Role of aerosols in modulating cloud properties during active–break cycle of Indian summer monsoon View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-09

AUTHORS

A. Bhattacharya, A. Chakraborty, V. Venugopal

ABSTRACT

In this study, the weather research and forecast model coupled with chemistry (WRF-Chem), is used to understand the impact of aerosol–cloud interaction during the active–break cycles of the Indian summer monsoon. Two sets of simulations are performed, one with a fixed aerosol concentration (ConstantAero) and the other with an observation-based prescription of the rate of change of aerosol concentration as a function of precipitation (VaryingAero). This prescription is derived based on satellite-retrieved daily rainrate and concurrent observations of aerosol optical depth from aerosol robotic network. The proposed modification is necessitated by the lack of realistic emission estimates over the Indian region as well as the presence of inherent biases in monsoon simulation in WRF-Chem. In the VaryingAero simulation, unlike in the ConstantAero run, we find that the break-to-active monsoon phase has more cloud liquid water (CLW) and less rain efficiency than in the active-to-break phase. This is primarily due to the indirect effect of increased aerosol loading in the break phase. This result is in accordance with the observed behaviour of CLW estimtes from microwave imager (TRMM 2A12) and radar reflectivity (TRMM precipitation radar). We also find that the proposed interactive aerosol loading results in higher spatial variability in CLW and enhances the likelihood of increased cloud cover via formation of larger clouds. The modification also alters the diurnal cycle of clouds in break and break-to-active phases as compared to other phases due to aerosol loading, with a stronger diurnal cycle of upper level clouds in these phases in the VaryingAero model as compared to ConstantAero model. More... »

PAGES

2131-2145

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00382-016-3437-4

DOI

http://dx.doi.org/10.1007/s00382-016-3437-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047747596


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Korea Institute of Atmospheric Prediction Systems", 
          "id": "https://www.grid.ac/institutes/grid.482520.9", 
          "name": [
            "Korea Institute of Atmospheric Prediction Systems, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhattacharya", 
        "givenName": "A.", 
        "id": "sg:person.013465360332.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013465360332.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Science Bangalore", 
          "id": "https://www.grid.ac/institutes/grid.34980.36", 
          "name": [
            "Centre for Atmospheric and Oceanic Sciences, Divecha Centre for Climate Change, Indian Institute of Science, 560012, Bangalore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chakraborty", 
        "givenName": "A.", 
        "id": "sg:person.011443572345.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011443572345.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Science Bangalore", 
          "id": "https://www.grid.ac/institutes/grid.34980.36", 
          "name": [
            "Centre for Atmospheric and Oceanic Sciences, Divecha Centre for Climate Change, Indian Institute of Science, 560012, Bangalore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Venugopal", 
        "givenName": "V.", 
        "id": "sg:person.07436500145.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07436500145.11"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.1204994", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001715275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-012-1374-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001985642", 
          "https://doi.org/10.1007/s00382-012-1374-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/grl.50165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003985111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2000jd900503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004033822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-14-471-2014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004772149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-010-0853-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006672271", 
          "https://doi.org/10.1007/s00382-010-0853-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2009jd012644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006788690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2009jd012644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006788690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2008gl037135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007160703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2008gl037135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007160703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-013-2040-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009319956", 
          "https://doi.org/10.1007/s00382-013-2040-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-013-2040-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009319956", 
          "https://doi.org/10.1007/s00382-013-2040-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1748-9326/10/5/054018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012311413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(2002)015<2462:eotsaa>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012861913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2007mwr2080.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012912505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2008jcli2107.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013328530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00704-015-1640-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014389292", 
          "https://doi.org/10.1007/s00704-015-1640-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1132027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015025115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo2107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015027291", 
          "https://doi.org/10.1038/ngeo2107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2007jd008782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016895322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-013-1978-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020500400", 
          "https://doi.org/10.1007/s00382-013-1978-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-9-945-2009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020663427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/joc.4217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020668709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/amt-7-3095-2014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024163666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-15-6367-2015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024349219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(1997)010<2330:aniocd>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025842988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0426(1993)010<0785:ttitaa>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026264009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-9-543-2009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030753846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/joc.3719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033732194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(1980)108<1840:otmcza>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035091186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2009jd012794", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035978594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2009jd012794", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035978594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-012-1425-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038351364", 
          "https://doi.org/10.1007/s00382-012-1425-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1075159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040067144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35011039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042394822", 
          "https://doi.org/10.1038/35011039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35011039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042394822", 
          "https://doi.org/10.1038/35011039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2005.04.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045639579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/angeo-22-1421-2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046220743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/angeo-22-1421-2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046220743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-006-0114-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046501442", 
          "https://doi.org/10.1007/s00382-006-0114-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-006-0114-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046501442", 
          "https://doi.org/10.1007/s00382-006-0114-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jas-d-12-0179.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048756078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12040-015-0576-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051328809", 
          "https://doi.org/10.1007/s12040-015-0576-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2000jd900282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051531517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.245.4923.1227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062538321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(2000)128<0462:apcsdm>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063452972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3402/tellusb.v36i5.14916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071281401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2151/jmsj1965.59.3_336", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084913047"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-09", 
    "datePublishedReg": "2017-09-01", 
    "description": "In this study, the weather research and forecast model coupled with chemistry (WRF-Chem), is used to understand the impact of aerosol\u2013cloud interaction during the active\u2013break cycles of the Indian summer monsoon. Two sets of simulations are performed, one with a fixed aerosol concentration (ConstantAero) and the other with an observation-based prescription of the rate of change of aerosol concentration as a function of precipitation (VaryingAero). This prescription is derived based on satellite-retrieved daily rainrate and concurrent observations of aerosol optical depth from aerosol robotic network. The proposed modification is necessitated by the lack of realistic emission estimates over the Indian region as well as the presence of inherent biases in monsoon simulation in WRF-Chem. In the VaryingAero simulation, unlike in the ConstantAero run, we find that the break-to-active monsoon phase has more cloud liquid water (CLW) and less rain efficiency than in the active-to-break phase. This is primarily due to the indirect effect of increased aerosol loading in the break phase. This result is in accordance with the observed behaviour of CLW estimtes from microwave imager (TRMM 2A12) and radar reflectivity (TRMM precipitation radar). We also find that the proposed interactive aerosol loading results in higher spatial variability in CLW and enhances the likelihood of increased cloud cover via formation of larger clouds. The modification also alters the diurnal cycle of clouds in break and break-to-active phases as compared to other phases due to aerosol loading, with a stronger diurnal cycle of upper level clouds in these phases in the VaryingAero model as compared to ConstantAero model.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00382-016-3437-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5-6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "49"
      }
    ], 
    "name": "Role of aerosols in modulating cloud properties during active\u2013break cycle of Indian summer monsoon", 
    "pagination": "2131-2145", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e374c651a825112465cab18449a4a875c63d72dd96bc2d00307233d730af38c5"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00382-016-3437-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047747596"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00382-016-3437-4", 
      "https://app.dimensions.ai/details/publication/pub.1047747596"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70053_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00382-016-3437-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-016-3437-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-016-3437-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-016-3437-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-016-3437-4'


 

This table displays all metadata directly associated to this object as RDF triples.

211 TRIPLES      21 PREDICATES      68 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00382-016-3437-4 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author Nd932cb2ab1a04ada8da5e0d6b5d3e343
4 schema:citation sg:pub.10.1007/s00382-006-0114-z
5 sg:pub.10.1007/s00382-010-0853-8
6 sg:pub.10.1007/s00382-012-1374-4
7 sg:pub.10.1007/s00382-012-1425-x
8 sg:pub.10.1007/s00382-013-1978-3
9 sg:pub.10.1007/s00382-013-2040-1
10 sg:pub.10.1007/s00704-015-1640-6
11 sg:pub.10.1007/s12040-015-0576-7
12 sg:pub.10.1038/35011039
13 sg:pub.10.1038/ngeo2107
14 https://doi.org/10.1002/grl.50165
15 https://doi.org/10.1002/joc.3719
16 https://doi.org/10.1002/joc.4217
17 https://doi.org/10.1016/j.atmosenv.2005.04.027
18 https://doi.org/10.1029/2000jd900282
19 https://doi.org/10.1029/2000jd900503
20 https://doi.org/10.1029/2007jd008782
21 https://doi.org/10.1029/2008gl037135
22 https://doi.org/10.1029/2009jd012644
23 https://doi.org/10.1029/2009jd012794
24 https://doi.org/10.1088/1748-9326/10/5/054018
25 https://doi.org/10.1126/science.1075159
26 https://doi.org/10.1126/science.1132027
27 https://doi.org/10.1126/science.1204994
28 https://doi.org/10.1126/science.245.4923.1227
29 https://doi.org/10.1175/1520-0426(1993)010<0785:ttitaa>2.0.co;2
30 https://doi.org/10.1175/1520-0442(1997)010<2330:aniocd>2.0.co;2
31 https://doi.org/10.1175/1520-0442(2002)015<2462:eotsaa>2.0.co;2
32 https://doi.org/10.1175/1520-0493(1980)108<1840:otmcza>2.0.co;2
33 https://doi.org/10.1175/1520-0493(2000)128<0462:apcsdm>2.0.co;2
34 https://doi.org/10.1175/2007mwr2080.1
35 https://doi.org/10.1175/2008jcli2107.1
36 https://doi.org/10.1175/jas-d-12-0179.1
37 https://doi.org/10.2151/jmsj1965.59.3_336
38 https://doi.org/10.3402/tellusb.v36i5.14916
39 https://doi.org/10.5194/acp-14-471-2014
40 https://doi.org/10.5194/acp-15-6367-2015
41 https://doi.org/10.5194/acp-9-543-2009
42 https://doi.org/10.5194/acp-9-945-2009
43 https://doi.org/10.5194/amt-7-3095-2014
44 https://doi.org/10.5194/angeo-22-1421-2004
45 schema:datePublished 2017-09
46 schema:datePublishedReg 2017-09-01
47 schema:description In this study, the weather research and forecast model coupled with chemistry (WRF-Chem), is used to understand the impact of aerosol–cloud interaction during the active–break cycles of the Indian summer monsoon. Two sets of simulations are performed, one with a fixed aerosol concentration (ConstantAero) and the other with an observation-based prescription of the rate of change of aerosol concentration as a function of precipitation (VaryingAero). This prescription is derived based on satellite-retrieved daily rainrate and concurrent observations of aerosol optical depth from aerosol robotic network. The proposed modification is necessitated by the lack of realistic emission estimates over the Indian region as well as the presence of inherent biases in monsoon simulation in WRF-Chem. In the VaryingAero simulation, unlike in the ConstantAero run, we find that the break-to-active monsoon phase has more cloud liquid water (CLW) and less rain efficiency than in the active-to-break phase. This is primarily due to the indirect effect of increased aerosol loading in the break phase. This result is in accordance with the observed behaviour of CLW estimtes from microwave imager (TRMM 2A12) and radar reflectivity (TRMM precipitation radar). We also find that the proposed interactive aerosol loading results in higher spatial variability in CLW and enhances the likelihood of increased cloud cover via formation of larger clouds. The modification also alters the diurnal cycle of clouds in break and break-to-active phases as compared to other phases due to aerosol loading, with a stronger diurnal cycle of upper level clouds in these phases in the VaryingAero model as compared to ConstantAero model.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree false
51 schema:isPartOf Na5a4d5bda68b41e588c934eb64a76cd1
52 Na82034b6b28b4603a03a3ae5ec40a86e
53 sg:journal.1049631
54 schema:name Role of aerosols in modulating cloud properties during active–break cycle of Indian summer monsoon
55 schema:pagination 2131-2145
56 schema:productId N0b90a8c055934688ae6ee8b8646c4e38
57 Na5545cc65df84556bc94e0dce88616fc
58 Nd8b2cacca73241f8811f09f39e3f4b07
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047747596
60 https://doi.org/10.1007/s00382-016-3437-4
61 schema:sdDatePublished 2019-04-11T12:41
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher N9255ea3bc8ea45afa41119608e4291b4
64 schema:url https://link.springer.com/10.1007%2Fs00382-016-3437-4
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N07104ea8d0a74460876651b24b3b736f rdf:first sg:person.011443572345.00
69 rdf:rest Na302edff7ea14606bb9ebae6c75c7b96
70 N0b90a8c055934688ae6ee8b8646c4e38 schema:name doi
71 schema:value 10.1007/s00382-016-3437-4
72 rdf:type schema:PropertyValue
73 N9255ea3bc8ea45afa41119608e4291b4 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 Na302edff7ea14606bb9ebae6c75c7b96 rdf:first sg:person.07436500145.11
76 rdf:rest rdf:nil
77 Na5545cc65df84556bc94e0dce88616fc schema:name readcube_id
78 schema:value e374c651a825112465cab18449a4a875c63d72dd96bc2d00307233d730af38c5
79 rdf:type schema:PropertyValue
80 Na5a4d5bda68b41e588c934eb64a76cd1 schema:issueNumber 5-6
81 rdf:type schema:PublicationIssue
82 Na82034b6b28b4603a03a3ae5ec40a86e schema:volumeNumber 49
83 rdf:type schema:PublicationVolume
84 Nd8b2cacca73241f8811f09f39e3f4b07 schema:name dimensions_id
85 schema:value pub.1047747596
86 rdf:type schema:PropertyValue
87 Nd932cb2ab1a04ada8da5e0d6b5d3e343 rdf:first sg:person.013465360332.29
88 rdf:rest N07104ea8d0a74460876651b24b3b736f
89 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
90 schema:name Earth Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
93 schema:name Atmospheric Sciences
94 rdf:type schema:DefinedTerm
95 sg:journal.1049631 schema:issn 0930-7575
96 1432-0894
97 schema:name Climate Dynamics
98 rdf:type schema:Periodical
99 sg:person.011443572345.00 schema:affiliation https://www.grid.ac/institutes/grid.34980.36
100 schema:familyName Chakraborty
101 schema:givenName A.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011443572345.00
103 rdf:type schema:Person
104 sg:person.013465360332.29 schema:affiliation https://www.grid.ac/institutes/grid.482520.9
105 schema:familyName Bhattacharya
106 schema:givenName A.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013465360332.29
108 rdf:type schema:Person
109 sg:person.07436500145.11 schema:affiliation https://www.grid.ac/institutes/grid.34980.36
110 schema:familyName Venugopal
111 schema:givenName V.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07436500145.11
113 rdf:type schema:Person
114 sg:pub.10.1007/s00382-006-0114-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1046501442
115 https://doi.org/10.1007/s00382-006-0114-z
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s00382-010-0853-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006672271
118 https://doi.org/10.1007/s00382-010-0853-8
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s00382-012-1374-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001985642
121 https://doi.org/10.1007/s00382-012-1374-4
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s00382-012-1425-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038351364
124 https://doi.org/10.1007/s00382-012-1425-x
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s00382-013-1978-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020500400
127 https://doi.org/10.1007/s00382-013-1978-3
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s00382-013-2040-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009319956
130 https://doi.org/10.1007/s00382-013-2040-1
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s00704-015-1640-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014389292
133 https://doi.org/10.1007/s00704-015-1640-6
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s12040-015-0576-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051328809
136 https://doi.org/10.1007/s12040-015-0576-7
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/35011039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042394822
139 https://doi.org/10.1038/35011039
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/ngeo2107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015027291
142 https://doi.org/10.1038/ngeo2107
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1002/grl.50165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003985111
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1002/joc.3719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033732194
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1002/joc.4217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020668709
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.atmosenv.2005.04.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045639579
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1029/2000jd900282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051531517
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1029/2000jd900503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004033822
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1029/2007jd008782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016895322
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1029/2008gl037135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007160703
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1029/2009jd012644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006788690
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1029/2009jd012794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035978594
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1088/1748-9326/10/5/054018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012311413
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1126/science.1075159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040067144
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1126/science.1132027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015025115
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1126/science.1204994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001715275
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1126/science.245.4923.1227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062538321
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1175/1520-0426(1993)010<0785:ttitaa>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026264009
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1175/1520-0442(1997)010<2330:aniocd>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025842988
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1175/1520-0442(2002)015<2462:eotsaa>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012861913
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1175/1520-0493(1980)108<1840:otmcza>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035091186
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1175/1520-0493(2000)128<0462:apcsdm>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063452972
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1175/2007mwr2080.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012912505
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1175/2008jcli2107.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013328530
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1175/jas-d-12-0179.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048756078
189 rdf:type schema:CreativeWork
190 https://doi.org/10.2151/jmsj1965.59.3_336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084913047
191 rdf:type schema:CreativeWork
192 https://doi.org/10.3402/tellusb.v36i5.14916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071281401
193 rdf:type schema:CreativeWork
194 https://doi.org/10.5194/acp-14-471-2014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004772149
195 rdf:type schema:CreativeWork
196 https://doi.org/10.5194/acp-15-6367-2015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024349219
197 rdf:type schema:CreativeWork
198 https://doi.org/10.5194/acp-9-543-2009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030753846
199 rdf:type schema:CreativeWork
200 https://doi.org/10.5194/acp-9-945-2009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020663427
201 rdf:type schema:CreativeWork
202 https://doi.org/10.5194/amt-7-3095-2014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024163666
203 rdf:type schema:CreativeWork
204 https://doi.org/10.5194/angeo-22-1421-2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046220743
205 rdf:type schema:CreativeWork
206 https://www.grid.ac/institutes/grid.34980.36 schema:alternateName Indian Institute of Science Bangalore
207 schema:name Centre for Atmospheric and Oceanic Sciences, Divecha Centre for Climate Change, Indian Institute of Science, 560012, Bangalore, India
208 rdf:type schema:Organization
209 https://www.grid.ac/institutes/grid.482520.9 schema:alternateName Korea Institute of Atmospheric Prediction Systems
210 schema:name Korea Institute of Atmospheric Prediction Systems, Seoul, Korea
211 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...