On the nonlinearity of spatial scales in extreme weather attribution statements View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-06-17

AUTHORS

Oliver Angélil, Daíthí Stone, Sarah Perkins-Kirkpatrick, Lisa V. Alexander, Michael Wehner, Hideo Shiogama, Piotr Wolski, Andrew Ciavarella, Nikolaos Christidis

ABSTRACT

In the context of ongoing climate change, extreme weather events are drawing increasing attention from the public and news media. A question often asked is how the likelihood of extremes might have changed by anthropogenic greenhouse-gas emissions. Answers to the question are strongly influenced by the model used, duration, spatial extent, and geographic location of the event—some of these factors often overlooked. Using output from four global climate models, we provide attribution statements characterised by a change in probability of occurrence due to anthropogenic greenhouse-gas emissions, for rainfall and temperature extremes occurring at seven discretised spatial scales and three temporal scales. An understanding of the sensitivity of attribution statements to a range of spatial and temporal scales of extremes allows for the scaling of attribution statements, rendering them relevant to other extremes having similar but non-identical characteristics. This is a procedure simple enough to approximate timely estimates of the anthropogenic contribution to the event probability. Furthermore, since real extremes do not have well-defined physical borders, scaling can help quantify uncertainty around attribution results due to uncertainty around the event definition. Results suggest that the sensitivity of attribution statements to spatial scale is similar across models and that the sensitivity of attribution statements to the model used is often greater than the sensitivity to a doubling or halving of the spatial scale of the event. The use of a range of spatial scales allows us to identify a nonlinear relationship between the spatial scale of the event studied and the attribution statement. More... »

PAGES

2739-2752

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00382-017-3768-9

DOI

http://dx.doi.org/10.1007/s00382-017-3768-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1086073032


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Climate Change Research Centre and ARC Centre of Excellence for Climate System Science, UNSW Australia, 2052, Sydney, NSW, Australia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Climate Change Research Centre and ARC Centre of Excellence for Climate System Science, UNSW Australia, 2052, Sydney, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ang\u00e9lil", 
        "givenName": "Oliver", 
        "id": "sg:person.013460733700.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013460733700.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lawrence Berkeley National Laboratory, 94720, Berkeley, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Lawrence Berkeley National Laboratory, 94720, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stone", 
        "givenName": "Da\u00edth\u00ed", 
        "id": "sg:person.012044260032.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012044260032.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Climate Change Research Centre and ARC Centre of Excellence for Climate System Science, UNSW Australia, 2052, Sydney, NSW, Australia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Climate Change Research Centre and ARC Centre of Excellence for Climate System Science, UNSW Australia, 2052, Sydney, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Perkins-Kirkpatrick", 
        "givenName": "Sarah", 
        "id": "sg:person.013172725343.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013172725343.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Climate Change Research Centre and ARC Centre of Excellence for Climate System Science, UNSW Australia, 2052, Sydney, NSW, Australia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Climate Change Research Centre and ARC Centre of Excellence for Climate System Science, UNSW Australia, 2052, Sydney, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alexander", 
        "givenName": "Lisa V.", 
        "id": "sg:person.010414456323.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010414456323.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lawrence Berkeley National Laboratory, 94720, Berkeley, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Lawrence Berkeley National Laboratory, 94720, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wehner", 
        "givenName": "Michael", 
        "id": "sg:person.016152704227.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016152704227.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Environmental Studies, Tsukuba, 305-8506, Ibaraki, Japan", 
          "id": "http://www.grid.ac/institutes/grid.140139.e", 
          "name": [
            "National Institute for Environmental Studies, Tsukuba, 305-8506, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shiogama", 
        "givenName": "Hideo", 
        "id": "sg:person.011356656533.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011356656533.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Climate Systems Analysis Group, Environmental and Geographical Science, University of Cape Town, Rondebosch, South Africa", 
          "id": "http://www.grid.ac/institutes/grid.7836.a", 
          "name": [
            "Climate Systems Analysis Group, Environmental and Geographical Science, University of Cape Town, Rondebosch, South Africa"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wolski", 
        "givenName": "Piotr", 
        "id": "sg:person.01136560371.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136560371.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Met Office Hadley Centre, EX1 3PB, Exeter, UK", 
          "id": "http://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Met Office Hadley Centre, EX1 3PB, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ciavarella", 
        "givenName": "Andrew", 
        "id": "sg:person.011422413477.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011422413477.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Met Office Hadley Centre, EX1 3PB, Exeter, UK", 
          "id": "http://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Met Office Hadley Centre, EX1 3PB, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Christidis", 
        "givenName": "Nikolaos", 
        "id": "sg:person.01100172067.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100172067.08"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature09762", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043530920", 
          "https://doi.org/10.1038/nature09762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-006-0180-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038887268", 
          "https://doi.org/10.1007/s00382-006-0180-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate2617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045736007", 
          "https://doi.org/10.1038/nclimate2617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028450143", 
          "https://doi.org/10.1038/nature03089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/421805a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023270288", 
          "https://doi.org/10.1038/421805a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046916950", 
          "https://doi.org/10.1038/nature01092"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-06-17", 
    "datePublishedReg": "2017-06-17", 
    "description": "In the context of ongoing climate change, extreme weather events are drawing increasing attention from the public and news media. A question often asked is how the likelihood of extremes might have changed by anthropogenic greenhouse-gas emissions. Answers to the question are strongly influenced by the model used, duration, spatial extent, and geographic location of the event\u2014some of these factors often overlooked. Using output from four global climate models, we provide attribution statements characterised by a change in probability of occurrence due to anthropogenic greenhouse-gas emissions, for rainfall and temperature extremes occurring at seven discretised spatial scales and three temporal scales. An understanding of the sensitivity of attribution statements to a range of spatial and temporal scales of extremes allows for the scaling of attribution statements, rendering them relevant to other extremes having similar but non-identical characteristics. This is a procedure simple enough to approximate timely estimates of the anthropogenic contribution to the event probability. Furthermore, since real extremes do not have well-defined physical borders, scaling can help quantify uncertainty around attribution results due to uncertainty around the event definition. Results suggest that the sensitivity of attribution statements to spatial scale is similar across models and that the sensitivity of attribution statements to the model used is often greater than the sensitivity to a doubling or halving of the spatial scale of the event. The use of a range of spatial scales allows us to identify a nonlinear relationship between the spatial scale of the event studied and the attribution statement.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00382-017-3768-9", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3792886", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7037241", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3931146", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7-8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "50"
      }
    ], 
    "keywords": [
      "attribution statements", 
      "anthropogenic greenhouse gas emissions", 
      "spatial scales", 
      "temporal scales", 
      "global climate models", 
      "likelihood of extremes", 
      "extreme weather events", 
      "ongoing climate change", 
      "climate models", 
      "anthropogenic contribution", 
      "attribution results", 
      "weather events", 
      "temperature extremes", 
      "climate change", 
      "probability of occurrence", 
      "spatial extent", 
      "greenhouse gas emissions", 
      "extremes", 
      "events", 
      "timely estimates", 
      "event definition", 
      "rainfall", 
      "scale", 
      "uncertainty", 
      "geographic location", 
      "event probabilities", 
      "nonlinear relationship", 
      "emission", 
      "changes", 
      "estimates", 
      "occurrence", 
      "model", 
      "location", 
      "range", 
      "doubling", 
      "border", 
      "contribution", 
      "extent", 
      "halving", 
      "understanding", 
      "sensitivity", 
      "characteristics", 
      "results", 
      "relationship", 
      "scaling", 
      "output", 
      "probability", 
      "duration", 
      "physical borders", 
      "factors", 
      "questions", 
      "context", 
      "likelihood", 
      "nonlinearity", 
      "use", 
      "definition", 
      "attention", 
      "medium", 
      "procedure", 
      "statements", 
      "answers", 
      "news media"
    ], 
    "name": "On the nonlinearity of spatial scales in extreme weather attribution statements", 
    "pagination": "2739-2752", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1086073032"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00382-017-3768-9"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00382-017-3768-9", 
      "https://app.dimensions.ai/details/publication/pub.1086073032"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_717.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00382-017-3768-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-017-3768-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-017-3768-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-017-3768-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-017-3768-9'


 

This table displays all metadata directly associated to this object as RDF triples.

218 TRIPLES      22 PREDICATES      93 URIs      79 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00382-017-3768-9 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author Nf4f5020fff6949a781c37fb25180bb7a
4 schema:citation sg:pub.10.1007/s00382-006-0180-2
5 sg:pub.10.1038/421805a
6 sg:pub.10.1038/nature01092
7 sg:pub.10.1038/nature03089
8 sg:pub.10.1038/nature09762
9 sg:pub.10.1038/nclimate2617
10 schema:datePublished 2017-06-17
11 schema:datePublishedReg 2017-06-17
12 schema:description In the context of ongoing climate change, extreme weather events are drawing increasing attention from the public and news media. A question often asked is how the likelihood of extremes might have changed by anthropogenic greenhouse-gas emissions. Answers to the question are strongly influenced by the model used, duration, spatial extent, and geographic location of the event—some of these factors often overlooked. Using output from four global climate models, we provide attribution statements characterised by a change in probability of occurrence due to anthropogenic greenhouse-gas emissions, for rainfall and temperature extremes occurring at seven discretised spatial scales and three temporal scales. An understanding of the sensitivity of attribution statements to a range of spatial and temporal scales of extremes allows for the scaling of attribution statements, rendering them relevant to other extremes having similar but non-identical characteristics. This is a procedure simple enough to approximate timely estimates of the anthropogenic contribution to the event probability. Furthermore, since real extremes do not have well-defined physical borders, scaling can help quantify uncertainty around attribution results due to uncertainty around the event definition. Results suggest that the sensitivity of attribution statements to spatial scale is similar across models and that the sensitivity of attribution statements to the model used is often greater than the sensitivity to a doubling or halving of the spatial scale of the event. The use of a range of spatial scales allows us to identify a nonlinear relationship between the spatial scale of the event studied and the attribution statement.
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree true
16 schema:isPartOf N0c030ed65d8b423fb55ae00c85ecbe2f
17 Ndf81e48f42fa4b51b07a00a9956d4c8b
18 sg:journal.1049631
19 schema:keywords answers
20 anthropogenic contribution
21 anthropogenic greenhouse gas emissions
22 attention
23 attribution results
24 attribution statements
25 border
26 changes
27 characteristics
28 climate change
29 climate models
30 context
31 contribution
32 definition
33 doubling
34 duration
35 emission
36 estimates
37 event definition
38 event probabilities
39 events
40 extent
41 extreme weather events
42 extremes
43 factors
44 geographic location
45 global climate models
46 greenhouse gas emissions
47 halving
48 likelihood
49 likelihood of extremes
50 location
51 medium
52 model
53 news media
54 nonlinear relationship
55 nonlinearity
56 occurrence
57 ongoing climate change
58 output
59 physical borders
60 probability
61 probability of occurrence
62 procedure
63 questions
64 rainfall
65 range
66 relationship
67 results
68 scale
69 scaling
70 sensitivity
71 spatial extent
72 spatial scales
73 statements
74 temperature extremes
75 temporal scales
76 timely estimates
77 uncertainty
78 understanding
79 use
80 weather events
81 schema:name On the nonlinearity of spatial scales in extreme weather attribution statements
82 schema:pagination 2739-2752
83 schema:productId N4044cbdf90a042ebbe46ba6d2c0bf88b
84 N5e96b71c99164d618ba3461ffb522199
85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086073032
86 https://doi.org/10.1007/s00382-017-3768-9
87 schema:sdDatePublished 2022-05-20T07:32
88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
89 schema:sdPublisher N3e3f2bbcc4a545219759b530a02d9528
90 schema:url https://doi.org/10.1007/s00382-017-3768-9
91 sgo:license sg:explorer/license/
92 sgo:sdDataset articles
93 rdf:type schema:ScholarlyArticle
94 N029aed67a6734480b771c916a4641091 rdf:first sg:person.011356656533.12
95 rdf:rest Nea0e396570c9424dbc88fc7a9dafc4b1
96 N0c030ed65d8b423fb55ae00c85ecbe2f schema:volumeNumber 50
97 rdf:type schema:PublicationVolume
98 N2c67d459bd1f4f16b6df4f5800558918 rdf:first sg:person.012044260032.31
99 rdf:rest N39cabf179edd48c6b0a689ff21475628
100 N39cabf179edd48c6b0a689ff21475628 rdf:first sg:person.013172725343.13
101 rdf:rest N82d0396ea6bf4099be1f23339d979772
102 N3e3f2bbcc4a545219759b530a02d9528 schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 N4044cbdf90a042ebbe46ba6d2c0bf88b schema:name doi
105 schema:value 10.1007/s00382-017-3768-9
106 rdf:type schema:PropertyValue
107 N5e96b71c99164d618ba3461ffb522199 schema:name dimensions_id
108 schema:value pub.1086073032
109 rdf:type schema:PropertyValue
110 N723220fb4c454a20bcbec143f458b7dc rdf:first sg:person.016152704227.55
111 rdf:rest N029aed67a6734480b771c916a4641091
112 N80ac736c054c45af921b329ade5b26f0 rdf:first sg:person.011422413477.88
113 rdf:rest Nc2b839ac8f81452aa5475248468c6d0a
114 N82d0396ea6bf4099be1f23339d979772 rdf:first sg:person.010414456323.84
115 rdf:rest N723220fb4c454a20bcbec143f458b7dc
116 Nc2b839ac8f81452aa5475248468c6d0a rdf:first sg:person.01100172067.08
117 rdf:rest rdf:nil
118 Ndf81e48f42fa4b51b07a00a9956d4c8b schema:issueNumber 7-8
119 rdf:type schema:PublicationIssue
120 Nea0e396570c9424dbc88fc7a9dafc4b1 rdf:first sg:person.01136560371.44
121 rdf:rest N80ac736c054c45af921b329ade5b26f0
122 Nf4f5020fff6949a781c37fb25180bb7a rdf:first sg:person.013460733700.11
123 rdf:rest N2c67d459bd1f4f16b6df4f5800558918
124 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
125 schema:name Earth Sciences
126 rdf:type schema:DefinedTerm
127 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
128 schema:name Atmospheric Sciences
129 rdf:type schema:DefinedTerm
130 sg:grant.3792886 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-017-3768-9
131 rdf:type schema:MonetaryGrant
132 sg:grant.3931146 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-017-3768-9
133 rdf:type schema:MonetaryGrant
134 sg:grant.7037241 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-017-3768-9
135 rdf:type schema:MonetaryGrant
136 sg:journal.1049631 schema:issn 0930-7575
137 1432-0894
138 schema:name Climate Dynamics
139 schema:publisher Springer Nature
140 rdf:type schema:Periodical
141 sg:person.010414456323.84 schema:affiliation grid-institutes:None
142 schema:familyName Alexander
143 schema:givenName Lisa V.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010414456323.84
145 rdf:type schema:Person
146 sg:person.01100172067.08 schema:affiliation grid-institutes:grid.17100.37
147 schema:familyName Christidis
148 schema:givenName Nikolaos
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100172067.08
150 rdf:type schema:Person
151 sg:person.011356656533.12 schema:affiliation grid-institutes:grid.140139.e
152 schema:familyName Shiogama
153 schema:givenName Hideo
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011356656533.12
155 rdf:type schema:Person
156 sg:person.01136560371.44 schema:affiliation grid-institutes:grid.7836.a
157 schema:familyName Wolski
158 schema:givenName Piotr
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136560371.44
160 rdf:type schema:Person
161 sg:person.011422413477.88 schema:affiliation grid-institutes:grid.17100.37
162 schema:familyName Ciavarella
163 schema:givenName Andrew
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011422413477.88
165 rdf:type schema:Person
166 sg:person.012044260032.31 schema:affiliation grid-institutes:grid.184769.5
167 schema:familyName Stone
168 schema:givenName Daíthí
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012044260032.31
170 rdf:type schema:Person
171 sg:person.013172725343.13 schema:affiliation grid-institutes:None
172 schema:familyName Perkins-Kirkpatrick
173 schema:givenName Sarah
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013172725343.13
175 rdf:type schema:Person
176 sg:person.013460733700.11 schema:affiliation grid-institutes:None
177 schema:familyName Angélil
178 schema:givenName Oliver
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013460733700.11
180 rdf:type schema:Person
181 sg:person.016152704227.55 schema:affiliation grid-institutes:grid.184769.5
182 schema:familyName Wehner
183 schema:givenName Michael
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016152704227.55
185 rdf:type schema:Person
186 sg:pub.10.1007/s00382-006-0180-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038887268
187 https://doi.org/10.1007/s00382-006-0180-2
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/421805a schema:sameAs https://app.dimensions.ai/details/publication/pub.1023270288
190 https://doi.org/10.1038/421805a
191 rdf:type schema:CreativeWork
192 sg:pub.10.1038/nature01092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046916950
193 https://doi.org/10.1038/nature01092
194 rdf:type schema:CreativeWork
195 sg:pub.10.1038/nature03089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028450143
196 https://doi.org/10.1038/nature03089
197 rdf:type schema:CreativeWork
198 sg:pub.10.1038/nature09762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043530920
199 https://doi.org/10.1038/nature09762
200 rdf:type schema:CreativeWork
201 sg:pub.10.1038/nclimate2617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045736007
202 https://doi.org/10.1038/nclimate2617
203 rdf:type schema:CreativeWork
204 grid-institutes:None schema:alternateName Climate Change Research Centre and ARC Centre of Excellence for Climate System Science, UNSW Australia, 2052, Sydney, NSW, Australia
205 schema:name Climate Change Research Centre and ARC Centre of Excellence for Climate System Science, UNSW Australia, 2052, Sydney, NSW, Australia
206 rdf:type schema:Organization
207 grid-institutes:grid.140139.e schema:alternateName National Institute for Environmental Studies, Tsukuba, 305-8506, Ibaraki, Japan
208 schema:name National Institute for Environmental Studies, Tsukuba, 305-8506, Ibaraki, Japan
209 rdf:type schema:Organization
210 grid-institutes:grid.17100.37 schema:alternateName Met Office Hadley Centre, EX1 3PB, Exeter, UK
211 schema:name Met Office Hadley Centre, EX1 3PB, Exeter, UK
212 rdf:type schema:Organization
213 grid-institutes:grid.184769.5 schema:alternateName Lawrence Berkeley National Laboratory, 94720, Berkeley, CA, USA
214 schema:name Lawrence Berkeley National Laboratory, 94720, Berkeley, CA, USA
215 rdf:type schema:Organization
216 grid-institutes:grid.7836.a schema:alternateName Climate Systems Analysis Group, Environmental and Geographical Science, University of Cape Town, Rondebosch, South Africa
217 schema:name Climate Systems Analysis Group, Environmental and Geographical Science, University of Cape Town, Rondebosch, South Africa
218 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...