Ocean and atmosphere feedbacks affecting AMOC hysteresis in a GCM View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-10-01

AUTHORS

L. C. Jackson, R. S. Smith, R. A. Wood

ABSTRACT

Theories suggest that the Atlantic Meridional Overturning Circulation (AMOC) can exhibit a hysteresis where, for a given input of fresh water into the north Atlantic, there are two possible states: one with a strong overturning in the north Atlantic (on) and the other with a reverse Atlantic cell (off). A previous study showed hysteresis of the AMOC for the first time in a coupled general circulation model (Hawkins et al. in Geophys Res Lett. doi:10.1029/2011GL047208, 2011). In this study we show that the hysteresis found by Hawkins et al. (2011) is sensitive to the method with which the fresh water input is compensated. If this compensation is applied throughout the volume of the global ocean, rather than at the surface, the region of hysteresis is narrower and the off states are very different: when the compensation is applied at the surface, a strong Pacific overturning cell and a strong Atlantic reverse cell develops; when the compensation is applied throughout the volume there is little change in the Pacific and only a weak Atlantic reverse cell develops. We investigate the mechanisms behind the transitions between the on and off states in the two experiments, and find that the difference in hysteresis is due to the different off states. We find that the development of the Pacific overturning cell results in greater atmospheric moisture transport into the North Atlantic, and also is likely responsible for a stronger Atlantic reverse cell. These both act to stabilize the off state of the Atlantic overturning. More... »

PAGES

173-191

References to SciGraph publications

  • 2002-09. Ocean circulation and climate during the past 120,000 years in NATURE
  • 1997-05. Modelling teleconnections between the North Atlantic and North Pacific during the Younger Dryas in NATURE
  • 2007-06-07. Effects of atmospheric dynamics and ocean resolution on bi-stability of the thermohaline circulation examined using the Grid ENabled Integrated Earth system modelling (GENIE) framework in CLIMATE DYNAMICS
  • 2009-04-21. The role of meridional density differences for a wind-driven overturning circulation in CLIMATE DYNAMICS
  • 2007-01-13. Impacts of thermohaline circulation shutdown in the twenty-first century in CLIMATIC CHANGE
  • 2003-11-04. The role of the Atlantic freshwater balance in the hysteresis of the meridional overturning circulation in CLIMATE DYNAMICS
  • 1996-11. On the freshwater forcing and transport of the Atlantic thermohaline circulation in CLIMATE DYNAMICS
  • 2013-06-25. Response of the Atlantic meridional overturning circulation to a reversal of greenhouse gas increases in CLIMATE DYNAMICS
  • 1997-07. The stability of the North Atlantic thermohaline circulation in a coupled ocean-atmosphere general circulation model in CLIMATE DYNAMICS
  • 2010-10-26. The stability of the MOC as diagnosed from model projections for pre-industrial, present and future climates in CLIMATE DYNAMICS
  • 2016-01-30. Stable AMOC off state in an eddy-permitting coupled climate model in CLIMATE DYNAMICS
  • 2004-04. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes in NATURE
  • 2009-03-27. An Integrated Assessment of changes in the thermohaline circulation in CLIMATIC CHANGE
  • 2000-02. The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments in CLIMATE DYNAMICS
  • 2007-06-05. Reconciling theories of a mechanically driven meridional overturning circulation with thermohaline forcing and multiple equilibria in CLIMATE DYNAMICS
  • 2015-03-11. Global and European climate impacts of a slowdown of the AMOC in a high resolution GCM in CLIMATE DYNAMICS
  • 2012-01-28. Sensitivity of the Atlantic meridional overturning circulation to South Atlantic freshwater anomalies in CLIMATE DYNAMICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00382-016-3336-8

    DOI

    http://dx.doi.org/10.1007/s00382-016-3336-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1001059196


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oceanography", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Met Office Hadley Centre, Exeter, UK", 
              "id": "http://www.grid.ac/institutes/grid.17100.37", 
              "name": [
                "Met Office Hadley Centre, Exeter, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jackson", 
            "givenName": "L. C.", 
            "id": "sg:person.016212657271.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016212657271.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "NCAS-Climate, Department of Meteorology, University of Reading, Berkshire, UK", 
              "id": "http://www.grid.ac/institutes/grid.9435.b", 
              "name": [
                "NCAS-Climate, Department of Meteorology, University of Reading, Berkshire, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Smith", 
            "givenName": "R. S.", 
            "id": "sg:person.015343557245.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015343557245.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Met Office Hadley Centre, Exeter, UK", 
              "id": "http://www.grid.ac/institutes/grid.17100.37", 
              "name": [
                "Met Office Hadley Centre, Exeter, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wood", 
            "givenName": "R. A.", 
            "id": "sg:person.015637061237.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015637061237.00"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s003820050144", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009461489", 
              "https://doi.org/10.1007/s003820050144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-007-0254-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036411949", 
              "https://doi.org/10.1007/s00382-007-0254-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052931301", 
              "https://doi.org/10.1038/nature01090"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-009-0572-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042790702", 
              "https://doi.org/10.1007/s00382-009-0572-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-006-9146-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016910488", 
              "https://doi.org/10.1007/s10584-006-9146-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-009-9561-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034623296", 
              "https://doi.org/10.1007/s10584-009-9561-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/387384a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015787660", 
              "https://doi.org/10.1038/387384a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02494", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049594132", 
              "https://doi.org/10.1038/nature02494"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003820050169", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027980956", 
              "https://doi.org/10.1007/s003820050169"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-016-2975-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017826529", 
              "https://doi.org/10.1007/s00382-016-2975-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-003-0359-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043514443", 
              "https://doi.org/10.1007/s00382-003-0359-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-015-2540-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003570692", 
              "https://doi.org/10.1007/s00382-015-2540-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-013-1842-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002413798", 
              "https://doi.org/10.1007/s00382-013-1842-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-010-0930-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015295705", 
              "https://doi.org/10.1007/s00382-010-0930-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-012-1292-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027178860", 
              "https://doi.org/10.1007/s00382-012-1292-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-007-0262-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053328576", 
              "https://doi.org/10.1007/s00382-007-0262-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003820050010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015242699", 
              "https://doi.org/10.1007/s003820050010"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-10-01", 
        "datePublishedReg": "2016-10-01", 
        "description": "Abstract Theories suggest that the Atlantic Meridional Overturning Circulation (AMOC) can exhibit a hysteresis where, for a given input of fresh water into the north Atlantic, there are two possible states: one with a strong overturning in the north Atlantic (on) and the other with a reverse Atlantic cell (off). A previous study showed hysteresis of the AMOC for the first time in a coupled general circulation model (Hawkins et al. in Geophys Res Lett. doi:10.1029/2011GL047208, 2011). In this study we show that the hysteresis found by Hawkins et al. (2011) is sensitive to the method with which the fresh water input is compensated. If this compensation is applied throughout the volume of the global ocean, rather than at the surface, the region of hysteresis is narrower and the off states are very different: when the compensation is applied at the surface, a strong Pacific overturning cell and a strong Atlantic reverse cell develops; when the compensation is applied throughout the volume there is little change in the Pacific and only a weak Atlantic reverse cell develops. We investigate the mechanisms behind the transitions between the on and off states in the two experiments, and find that the difference in hysteresis is due to the different off states. We find that the development of the Pacific overturning cell results in greater atmospheric moisture transport into the North Atlantic, and also is likely responsible for a stronger Atlantic reverse cell. These both act to stabilize the off state of the Atlantic overturning.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00382-016-3336-8", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7037241", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1049631", 
            "issn": [
              "0930-7575", 
              "1432-0894"
            ], 
            "name": "Climate Dynamics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "49"
          }
        ], 
        "keywords": [
          "Atlantic Meridional Overturning Circulation", 
          "North Atlantic", 
          "reverse cells", 
          "atmospheric moisture transport", 
          "meridional overturning circulation", 
          "general circulation model", 
          "freshwater input", 
          "overturning circulation", 
          "global ocean", 
          "Atlantic overturning", 
          "atmosphere feedbacks", 
          "circulation model", 
          "strong overturning", 
          "moisture transport", 
          "water input", 
          "freshwater", 
          "Atlantic", 
          "Ocean", 
          "overturning", 
          "Pacific", 
          "Hawkins et al", 
          "GCM", 
          "little change", 
          "region of hysteresis", 
          "input", 
          "circulation", 
          "water", 
          "surface", 
          "transport", 
          "previous studies", 
          "et al", 
          "region", 
          "first time", 
          "volume", 
          "al", 
          "feedback", 
          "changes", 
          "model", 
          "transition", 
          "state", 
          "hysteresis", 
          "time", 
          "study", 
          "experiments", 
          "results", 
          "differences", 
          "development", 
          "mechanism", 
          "compensation", 
          "possible states", 
          "method", 
          "theory", 
          "OFF state", 
          "abstract theory", 
          "cells", 
          "cells results", 
          "reverse Atlantic cell", 
          "Atlantic cell", 
          "strong Atlantic reverse cell", 
          "Atlantic reverse cell", 
          "weak Atlantic reverse cell", 
          "greater atmospheric moisture transport", 
          "AMOC hysteresis"
        ], 
        "name": "Ocean and atmosphere feedbacks affecting AMOC hysteresis in a GCM", 
        "pagination": "173-191", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1001059196"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00382-016-3336-8"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00382-016-3336-8", 
          "https://app.dimensions.ai/details/publication/pub.1001059196"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:26", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_692.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00382-016-3336-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-016-3336-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-016-3336-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-016-3336-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-016-3336-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    208 TRIPLES      22 PREDICATES      105 URIs      80 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00382-016-3336-8 schema:about anzsrc-for:04
    2 anzsrc-for:0405
    3 schema:author N1543cb5b80cd460d96fd3d420acab93a
    4 schema:citation sg:pub.10.1007/s00382-003-0359-8
    5 sg:pub.10.1007/s00382-007-0254-9
    6 sg:pub.10.1007/s00382-007-0262-9
    7 sg:pub.10.1007/s00382-009-0572-1
    8 sg:pub.10.1007/s00382-010-0930-z
    9 sg:pub.10.1007/s00382-012-1292-5
    10 sg:pub.10.1007/s00382-013-1842-5
    11 sg:pub.10.1007/s00382-015-2540-2
    12 sg:pub.10.1007/s00382-016-2975-0
    13 sg:pub.10.1007/s003820050010
    14 sg:pub.10.1007/s003820050144
    15 sg:pub.10.1007/s003820050169
    16 sg:pub.10.1007/s10584-006-9146-y
    17 sg:pub.10.1007/s10584-009-9561-y
    18 sg:pub.10.1038/387384a0
    19 sg:pub.10.1038/nature01090
    20 sg:pub.10.1038/nature02494
    21 schema:datePublished 2016-10-01
    22 schema:datePublishedReg 2016-10-01
    23 schema:description Abstract Theories suggest that the Atlantic Meridional Overturning Circulation (AMOC) can exhibit a hysteresis where, for a given input of fresh water into the north Atlantic, there are two possible states: one with a strong overturning in the north Atlantic (on) and the other with a reverse Atlantic cell (off). A previous study showed hysteresis of the AMOC for the first time in a coupled general circulation model (Hawkins et al. in Geophys Res Lett. doi:10.1029/2011GL047208, 2011). In this study we show that the hysteresis found by Hawkins et al. (2011) is sensitive to the method with which the fresh water input is compensated. If this compensation is applied throughout the volume of the global ocean, rather than at the surface, the region of hysteresis is narrower and the off states are very different: when the compensation is applied at the surface, a strong Pacific overturning cell and a strong Atlantic reverse cell develops; when the compensation is applied throughout the volume there is little change in the Pacific and only a weak Atlantic reverse cell develops. We investigate the mechanisms behind the transitions between the on and off states in the two experiments, and find that the difference in hysteresis is due to the different off states. We find that the development of the Pacific overturning cell results in greater atmospheric moisture transport into the North Atlantic, and also is likely responsible for a stronger Atlantic reverse cell. These both act to stabilize the off state of the Atlantic overturning.
    24 schema:genre article
    25 schema:inLanguage en
    26 schema:isAccessibleForFree true
    27 schema:isPartOf N79db4b11998844a4b82467825885baba
    28 Nd70250172f334067a49cddfb36341bd3
    29 sg:journal.1049631
    30 schema:keywords AMOC hysteresis
    31 Atlantic
    32 Atlantic Meridional Overturning Circulation
    33 Atlantic cell
    34 Atlantic overturning
    35 Atlantic reverse cell
    36 GCM
    37 Hawkins et al
    38 North Atlantic
    39 OFF state
    40 Ocean
    41 Pacific
    42 abstract theory
    43 al
    44 atmosphere feedbacks
    45 atmospheric moisture transport
    46 cells
    47 cells results
    48 changes
    49 circulation
    50 circulation model
    51 compensation
    52 development
    53 differences
    54 et al
    55 experiments
    56 feedback
    57 first time
    58 freshwater
    59 freshwater input
    60 general circulation model
    61 global ocean
    62 greater atmospheric moisture transport
    63 hysteresis
    64 input
    65 little change
    66 mechanism
    67 meridional overturning circulation
    68 method
    69 model
    70 moisture transport
    71 overturning
    72 overturning circulation
    73 possible states
    74 previous studies
    75 region
    76 region of hysteresis
    77 results
    78 reverse Atlantic cell
    79 reverse cells
    80 state
    81 strong Atlantic reverse cell
    82 strong overturning
    83 study
    84 surface
    85 theory
    86 time
    87 transition
    88 transport
    89 volume
    90 water
    91 water input
    92 weak Atlantic reverse cell
    93 schema:name Ocean and atmosphere feedbacks affecting AMOC hysteresis in a GCM
    94 schema:pagination 173-191
    95 schema:productId N5a6efab7af8442bda954fead01e39c93
    96 N8f67026f14794b1c813b0571f6505d01
    97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001059196
    98 https://doi.org/10.1007/s00382-016-3336-8
    99 schema:sdDatePublished 2021-11-01T18:26
    100 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    101 schema:sdPublisher N9395a157ee964fdcab6f15f3915c0434
    102 schema:url https://doi.org/10.1007/s00382-016-3336-8
    103 sgo:license sg:explorer/license/
    104 sgo:sdDataset articles
    105 rdf:type schema:ScholarlyArticle
    106 N1543cb5b80cd460d96fd3d420acab93a rdf:first sg:person.016212657271.09
    107 rdf:rest Nc95f5ad388994059995557551c086a12
    108 N5a6efab7af8442bda954fead01e39c93 schema:name dimensions_id
    109 schema:value pub.1001059196
    110 rdf:type schema:PropertyValue
    111 N79db4b11998844a4b82467825885baba schema:volumeNumber 49
    112 rdf:type schema:PublicationVolume
    113 N8f67026f14794b1c813b0571f6505d01 schema:name doi
    114 schema:value 10.1007/s00382-016-3336-8
    115 rdf:type schema:PropertyValue
    116 N9395a157ee964fdcab6f15f3915c0434 schema:name Springer Nature - SN SciGraph project
    117 rdf:type schema:Organization
    118 Nc95f5ad388994059995557551c086a12 rdf:first sg:person.015343557245.11
    119 rdf:rest Nfa12eacdc2fa436e94e9381e4938f76f
    120 Nd70250172f334067a49cddfb36341bd3 schema:issueNumber 1-2
    121 rdf:type schema:PublicationIssue
    122 Nfa12eacdc2fa436e94e9381e4938f76f rdf:first sg:person.015637061237.00
    123 rdf:rest rdf:nil
    124 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    125 schema:name Earth Sciences
    126 rdf:type schema:DefinedTerm
    127 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
    128 schema:name Oceanography
    129 rdf:type schema:DefinedTerm
    130 sg:grant.7037241 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-016-3336-8
    131 rdf:type schema:MonetaryGrant
    132 sg:journal.1049631 schema:issn 0930-7575
    133 1432-0894
    134 schema:name Climate Dynamics
    135 schema:publisher Springer Nature
    136 rdf:type schema:Periodical
    137 sg:person.015343557245.11 schema:affiliation grid-institutes:grid.9435.b
    138 schema:familyName Smith
    139 schema:givenName R. S.
    140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015343557245.11
    141 rdf:type schema:Person
    142 sg:person.015637061237.00 schema:affiliation grid-institutes:grid.17100.37
    143 schema:familyName Wood
    144 schema:givenName R. A.
    145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015637061237.00
    146 rdf:type schema:Person
    147 sg:person.016212657271.09 schema:affiliation grid-institutes:grid.17100.37
    148 schema:familyName Jackson
    149 schema:givenName L. C.
    150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016212657271.09
    151 rdf:type schema:Person
    152 sg:pub.10.1007/s00382-003-0359-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043514443
    153 https://doi.org/10.1007/s00382-003-0359-8
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/s00382-007-0254-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036411949
    156 https://doi.org/10.1007/s00382-007-0254-9
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/s00382-007-0262-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053328576
    159 https://doi.org/10.1007/s00382-007-0262-9
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/s00382-009-0572-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042790702
    162 https://doi.org/10.1007/s00382-009-0572-1
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/s00382-010-0930-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1015295705
    165 https://doi.org/10.1007/s00382-010-0930-z
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/s00382-012-1292-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027178860
    168 https://doi.org/10.1007/s00382-012-1292-5
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/s00382-013-1842-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002413798
    171 https://doi.org/10.1007/s00382-013-1842-5
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1007/s00382-015-2540-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003570692
    174 https://doi.org/10.1007/s00382-015-2540-2
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1007/s00382-016-2975-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017826529
    177 https://doi.org/10.1007/s00382-016-2975-0
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1007/s003820050010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015242699
    180 https://doi.org/10.1007/s003820050010
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1007/s003820050144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009461489
    183 https://doi.org/10.1007/s003820050144
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1007/s003820050169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027980956
    186 https://doi.org/10.1007/s003820050169
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1007/s10584-006-9146-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1016910488
    189 https://doi.org/10.1007/s10584-006-9146-y
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1007/s10584-009-9561-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1034623296
    192 https://doi.org/10.1007/s10584-009-9561-y
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1038/387384a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015787660
    195 https://doi.org/10.1038/387384a0
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1038/nature01090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052931301
    198 https://doi.org/10.1038/nature01090
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1038/nature02494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049594132
    201 https://doi.org/10.1038/nature02494
    202 rdf:type schema:CreativeWork
    203 grid-institutes:grid.17100.37 schema:alternateName Met Office Hadley Centre, Exeter, UK
    204 schema:name Met Office Hadley Centre, Exeter, UK
    205 rdf:type schema:Organization
    206 grid-institutes:grid.9435.b schema:alternateName NCAS-Climate, Department of Meteorology, University of Reading, Berkshire, UK
    207 schema:name NCAS-Climate, Department of Meteorology, University of Reading, Berkshire, UK
    208 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...