Multi-scale enhancement of climate prediction over land by increasing the model sensitivity to vegetation variability in EC-Earth View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-08

AUTHORS

Andrea Alessandri, Franco Catalano, Matteo De Felice, Bart Van Den Hurk, Francisco Doblas Reyes, Souhail Boussetta, Gianpaolo Balsamo, Paul A. Miller

ABSTRACT

The EC-Earth earth system model has been recently developed to include the dynamics of vegetation. In its original formulation, vegetation variability is simply operated by the Leaf Area Index (LAI), which affects climate basically by changing the vegetation physiological resistance to evapotranspiration. This coupling has been found to have only a weak effect on the surface climate modeled by EC-Earth. In reality, the effective sub-grid vegetation fractional coverage will vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the albedo, surface roughness and soil field capacity. To adequately represent this effect in EC-Earth, we included an exponential dependence of the vegetation cover on the LAI. By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning from centennial (twentieth century) simulations and retrospective predictions to the decadal (5-years), seasonal and weather time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation cover tends to correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and weather time-scales. Significant improvements of the prediction of 2 m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration. More... »

PAGES

1215-1237

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00382-016-3372-4

DOI

http://dx.doi.org/10.1007/s00382-016-3372-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035922771


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Agency For New Technologies, Energy and Sustainable Economic Development", 
          "id": "https://www.grid.ac/institutes/grid.5196.b", 
          "name": [
            "Agenzia Nazionale per le nuove Tecnologie, l\u2019energia e lo sviluppo economico sostenibile (ENEA), Bldg C59, Sp. 118 CR Casaccia, Via Anguillarese, 301, Santa Maria di Galeria, 00123, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alessandri", 
        "givenName": "Andrea", 
        "id": "sg:person.07431723475.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07431723475.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Agency For New Technologies, Energy and Sustainable Economic Development", 
          "id": "https://www.grid.ac/institutes/grid.5196.b", 
          "name": [
            "Agenzia Nazionale per le nuove Tecnologie, l\u2019energia e lo sviluppo economico sostenibile (ENEA), Bldg C59, Sp. 118 CR Casaccia, Via Anguillarese, 301, Santa Maria di Galeria, 00123, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Catalano", 
        "givenName": "Franco", 
        "id": "sg:person.013274357673.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013274357673.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Agency For New Technologies, Energy and Sustainable Economic Development", 
          "id": "https://www.grid.ac/institutes/grid.5196.b", 
          "name": [
            "Agenzia Nazionale per le nuove Tecnologie, l\u2019energia e lo sviluppo economico sostenibile (ENEA), Bldg C59, Sp. 118 CR Casaccia, Via Anguillarese, 301, Santa Maria di Galeria, 00123, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "De Felice", 
        "givenName": "Matteo", 
        "id": "sg:person.0771750456.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771750456.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Royal Netherlands Meteorological Institute", 
          "id": "https://www.grid.ac/institutes/grid.8653.8", 
          "name": [
            "Royal Netherlands Meteorological Institute, De Bilt, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Van Den Hurk", 
        "givenName": "Bart", 
        "id": "sg:person.010707714545.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010707714545.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Barcelona Supercomputing Center", 
          "id": "https://www.grid.ac/institutes/grid.10097.3f", 
          "name": [
            "Institut Catal\u00e0 de Ci\u00e8ncies del Clima (IC3), Barcelona, Spain", 
            "Instituci\u00f3 Catalana de Recerca i Estudis Avan\u00e7ats (ICREA), Barcelona, Spain", 
            "Barcelona Supercomputing Center-Centro Nacional de Supercomputaci\u00f3n (BSC-CNS), Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Doblas Reyes", 
        "givenName": "Francisco", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Centre for Medium-Range Weather Forecasts", 
          "id": "https://www.grid.ac/institutes/grid.42781.38", 
          "name": [
            "European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boussetta", 
        "givenName": "Souhail", 
        "id": "sg:person.012403470002.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012403470002.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Centre for Medium-Range Weather Forecasts", 
          "id": "https://www.grid.ac/institutes/grid.42781.38", 
          "name": [
            "European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Balsamo", 
        "givenName": "Gianpaolo", 
        "id": "sg:person.015134253735.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015134253735.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lund University", 
          "id": "https://www.grid.ac/institutes/grid.4514.4", 
          "name": [
            "Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miller", 
        "givenName": "Paul A.", 
        "id": "sg:person.016121476550.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016121476550.19"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1175/jcli-d-13-00684.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002315014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2009bams2778.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002657974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006069800", 
          "https://doi.org/10.1038/nature08823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006069800", 
          "https://doi.org/10.1038/nature08823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/97jc00480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008424202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431161.2012.716543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009873225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.1991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011566838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs5020927", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016755340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-014-2095-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017878766", 
          "https://doi.org/10.1007/s00382-014-2095-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hess-19-389-2015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017959689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-013-1782-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018959658", 
          "https://doi.org/10.1007/s00382-013-1782-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2015.03.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019836330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2015.03.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019836330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2015.03.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019836330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2015.03.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019836330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-011-1239-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020140575", 
          "https://doi.org/10.1007/s00382-011-1239-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2008mwr2498.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021836369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli3983.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022411236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1525-7541(2003)004<1147:tvgpcp>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023719243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1525-7541(2002)003<0617:iotivo>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024106285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-011-1228-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027144462", 
          "https://doi.org/10.1007/s00382-011-1228-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2007gl032415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028558865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-011-1285-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030783359", 
          "https://doi.org/10.1007/s00382-011-1285-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2010mwr3178.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031153622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2002jd002846", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032533496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0034-4257(02)00074-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034862226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.2652", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034968199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-003-0366-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035767150", 
          "https://doi.org/10.1007/s00382-003-0366-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/joc.3711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038108572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039601605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2006gl028164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039700302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2003gb002199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042968070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2009gl040057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044170412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2009gl040057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044170412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2008jhm1068.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046344899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-012-1572-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048712796", 
          "https://doi.org/10.1007/s00382-012-1572-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2007gl032778", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048965579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/bams-d-11-00094.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051805105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1466-822x.2001.00256.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056741617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/147gm06", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092261883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511805530", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098679474"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-08", 
    "datePublishedReg": "2017-08-01", 
    "description": "The EC-Earth earth system model has been recently developed to include the dynamics of vegetation. In its original formulation, vegetation variability is simply operated by the Leaf Area Index (LAI), which affects climate basically by changing the vegetation physiological resistance to evapotranspiration. This coupling has been found to have only a weak effect on the surface climate modeled by EC-Earth. In reality, the effective sub-grid vegetation fractional coverage will vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the albedo, surface roughness and soil field capacity. To adequately represent this effect in EC-Earth, we included an exponential dependence of the vegetation cover on the LAI. By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning from centennial (twentieth century) simulations and retrospective predictions to the decadal (5-years), seasonal and weather time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation cover tends to correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and weather time-scales. Significant improvements of the prediction of 2 m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00382-016-3372-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3798900", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4056923", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5495399", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "49"
      }
    ], 
    "name": "Multi-scale enhancement of climate prediction over land by increasing the model sensitivity to vegetation variability in EC-Earth", 
    "pagination": "1215-1237", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ab2018da9afc2eb8b0be4cfa66cb822524e3085f0769cfcf45d1445bbfff48e7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00382-016-3372-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035922771"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00382-016-3372-4", 
      "https://app.dimensions.ai/details/publication/pub.1035922771"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70043_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00382-016-3372-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-016-3372-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-016-3372-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-016-3372-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-016-3372-4'


 

This table displays all metadata directly associated to this object as RDF triples.

245 TRIPLES      21 PREDICATES      63 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00382-016-3372-4 schema:about anzsrc-for:04
2 anzsrc-for:0406
3 schema:author N8729a4818a2e4265a7b475dc04eab534
4 schema:citation sg:pub.10.1007/s00382-003-0366-9
5 sg:pub.10.1007/s00382-011-1228-5
6 sg:pub.10.1007/s00382-011-1239-2
7 sg:pub.10.1007/s00382-011-1285-9
8 sg:pub.10.1007/s00382-012-1572-0
9 sg:pub.10.1007/s00382-013-1782-0
10 sg:pub.10.1007/s00382-014-2095-7
11 sg:pub.10.1038/nature08823
12 https://doi.org/10.1002/joc.3711
13 https://doi.org/10.1002/qj.1991
14 https://doi.org/10.1002/qj.2652
15 https://doi.org/10.1002/qj.828
16 https://doi.org/10.1016/j.rse.2015.03.009
17 https://doi.org/10.1016/s0034-4257(02)00074-3
18 https://doi.org/10.1017/cbo9780511805530
19 https://doi.org/10.1029/147gm06
20 https://doi.org/10.1029/2002jd002846
21 https://doi.org/10.1029/2003gb002199
22 https://doi.org/10.1029/2006gl028164
23 https://doi.org/10.1029/2007gl032415
24 https://doi.org/10.1029/2007gl032778
25 https://doi.org/10.1029/2009gl040057
26 https://doi.org/10.1029/97jc00480
27 https://doi.org/10.1046/j.1466-822x.2001.00256.x
28 https://doi.org/10.1080/01431161.2012.716543
29 https://doi.org/10.1175/1525-7541(2002)003<0617:iotivo>2.0.co;2
30 https://doi.org/10.1175/1525-7541(2003)004<1147:tvgpcp>2.0.co;2
31 https://doi.org/10.1175/2008jhm1068.1
32 https://doi.org/10.1175/2008mwr2498.1
33 https://doi.org/10.1175/2009bams2778.1
34 https://doi.org/10.1175/2010mwr3178.1
35 https://doi.org/10.1175/bams-d-11-00094.1
36 https://doi.org/10.1175/jcli-d-13-00684.1
37 https://doi.org/10.1175/jcli3983.1
38 https://doi.org/10.3390/rs5020927
39 https://doi.org/10.5194/hess-19-389-2015
40 schema:datePublished 2017-08
41 schema:datePublishedReg 2017-08-01
42 schema:description The EC-Earth earth system model has been recently developed to include the dynamics of vegetation. In its original formulation, vegetation variability is simply operated by the Leaf Area Index (LAI), which affects climate basically by changing the vegetation physiological resistance to evapotranspiration. This coupling has been found to have only a weak effect on the surface climate modeled by EC-Earth. In reality, the effective sub-grid vegetation fractional coverage will vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the albedo, surface roughness and soil field capacity. To adequately represent this effect in EC-Earth, we included an exponential dependence of the vegetation cover on the LAI. By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning from centennial (twentieth century) simulations and retrospective predictions to the decadal (5-years), seasonal and weather time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation cover tends to correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and weather time-scales. Significant improvements of the prediction of 2 m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree true
46 schema:isPartOf Ncf7c164c16614db9a2ddf099ab4c1cfd
47 Nfbaab030b2c84544aee75364b8523fa2
48 sg:journal.1049631
49 schema:name Multi-scale enhancement of climate prediction over land by increasing the model sensitivity to vegetation variability in EC-Earth
50 schema:pagination 1215-1237
51 schema:productId N12ae0f872fa04e769f84ca49919e60be
52 N3ce5ab9009154cc69e61e885f5359c81
53 Nc5a03c3f71aa42df976897ccfacb9a8a
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035922771
55 https://doi.org/10.1007/s00382-016-3372-4
56 schema:sdDatePublished 2019-04-11T12:39
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N745d7f8a7f7e4efaa31a1f3f93b610b4
59 schema:url https://link.springer.com/10.1007%2Fs00382-016-3372-4
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N08f44ce351334f2eb37f0f86f4a3a055 rdf:first Nde3a4cbc07294cf295d0f30825417b49
64 rdf:rest N7c9f06bf82f541b4aab02710d3629921
65 N12ae0f872fa04e769f84ca49919e60be schema:name dimensions_id
66 schema:value pub.1035922771
67 rdf:type schema:PropertyValue
68 N1494d9f3428e4b1db1d96f13283aebef rdf:first sg:person.015134253735.58
69 rdf:rest N350f1ad5ff804498b7b7b3058ddaa33f
70 N350f1ad5ff804498b7b7b3058ddaa33f rdf:first sg:person.016121476550.19
71 rdf:rest rdf:nil
72 N389285621de44f6d8d8aadc05bddb1e3 rdf:first sg:person.013274357673.75
73 rdf:rest Nf22a831b12ce47388cfcccf177b2ac20
74 N3ce5ab9009154cc69e61e885f5359c81 schema:name readcube_id
75 schema:value ab2018da9afc2eb8b0be4cfa66cb822524e3085f0769cfcf45d1445bbfff48e7
76 rdf:type schema:PropertyValue
77 N745d7f8a7f7e4efaa31a1f3f93b610b4 schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 N7c9f06bf82f541b4aab02710d3629921 rdf:first sg:person.012403470002.54
80 rdf:rest N1494d9f3428e4b1db1d96f13283aebef
81 N8729a4818a2e4265a7b475dc04eab534 rdf:first sg:person.07431723475.23
82 rdf:rest N389285621de44f6d8d8aadc05bddb1e3
83 Nc00a45f3330c45edb87925c1cf7dac35 rdf:first sg:person.010707714545.84
84 rdf:rest N08f44ce351334f2eb37f0f86f4a3a055
85 Nc5a03c3f71aa42df976897ccfacb9a8a schema:name doi
86 schema:value 10.1007/s00382-016-3372-4
87 rdf:type schema:PropertyValue
88 Ncf7c164c16614db9a2ddf099ab4c1cfd schema:issueNumber 4
89 rdf:type schema:PublicationIssue
90 Nde3a4cbc07294cf295d0f30825417b49 schema:affiliation https://www.grid.ac/institutes/grid.10097.3f
91 schema:familyName Doblas Reyes
92 schema:givenName Francisco
93 rdf:type schema:Person
94 Nf22a831b12ce47388cfcccf177b2ac20 rdf:first sg:person.0771750456.52
95 rdf:rest Nc00a45f3330c45edb87925c1cf7dac35
96 Nfbaab030b2c84544aee75364b8523fa2 schema:volumeNumber 49
97 rdf:type schema:PublicationVolume
98 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
99 schema:name Earth Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
102 schema:name Physical Geography and Environmental Geoscience
103 rdf:type schema:DefinedTerm
104 sg:grant.3798900 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-016-3372-4
105 rdf:type schema:MonetaryGrant
106 sg:grant.4056923 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-016-3372-4
107 rdf:type schema:MonetaryGrant
108 sg:grant.5495399 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-016-3372-4
109 rdf:type schema:MonetaryGrant
110 sg:journal.1049631 schema:issn 0930-7575
111 1432-0894
112 schema:name Climate Dynamics
113 rdf:type schema:Periodical
114 sg:person.010707714545.84 schema:affiliation https://www.grid.ac/institutes/grid.8653.8
115 schema:familyName Van Den Hurk
116 schema:givenName Bart
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010707714545.84
118 rdf:type schema:Person
119 sg:person.012403470002.54 schema:affiliation https://www.grid.ac/institutes/grid.42781.38
120 schema:familyName Boussetta
121 schema:givenName Souhail
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012403470002.54
123 rdf:type schema:Person
124 sg:person.013274357673.75 schema:affiliation https://www.grid.ac/institutes/grid.5196.b
125 schema:familyName Catalano
126 schema:givenName Franco
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013274357673.75
128 rdf:type schema:Person
129 sg:person.015134253735.58 schema:affiliation https://www.grid.ac/institutes/grid.42781.38
130 schema:familyName Balsamo
131 schema:givenName Gianpaolo
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015134253735.58
133 rdf:type schema:Person
134 sg:person.016121476550.19 schema:affiliation https://www.grid.ac/institutes/grid.4514.4
135 schema:familyName Miller
136 schema:givenName Paul A.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016121476550.19
138 rdf:type schema:Person
139 sg:person.07431723475.23 schema:affiliation https://www.grid.ac/institutes/grid.5196.b
140 schema:familyName Alessandri
141 schema:givenName Andrea
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07431723475.23
143 rdf:type schema:Person
144 sg:person.0771750456.52 schema:affiliation https://www.grid.ac/institutes/grid.5196.b
145 schema:familyName De Felice
146 schema:givenName Matteo
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771750456.52
148 rdf:type schema:Person
149 sg:pub.10.1007/s00382-003-0366-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035767150
150 https://doi.org/10.1007/s00382-003-0366-9
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/s00382-011-1228-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027144462
153 https://doi.org/10.1007/s00382-011-1228-5
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/s00382-011-1239-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020140575
156 https://doi.org/10.1007/s00382-011-1239-2
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/s00382-011-1285-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030783359
159 https://doi.org/10.1007/s00382-011-1285-9
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/s00382-012-1572-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048712796
162 https://doi.org/10.1007/s00382-012-1572-0
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/s00382-013-1782-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018959658
165 https://doi.org/10.1007/s00382-013-1782-0
166 rdf:type schema:CreativeWork
167 sg:pub.10.1007/s00382-014-2095-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017878766
168 https://doi.org/10.1007/s00382-014-2095-7
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/nature08823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006069800
171 https://doi.org/10.1038/nature08823
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1002/joc.3711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038108572
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1002/qj.1991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011566838
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1002/qj.2652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034968199
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1002/qj.828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039601605
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.rse.2015.03.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019836330
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/s0034-4257(02)00074-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034862226
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1017/cbo9780511805530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098679474
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1029/147gm06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092261883
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1029/2002jd002846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032533496
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1029/2003gb002199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042968070
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1029/2006gl028164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039700302
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1029/2007gl032415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028558865
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1029/2007gl032778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048965579
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1029/2009gl040057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044170412
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1029/97jc00480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008424202
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1046/j.1466-822x.2001.00256.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1056741617
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1080/01431161.2012.716543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009873225
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1175/1525-7541(2002)003<0617:iotivo>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024106285
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1175/1525-7541(2003)004<1147:tvgpcp>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023719243
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1175/2008jhm1068.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046344899
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1175/2008mwr2498.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021836369
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1175/2009bams2778.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002657974
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1175/2010mwr3178.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031153622
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1175/bams-d-11-00094.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051805105
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1175/jcli-d-13-00684.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002315014
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1175/jcli3983.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022411236
224 rdf:type schema:CreativeWork
225 https://doi.org/10.3390/rs5020927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016755340
226 rdf:type schema:CreativeWork
227 https://doi.org/10.5194/hess-19-389-2015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017959689
228 rdf:type schema:CreativeWork
229 https://www.grid.ac/institutes/grid.10097.3f schema:alternateName Barcelona Supercomputing Center
230 schema:name Barcelona Supercomputing Center-Centro Nacional de Supercomputación (BSC-CNS), Barcelona, Spain
231 Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
232 Institut Català de Ciències del Clima (IC3), Barcelona, Spain
233 rdf:type schema:Organization
234 https://www.grid.ac/institutes/grid.42781.38 schema:alternateName European Centre for Medium-Range Weather Forecasts
235 schema:name European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading, UK
236 rdf:type schema:Organization
237 https://www.grid.ac/institutes/grid.4514.4 schema:alternateName Lund University
238 schema:name Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
239 rdf:type schema:Organization
240 https://www.grid.ac/institutes/grid.5196.b schema:alternateName National Agency For New Technologies, Energy and Sustainable Economic Development
241 schema:name Agenzia Nazionale per le nuove Tecnologie, l’energia e lo sviluppo economico sostenibile (ENEA), Bldg C59, Sp. 118 CR Casaccia, Via Anguillarese, 301, Santa Maria di Galeria, 00123, Rome, Italy
242 rdf:type schema:Organization
243 https://www.grid.ac/institutes/grid.8653.8 schema:alternateName Royal Netherlands Meteorological Institute
244 schema:name Royal Netherlands Meteorological Institute, De Bilt, The Netherlands
245 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...