
        "pagination": "3031-3048", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1090584955"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00382-017-3790-y"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00382-017-3790-y", 
          "https://app.dimensions.ai/details/publication/pub.1090584955"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T17:06", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_737.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00382-017-3790-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-017-3790-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-017-3790-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-017-3790-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-017-3790-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    260 TRIPLES      21 PREDICATES      128 URIs      103 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00382-017-3790-y schema:about anzsrc-for:04
    2 anzsrc-for:0401
    3 anzsrc-for:0405
    4 schema:author N305c200c53e4470686f7315c5e023994
    5 schema:citation sg:pub.10.1007/978-3-540-79242-0
    6 sg:pub.10.1007/bf00204745
    7 sg:pub.10.1007/bf02915396
    8 sg:pub.10.1007/s00376-015-5192-6
    9 sg:pub.10.1007/s00382-004-0432-y
    10 sg:pub.10.1007/s00382-004-0433-x
    11 sg:pub.10.1007/s00382-008-0462-y
    12 sg:pub.10.1007/s00382-009-0555-2
    13 sg:pub.10.1007/s00382-013-1687-y
    14 sg:pub.10.1007/s00382-014-2141-5
    15 sg:pub.10.1007/s00382-015-2574-5
    16 sg:pub.10.1007/s00382-015-2946-x
    17 sg:pub.10.1007/s004420100655
    18 sg:pub.10.1007/s13351-011-0021-z
    19 sg:pub.10.1038/43854
    20 sg:pub.10.1038/nature07080
    21 schema:datePublished 2017-07-10
    22 schema:datePublishedReg 2017-07-10
    23 schema:description Observation reveals that the tropical Pacific-Indian Ocean (TPIO) has experienced a pronounced interdecadal warming since the end of the 1970s. Meanwhile, the wintertime midlatitude Northern Hemispheric atmospheric circulation and East Asian climate have also undergone substantial interdecadal changes. The effect of the TPIO warming on these interdecadal changes are identified by a suite of AMIP-type atmospheric general circulation model experiments in which the model is integrated from September 1948 to December 1999 with prescribed historical, observed realistic sea surface temperature (SST) in a specific region and climatological SST elsewhere. Results show that the TPIO warming reproduces quite well the observed Northern Hemispheric wintertime interdecadal changes, suggesting that these interdecadal changes primarily originate from the TPIO warming. However, each sub-region of TPIO has its own distinct contribution. Comparatively, the tropical central-eastern Pacific (TCEP) and tropical western Pacific (TWP) warming makes dominant contributions to the observed positive-phase PNA-like interdecadal anomaly over the North Pacific sector, while the tropical Indian Ocean (TIO) warming tends to cancel these contributions. Meanwhile, the TIO and TWP warming makes dominant contributions to the observed positive NAO-like interdecadal anomaly over the North Atlantic sector as well as the interdecadal anomalies over the Eurasian sector, although the TWP warming’s contribution is relatively small. These remote responses are directly attributed to the TPIO warming-induced tropical convection, rainfall and diabatic heating increases, in which the TIO warming has the most significant effect. Moreover, the TPIO warming excites a Gill-type pattern anomaly over the tropical western Pacific, with a low-level anticyclonic circulation anomaly over the Philippine Sea. Of three sub-regions, the TIO warming dominates such a pattern, although the TWP warming tends to cancel this effect. The anticyclonic circulation anomaly intensifies the southwesterly flow that transfers more moisture from the Bay of Bengal to East Asia and considerably increases the winter precipitation over the southern East Asia. This is strongly supported by the observational fact that there has been a significant interdecadal increase of winter precipitation over the southern China since the end of the 1970s.
    24 schema:genre article
    25 schema:isAccessibleForFree false
    26 schema:isPartOf N59d12588a35f425eab6cb25f41f33ca8
    27 N5a53bf695cce48cdba305e7097518b32
    28 sg:journal.1049631
    29 schema:keywords Asia
    30 Asian climate
    31 Atlantic sector
    32 Bay
    33 Bay of Bengal
    34 Bengal
    35 China
    36 East Asia
    37 East Asian climate
    38 Eurasian sector
    39 Indian Ocean
    40 Indian Ocean warming
    41 North Atlantic sector
    42 North Pacific sector
    43 Ocean
    44 Pacific
    45 Pacific sector
    46 Pacific warming
    47 Pacific-Indian Ocean
    48 Philippine Sea
    49 Sea
    50 TIO warming
    51 TWP
    52 TiO
    53 anomalies
    54 anticyclonic circulation anomaly
    55 atmospheric circulation
    56 atmospheric general circulation model experiments
    57 central-eastern Pacific
    58 changes
    59 circulation
    60 circulation anomalies
    61 climate
    62 climatological sea surface temperatures
    63 contribution
    64 convection
    65 distinct contributions
    66 dominant contribution
    67 dominates
    68 effect
    69 end
    70 experiments
    71 fact
    72 flow
    73 general circulation model experiments
    74 heating increases
    75 increase
    76 interdecadal change
    77 interdecadal increase
    78 late 1970s
    79 model
    80 model experiments
    81 moisture
    82 more moisture
    83 observational facts
    84 observations
    85 ocean warming
    86 own distinct contribution
    87 pattern anomalies
    88 patterns
    89 precipitation
    90 rainfall
    91 realistic sea surface temperatures
    92 region
    93 remote response
    94 response
    95 results
    96 sea surface temperature
    97 sector
    98 significant effect
    99 southern China
    100 southern East Asia
    101 southwesterly flow
    102 specific regions
    103 suite
    104 surface temperature
    105 temperature
    106 tropical Indian Ocean warming
    107 tropical Pacific
    108 tropical Pacific-Indian Ocean
    109 tropical central-eastern Pacific
    110 tropical convection
    111 tropical western Pacific
    112 warming
    113 western Pacific
    114 western Pacific warming
    115 winter precipitation
    116 schema:name Effect of the tropical Pacific and Indian Ocean warming since the late 1970s on wintertime Northern Hemispheric atmospheric circulation and East Asian climate interdecadal changes
    117 schema:pagination 3031-3048
    118 schema:productId N197388da2e39443fbefae2fc83285a1e
    119 N32542458f4e2453abd0d3f7d0c5a3d93
    120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090584955
    121 https://doi.org/10.1007/s00382-017-3790-y
    122 schema:sdDatePublished 2022-08-04T17:06
    123 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    124 schema:sdPublisher N3a7208c0155e4584af08c2d0c2ca015a
    125 schema:url https://doi.org/10.1007/s00382-017-3790-y
    126 sgo:license sg:explorer/license/
    127 sgo:sdDataset articles
    128 rdf:type schema:ScholarlyArticle
    129 N197388da2e39443fbefae2fc83285a1e schema:name dimensions_id
    130 schema:value pub.1090584955
    131 rdf:type schema:PropertyValue
    132 N1a867df858804edbadd42898f9266c80 rdf:first sg:person.010217401645.99
    133 rdf:rest Na4089a334cc94747af1572fac00a5fc5
    134 N26b0b0f16507475398e25563dbfb25a6 rdf:first sg:person.012640355635.43
    135 rdf:rest N1a867df858804edbadd42898f9266c80
    136 N305c200c53e4470686f7315c5e023994 rdf:first sg:person.016446074003.34
    137 rdf:rest N26b0b0f16507475398e25563dbfb25a6
    138 N32542458f4e2453abd0d3f7d0c5a3d93 schema:name doi
    139 schema:value 10.1007/s00382-017-3790-y
    140 rdf:type schema:PropertyValue
    141 N3a7208c0155e4584af08c2d0c2ca015a schema:name Springer Nature - SN SciGraph project
    142 rdf:type schema:Organization
    143 N59d12588a35f425eab6cb25f41f33ca8 schema:issueNumber 7-8
    144 rdf:type schema:PublicationIssue
    145 N5a53bf695cce48cdba305e7097518b32 schema:volumeNumber 50
    146 rdf:type schema:PublicationVolume
    147 N930c11756fc94fe8a0bf11fc76e3d5e8 rdf:first sg:person.012404174471.21
    148 rdf:rest rdf:nil
    149 Na4089a334cc94747af1572fac00a5fc5 rdf:first sg:person.015033752307.43
    150 rdf:rest Nae5fd273062744349235a747c8271617
    151 Nae5fd273062744349235a747c8271617 rdf:first sg:person.010256303171.39
    152 rdf:rest Neb84a51d2af54f8f8591e6fdad55db6f
    153 Neb84a51d2af54f8f8591e6fdad55db6f rdf:first sg:person.014326775420.19
    154 rdf:rest N930c11756fc94fe8a0bf11fc76e3d5e8
    155 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    156 schema:name Earth Sciences
    157 rdf:type schema:DefinedTerm
    158 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
    159 schema:name Atmospheric Sciences
    160 rdf:type schema:DefinedTerm
    161 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
    162 schema:name Oceanography
    163 rdf:type schema:DefinedTerm
    164 sg:grant.8224856 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-017-3790-y
    165 rdf:type schema:MonetaryGrant
    166 sg:grant.8231502 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-017-3790-y
    167 rdf:type schema:MonetaryGrant
    168 sg:grant.8235604 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-017-3790-y
    169 rdf:type schema:MonetaryGrant
    170 sg:journal.1049631 schema:issn 0930-7575
    171 1432-0894
    172 schema:name Climate Dynamics
    173 schema:publisher Springer Nature
    174 rdf:type schema:Periodical
    175 sg:person.010217401645.99 schema:affiliation grid-institutes:grid.41156.37
    176 schema:familyName Sun
    177 schema:givenName Xuguang
    178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010217401645.99
    179 rdf:type schema:Person
    180 sg:person.010256303171.39 schema:affiliation grid-institutes:grid.41156.37
    181 schema:familyName Jiang
    182 schema:givenName Yiquan
    183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010256303171.39
    184 rdf:type schema:Person
    185 sg:person.012404174471.21 schema:affiliation grid-institutes:grid.41156.37
    186 schema:familyName Liang
    187 schema:givenName Jin
    188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012404174471.21
    189 rdf:type schema:Person
    190 sg:person.012640355635.43 schema:affiliation grid-institutes:grid.41156.37
    191 schema:familyName Yang
    192 schema:givenName Xiu-Qun
    193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012640355635.43
    194 rdf:type schema:Person
    195 sg:person.014326775420.19 schema:affiliation grid-institutes:grid.41156.37
    196 schema:familyName Feng
    197 schema:givenName Tao
    198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014326775420.19
    199 rdf:type schema:Person
    200 sg:person.015033752307.43 schema:affiliation grid-institutes:grid.41156.37
    201 schema:familyName Yang
    202 schema:givenName Dejian
    203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015033752307.43
    204 rdf:type schema:Person
    205 sg:person.016446074003.34 schema:affiliation grid-institutes:grid.41156.37
    206 schema:familyName Chu
    207 schema:givenName Cuijiao
    208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016446074003.34
    209 rdf:type schema:Person
    210 sg:pub.10.1007/978-3-540-79242-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046066673
    211 https://doi.org/10.1007/978-3-540-79242-0
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1007/bf00204745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021084561
    214 https://doi.org/10.1007/bf00204745
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1007/bf02915396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038714562
    217 https://doi.org/10.1007/bf02915396
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1007/s00376-015-5192-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042600090
    220 https://doi.org/10.1007/s00376-015-5192-6
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1007/s00382-004-0432-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1037195455
    223 https://doi.org/10.1007/s00382-004-0432-y
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1007/s00382-004-0433-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1002830907
    226 https://doi.org/10.1007/s00382-004-0433-x
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1007/s00382-008-0462-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1032072631
    229 https://doi.org/10.1007/s00382-008-0462-y
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1007/s00382-009-0555-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044522726
    232 https://doi.org/10.1007/s00382-009-0555-2
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1007/s00382-013-1687-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1040411873
    235 https://doi.org/10.1007/s00382-013-1687-y
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1007/s00382-014-2141-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022964653
    238 https://doi.org/10.1007/s00382-014-2141-5
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1007/s00382-015-2574-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003970744
    241 https://doi.org/10.1007/s00382-015-2574-5
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1007/s00382-015-2946-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1033022569
    244 https://doi.org/10.1007/s00382-015-2946-x
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1007/s004420100655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028078805
    247 https://doi.org/10.1007/s004420100655
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1007/s13351-011-0021-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1038847624
    250 https://doi.org/10.1007/s13351-011-0021-z
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1038/43854 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031405299
    253 https://doi.org/10.1038/43854
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1038/nature07080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049656749
    256 https://doi.org/10.1038/nature07080
    257 rdf:type schema:CreativeWork
    258 grid-institutes:grid.41156.37 schema:alternateName CMA-NJU Joint Laboratory for Climate Prediction Studies, Jiangsu Collaborative Innovation Center of Climate Change, School of Atmospheric Sciences, Nanjing University, 210023, Nanjing, China
    259 schema:name CMA-NJU Joint Laboratory for Climate Prediction Studies, Jiangsu Collaborative Innovation Center of Climate Change, School of Atmospheric Sciences, Nanjing University, 210023, Nanjing, China
    260 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...