Sampling variability and the changing ENSO–monsoon relationship View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-06

AUTHORS

Benjamin A. Cash, Rondrotiana Barimalala, James L. Kinter, Eric L. Altshuler, Michael J. Fennessy, Julia V. Manganello, Franco Molteni, Peter Towers, Frederic Vitart

ABSTRACT

The impact of sampling variability on the correlation between all-India rainfall (AIR) and the El Niño-Southern Oscillation is investigated in a large ensemble of seasonal climate simulations made using the European Centre for Medium-Range Weather Forecasting Ensemble Prediction System at T319 (64 km). The analyzed runs consist of 51 ensemble members initialized each May 1 for the period 1980–2011 and integrated for 7 months. 10,000 pairs of 32-year timeseries of June–September (JJAS) mean AIR and NINO3 indices are created from this database by randomly drawing one of the 51 ensemble members for each year. The correlation between each pair of AIR and NINO3 series is then calculated, generating a distribution of AIR–NINO3 correlation values. The model is reinitialized with observations each May 1 and thus all members are drawn from the same background state by construction and any differences in correlation are attributable to sampling variability. The spread in the calculated correlation values and the differences between 32-year segments are sufficient to explain the observed variations in AIR–NINO3 correlation since the beginning of the 1900s, including the sharp decrease in correlation strength since the late 1970s. Sampling variability thus represents a strong null hypothesis for the observed changes and one that cannot be rejected at the 95 % level based on our simulations. More... »

PAGES

4071-4079

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00382-016-3320-3

DOI

http://dx.doi.org/10.1007/s00382-016-3320-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014253555


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "George Mason University", 
          "id": "https://www.grid.ac/institutes/grid.22448.38", 
          "name": [
            "George Mason University/Center for Ocean-Land-Atmosphere Studies, Fairfax, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cash", 
        "givenName": "Benjamin A.", 
        "id": "sg:person.01267645044.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267645044.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai Jiao Tong University", 
          "id": "https://www.grid.ac/institutes/grid.16821.3c", 
          "name": [
            "Shanghai Jiao Tong University, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barimalala", 
        "givenName": "Rondrotiana", 
        "id": "sg:person.013567355263.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013567355263.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "George Mason University", 
          "id": "https://www.grid.ac/institutes/grid.22448.38", 
          "name": [
            "George Mason University/Center for Ocean-Land-Atmosphere Studies, Fairfax, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kinter", 
        "givenName": "James L.", 
        "id": "sg:person.01034613047.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034613047.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "George Mason University", 
          "id": "https://www.grid.ac/institutes/grid.22448.38", 
          "name": [
            "George Mason University/Center for Ocean-Land-Atmosphere Studies, Fairfax, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Altshuler", 
        "givenName": "Eric L.", 
        "id": "sg:person.012627352651.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012627352651.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "George Mason University", 
          "id": "https://www.grid.ac/institutes/grid.22448.38", 
          "name": [
            "George Mason University/Center for Ocean-Land-Atmosphere Studies, Fairfax, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fennessy", 
        "givenName": "Michael J.", 
        "id": "sg:person.015754313731.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015754313731.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "George Mason University", 
          "id": "https://www.grid.ac/institutes/grid.22448.38", 
          "name": [
            "George Mason University/Center for Ocean-Land-Atmosphere Studies, Fairfax, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Manganello", 
        "givenName": "Julia V.", 
        "id": "sg:person.014151436301.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014151436301.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Centre for Medium-Range Weather Forecasts", 
          "id": "https://www.grid.ac/institutes/grid.42781.38", 
          "name": [
            "European Centre for Medium-Range Weather Forecasts, Reading, England, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Molteni", 
        "givenName": "Franco", 
        "id": "sg:person.014221555342.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014221555342.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Centre for Medium-Range Weather Forecasts", 
          "id": "https://www.grid.ac/institutes/grid.42781.38", 
          "name": [
            "European Centre for Medium-Range Weather Forecasts, Reading, England, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Towers", 
        "givenName": "Peter", 
        "id": "sg:person.011166276451.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011166276451.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Centre for Medium-Range Weather Forecasts", 
          "id": "https://www.grid.ac/institutes/grid.42781.38", 
          "name": [
            "European Centre for Medium-Range Weather Forecasts, Reading, England, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vitart", 
        "givenName": "Frederic", 
        "id": "sg:person.016103603413.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016103603413.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/joc.2309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007738482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(2004)017<3141:iacioe>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011949040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(2001)014<2486:lfmote>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017606233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(1983)111<0517:trbeep>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019248791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2002jd002670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020320930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1131152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025771790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(2001)014<2376:proaco>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034250185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspl.1884.0003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036620661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-15-0531.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036943747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(2002)015<1203:rcitcf>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039008257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049702053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049702053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-14-00302.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053209750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2012gl051279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053379191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.284.5423.2156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062565696"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-06", 
    "datePublishedReg": "2017-06-01", 
    "description": "The impact of sampling variability on the correlation between all-India rainfall (AIR) and the El Ni\u00f1o-Southern Oscillation is investigated in a large ensemble of seasonal climate simulations made using the European Centre for Medium-Range Weather Forecasting Ensemble Prediction System at T319 (64 km). The analyzed runs consist of 51 ensemble members initialized each May 1 for the period 1980\u20132011 and integrated for 7 months. 10,000 pairs of 32-year timeseries of June\u2013September (JJAS) mean AIR and NINO3 indices are created from this database by randomly drawing one of the 51 ensemble members for each year. The correlation between each pair of AIR and NINO3 series is then calculated, generating a distribution of AIR\u2013NINO3 correlation values. The model is reinitialized with observations each May 1 and thus all members are drawn from the same background state by construction and any differences in correlation are attributable to sampling variability. The spread in the calculated correlation values and the differences between 32-year segments are sufficient to explain the observed variations in AIR\u2013NINO3 correlation since the beginning of the 1900s, including the sharp decrease in correlation strength since the late 1970s. Sampling variability thus represents a strong null hypothesis for the observed changes and one that cannot be rejected at the 95 % level based on our simulations.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00382-016-3320-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3488848", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3950760", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4043380", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4047686", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11-12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "48"
      }
    ], 
    "name": "Sampling variability and the changing ENSO\u2013monsoon relationship", 
    "pagination": "4071-4079", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "43e74915b91291c66478c9f09c5df6308b7280ea22e499d1f86d4a89882aea65"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00382-016-3320-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014253555"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00382-016-3320-3", 
      "https://app.dimensions.ai/details/publication/pub.1014253555"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87078_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00382-016-3320-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-016-3320-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-016-3320-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-016-3320-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-016-3320-3'


 

This table displays all metadata directly associated to this object as RDF triples.

173 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00382-016-3320-3 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author N5254c8a8507a441787c0477973b7186f
4 schema:citation https://doi.org/10.1002/joc.2309
5 https://doi.org/10.1002/qj.406
6 https://doi.org/10.1029/2002jd002670
7 https://doi.org/10.1029/2012gl051279
8 https://doi.org/10.1098/rspl.1884.0003
9 https://doi.org/10.1126/science.1131152
10 https://doi.org/10.1126/science.284.5423.2156
11 https://doi.org/10.1175/1520-0442(2001)014<2376:proaco>2.0.co;2
12 https://doi.org/10.1175/1520-0442(2001)014<2486:lfmote>2.0.co;2
13 https://doi.org/10.1175/1520-0442(2002)015<1203:rcitcf>2.0.co;2
14 https://doi.org/10.1175/1520-0442(2004)017<3141:iacioe>2.0.co;2
15 https://doi.org/10.1175/1520-0493(1983)111<0517:trbeep>2.0.co;2
16 https://doi.org/10.1175/jcli-d-14-00302.1
17 https://doi.org/10.1175/jcli-d-15-0531.1
18 schema:datePublished 2017-06
19 schema:datePublishedReg 2017-06-01
20 schema:description The impact of sampling variability on the correlation between all-India rainfall (AIR) and the El Niño-Southern Oscillation is investigated in a large ensemble of seasonal climate simulations made using the European Centre for Medium-Range Weather Forecasting Ensemble Prediction System at T319 (64 km). The analyzed runs consist of 51 ensemble members initialized each May 1 for the period 1980–2011 and integrated for 7 months. 10,000 pairs of 32-year timeseries of June–September (JJAS) mean AIR and NINO3 indices are created from this database by randomly drawing one of the 51 ensemble members for each year. The correlation between each pair of AIR and NINO3 series is then calculated, generating a distribution of AIR–NINO3 correlation values. The model is reinitialized with observations each May 1 and thus all members are drawn from the same background state by construction and any differences in correlation are attributable to sampling variability. The spread in the calculated correlation values and the differences between 32-year segments are sufficient to explain the observed variations in AIR–NINO3 correlation since the beginning of the 1900s, including the sharp decrease in correlation strength since the late 1970s. Sampling variability thus represents a strong null hypothesis for the observed changes and one that cannot be rejected at the 95 % level based on our simulations.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree true
24 schema:isPartOf N76ac54f36ef94f259c32da4c4436bbc2
25 Nbd3d2908cd154a62bf78a136b9831ca6
26 sg:journal.1049631
27 schema:name Sampling variability and the changing ENSO–monsoon relationship
28 schema:pagination 4071-4079
29 schema:productId N73ffd25507af45a0b59fd3738d1fe365
30 Nc11ad16d46094232a9495a0808789a0a
31 Nd4a39959531c49259ad1ac52ace47fd6
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014253555
33 https://doi.org/10.1007/s00382-016-3320-3
34 schema:sdDatePublished 2019-04-11T12:20
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher Ne213d6f765764b80ac090c4a84e1a0ee
37 schema:url https://link.springer.com/10.1007%2Fs00382-016-3320-3
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N3eea9cf7abc8491eb9b2dea6abe47b16 rdf:first sg:person.01034613047.90
42 rdf:rest Nd27c86fa7cdf4eed98152e64e442ad81
43 N5254c8a8507a441787c0477973b7186f rdf:first sg:person.01267645044.22
44 rdf:rest N77082f777b7d41a59250b6c79eaf170b
45 N5409c1426800480eb69c3518fb8865c3 rdf:first sg:person.011166276451.58
46 rdf:rest N6705ffcb72e044268e8b8bd1b4dc2437
47 N6705ffcb72e044268e8b8bd1b4dc2437 rdf:first sg:person.016103603413.15
48 rdf:rest rdf:nil
49 N73ffd25507af45a0b59fd3738d1fe365 schema:name doi
50 schema:value 10.1007/s00382-016-3320-3
51 rdf:type schema:PropertyValue
52 N76ac54f36ef94f259c32da4c4436bbc2 schema:volumeNumber 48
53 rdf:type schema:PublicationVolume
54 N77082f777b7d41a59250b6c79eaf170b rdf:first sg:person.013567355263.69
55 rdf:rest N3eea9cf7abc8491eb9b2dea6abe47b16
56 Nbd3d2908cd154a62bf78a136b9831ca6 schema:issueNumber 11-12
57 rdf:type schema:PublicationIssue
58 Nc11ad16d46094232a9495a0808789a0a schema:name dimensions_id
59 schema:value pub.1014253555
60 rdf:type schema:PropertyValue
61 Nceaf8aab177a4eff80c99d25885ff1a7 rdf:first sg:person.014151436301.13
62 rdf:rest Nf4c9a0f1b48e400eac6521bb443abd25
63 Nd27c86fa7cdf4eed98152e64e442ad81 rdf:first sg:person.012627352651.35
64 rdf:rest Nf830f08885d64dc4953122a90f31d436
65 Nd4a39959531c49259ad1ac52ace47fd6 schema:name readcube_id
66 schema:value 43e74915b91291c66478c9f09c5df6308b7280ea22e499d1f86d4a89882aea65
67 rdf:type schema:PropertyValue
68 Ne213d6f765764b80ac090c4a84e1a0ee schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 Nf4c9a0f1b48e400eac6521bb443abd25 rdf:first sg:person.014221555342.40
71 rdf:rest N5409c1426800480eb69c3518fb8865c3
72 Nf830f08885d64dc4953122a90f31d436 rdf:first sg:person.015754313731.36
73 rdf:rest Nceaf8aab177a4eff80c99d25885ff1a7
74 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
75 schema:name Earth Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
78 schema:name Atmospheric Sciences
79 rdf:type schema:DefinedTerm
80 sg:grant.3488848 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-016-3320-3
81 rdf:type schema:MonetaryGrant
82 sg:grant.3950760 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-016-3320-3
83 rdf:type schema:MonetaryGrant
84 sg:grant.4043380 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-016-3320-3
85 rdf:type schema:MonetaryGrant
86 sg:grant.4047686 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-016-3320-3
87 rdf:type schema:MonetaryGrant
88 sg:journal.1049631 schema:issn 0930-7575
89 1432-0894
90 schema:name Climate Dynamics
91 rdf:type schema:Periodical
92 sg:person.01034613047.90 schema:affiliation https://www.grid.ac/institutes/grid.22448.38
93 schema:familyName Kinter
94 schema:givenName James L.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034613047.90
96 rdf:type schema:Person
97 sg:person.011166276451.58 schema:affiliation https://www.grid.ac/institutes/grid.42781.38
98 schema:familyName Towers
99 schema:givenName Peter
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011166276451.58
101 rdf:type schema:Person
102 sg:person.012627352651.35 schema:affiliation https://www.grid.ac/institutes/grid.22448.38
103 schema:familyName Altshuler
104 schema:givenName Eric L.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012627352651.35
106 rdf:type schema:Person
107 sg:person.01267645044.22 schema:affiliation https://www.grid.ac/institutes/grid.22448.38
108 schema:familyName Cash
109 schema:givenName Benjamin A.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267645044.22
111 rdf:type schema:Person
112 sg:person.013567355263.69 schema:affiliation https://www.grid.ac/institutes/grid.16821.3c
113 schema:familyName Barimalala
114 schema:givenName Rondrotiana
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013567355263.69
116 rdf:type schema:Person
117 sg:person.014151436301.13 schema:affiliation https://www.grid.ac/institutes/grid.22448.38
118 schema:familyName Manganello
119 schema:givenName Julia V.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014151436301.13
121 rdf:type schema:Person
122 sg:person.014221555342.40 schema:affiliation https://www.grid.ac/institutes/grid.42781.38
123 schema:familyName Molteni
124 schema:givenName Franco
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014221555342.40
126 rdf:type schema:Person
127 sg:person.015754313731.36 schema:affiliation https://www.grid.ac/institutes/grid.22448.38
128 schema:familyName Fennessy
129 schema:givenName Michael J.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015754313731.36
131 rdf:type schema:Person
132 sg:person.016103603413.15 schema:affiliation https://www.grid.ac/institutes/grid.42781.38
133 schema:familyName Vitart
134 schema:givenName Frederic
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016103603413.15
136 rdf:type schema:Person
137 https://doi.org/10.1002/joc.2309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007738482
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1002/qj.406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049702053
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1029/2002jd002670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020320930
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1029/2012gl051279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053379191
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1098/rspl.1884.0003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036620661
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1126/science.1131152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025771790
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1126/science.284.5423.2156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062565696
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1175/1520-0442(2001)014<2376:proaco>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034250185
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1175/1520-0442(2001)014<2486:lfmote>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017606233
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1175/1520-0442(2002)015<1203:rcitcf>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039008257
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1175/1520-0442(2004)017<3141:iacioe>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011949040
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1175/1520-0493(1983)111<0517:trbeep>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019248791
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1175/jcli-d-14-00302.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053209750
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1175/jcli-d-15-0531.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036943747
164 rdf:type schema:CreativeWork
165 https://www.grid.ac/institutes/grid.16821.3c schema:alternateName Shanghai Jiao Tong University
166 schema:name Shanghai Jiao Tong University, Shanghai, China
167 rdf:type schema:Organization
168 https://www.grid.ac/institutes/grid.22448.38 schema:alternateName George Mason University
169 schema:name George Mason University/Center for Ocean-Land-Atmosphere Studies, Fairfax, VA, USA
170 rdf:type schema:Organization
171 https://www.grid.ac/institutes/grid.42781.38 schema:alternateName European Centre for Medium-Range Weather Forecasts
172 schema:name European Centre for Medium-Range Weather Forecasts, Reading, England, UK
173 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...