Separating climate change signals into thermodynamic, lapse-rate and circulation effects: theory and application to the European summer climate View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-07-26

AUTHORS

Nico Kröner, Sven Kotlarski, Erich Fischer, Daniel Lüthi, Elias Zubler, Christoph Schär

ABSTRACT

Climate models robustly project a strong overall summer warming across Europe showing a characteristic north-south gradient with enhanced warming and drying in southern Europe. However, the processes that are responsible for this pattern are not fully understood. We here employ an extended surrogate or pseudo-warming approach to disentangle the contribution of different mechanisms to this response pattern. The basic idea of the surrogate technique is to use a regional climate model and apply a large-scale warming to the lateral boundary conditions of a present-day reference simulation, while maintaining the relative humidity (and thus implicitly increasing the specific moisture content). In comparison to previous studies, our approach includes two important extensions: first, different vertical warming profiles are applied in order to separate the effects of a mean warming from lapse-rate effects. Second, a twin-design is used, in which the climate change signals are not only added to present-day conditions, but also subtracted from a scenario experiment. We demonstrate that these extensions provide an elegant way to separate the full climate change signal into contributions from large-scale thermodynamic (TD), lapse-rate (LR), and circulation and other remaining effects (CO). The latter in particular include changes in land-ocean contrast and spatial variations of the SST warming patterns. We find that the TD effect yields a large-scale warming across Europe with no distinct latitudinal gradient. The LR effect, which is quantified for the first time in our study, leads to a stronger warming and some drying in southern Europe. It explains about 50 % of the warming amplification over the Iberian Peninsula, thus demonstrating the important role of lapse-rate changes. The effect is linked to an extending Hadley circulation. The CO effect as inherited from the driving GCM is shown to further amplify the north-south temperature change gradient. In terms of mean summer precipitation the TD effect leads to a significant overall increase in precipitation all across Europe, which is compensated and regionally reversed by the LR and CO effects in particular in southern Europe. More... »

PAGES

3425-3440

References to SciGraph publications

  • 2014-09-21. Atmospheric circulation as a source of uncertainty in climate change projections in NATURE GEOSCIENCE
  • 2002-11. Summer dryness in a warmer climate: a process study with a regional climate model in CLIMATE DYNAMICS
  • 2009-08-23. Mechanisms and reliability of future projected changes in daily precipitation in CLIMATE DYNAMICS
  • 1991-05. Simulations of the effect of a warmer climate on atmospheric humidity in NATURE
  • 2006-04-06. Causes and uncertainty of future summer drying over Europe in CLIMATE DYNAMICS
  • 2002-09-12. Constraints on future changes in climate and the hydrologic cycle in NATURE
  • 2014-04-20. Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation in NATURE GEOSCIENCE
  • 2013-03-23. European temperatures in CMIP5: origins of present-day biases and future uncertainties in CLIMATE DYNAMICS
  • 2004-01-11. The role of increasing temperature variability in European summer heatwaves in NATURE
  • 2013-07-18. Land–sea contrast, soil-atmosphere and cloud-temperature interactions: interplays and roles in future summer European climate change in CLIMATE DYNAMICS
  • 2010-02. The next generation of scenarios for climate change research and assessment in NATURE
  • 2015-10-13. Low-pressure systems and extreme precipitation in central India: sensitivity to temperature changes in CLIMATE DYNAMICS
  • 2010-05-16. Consistent geographical patterns of changes in high-impact European heatwaves in NATURE GEOSCIENCE
  • 2010-04-11. The potential to narrow uncertainty in projections of regional precipitation change in CLIMATE DYNAMICS
  • 2007-09-11. Mechanisms for the land/sea warming contrast exhibited by simulations of climate change in CLIMATE DYNAMICS
  • 2013-04-05. The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project in CLIMATE DYNAMICS
  • 2009-04-03. Mean and variance evolutions of the hot and cold temperatures in Europe in CLIMATE DYNAMICS
  • 2007-03-17. Modelling daily temperature extremes: recent climate and future changes over Europe in CLIMATIC CHANGE
  • 2013-02-20. Changes in temperature and precipitation extremes in the CMIP5 ensemble in CLIMATIC CHANGE
  • 2008-02-18. An analysis of the July 2006 heatwave extent in Europe compared to the record year of 2003 in THEORETICAL AND APPLIED CLIMATOLOGY
  • 2007-04-03. European summer climate variability in a heterogeneous multi-model ensemble in CLIMATIC CHANGE
  • 2007-03-17. Circulation statistics and climate change in Central Europe: PRUDENCE simulations and observations in CLIMATIC CHANGE
  • 2011-07-22. Global changes in extreme events: regional and seasonal dimension in CLIMATIC CHANGE
  • 2008-10-14. Future changes in daily summer temperature variability: driving processes and role for temperature extremes in CLIMATE DYNAMICS
  • 2013-07-23. EURO-CORDEX: new high-resolution climate change projections for European impact research in REGIONAL ENVIRONMENTAL CHANGE
  • 2007-03-17. A summary of the PRUDENCE model projections of changes in European climate by the end of this century in CLIMATIC CHANGE
  • 1989-12. Observational determination of the greenhouse effect in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00382-016-3276-3

    DOI

    http://dx.doi.org/10.1007/s00382-016-3276-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1051178352


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oceanography", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute for Atmospheric and Climate Science, ETH Zurich, Universit\u00e4tstrasse 16, 8092, Zurich, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5801.c", 
              "name": [
                "Institute for Atmospheric and Climate Science, ETH Zurich, Universit\u00e4tstrasse 16, 8092, Zurich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kr\u00f6ner", 
            "givenName": "Nico", 
            "id": "sg:person.014346472604.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014346472604.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Atmospheric and Climate Science, ETH Zurich, Universit\u00e4tstrasse 16, 8092, Zurich, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5801.c", 
              "name": [
                "Institute for Atmospheric and Climate Science, ETH Zurich, Universit\u00e4tstrasse 16, 8092, Zurich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kotlarski", 
            "givenName": "Sven", 
            "id": "sg:person.0714442510.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714442510.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Atmospheric and Climate Science, ETH Zurich, Universit\u00e4tstrasse 16, 8092, Zurich, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5801.c", 
              "name": [
                "Institute for Atmospheric and Climate Science, ETH Zurich, Universit\u00e4tstrasse 16, 8092, Zurich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fischer", 
            "givenName": "Erich", 
            "id": "sg:person.016571603451.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016571603451.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Atmospheric and Climate Science, ETH Zurich, Universit\u00e4tstrasse 16, 8092, Zurich, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5801.c", 
              "name": [
                "Institute for Atmospheric and Climate Science, ETH Zurich, Universit\u00e4tstrasse 16, 8092, Zurich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "L\u00fcthi", 
            "givenName": "Daniel", 
            "id": "sg:person.07536521741.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07536521741.86"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Climate Systems Modeling (C2SM), ETH Zurich, Zurich, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5801.c", 
              "name": [
                "Center for Climate Systems Modeling (C2SM), ETH Zurich, Zurich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zubler", 
            "givenName": "Elias", 
            "id": "sg:person.016227103133.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016227103133.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Atmospheric and Climate Science, ETH Zurich, Universit\u00e4tstrasse 16, 8092, Zurich, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5801.c", 
              "name": [
                "Institute for Atmospheric and Climate Science, ETH Zurich, Universit\u00e4tstrasse 16, 8092, Zurich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sch\u00e4r", 
            "givenName": "Christoph", 
            "id": "sg:person.0635043627.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635043627.22"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00382-013-1868-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029250595", 
              "https://doi.org/10.1007/s00382-013-1868-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-008-0473-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042898397", 
              "https://doi.org/10.1007/s00382-008-0473-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00704-007-0370-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042927570", 
              "https://doi.org/10.1007/s00704-007-0370-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01092", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046916950", 
              "https://doi.org/10.1038/nature01092"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-013-1714-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016223072", 
              "https://doi.org/10.1007/s00382-013-1714-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo2141", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006668095", 
              "https://doi.org/10.1038/ngeo2141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/351382a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007515383", 
              "https://doi.org/10.1038/351382a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-013-1731-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003954550", 
              "https://doi.org/10.1007/s00382-013-1731-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/342758a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043068561", 
              "https://doi.org/10.1038/342758a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-002-0258-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019772315", 
              "https://doi.org/10.1007/s00382-002-0258-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-010-0810-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001203373", 
              "https://doi.org/10.1007/s00382-010-0810-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-006-9212-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025163396", 
              "https://doi.org/10.1007/s10584-006-9212-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-009-0557-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009613488", 
              "https://doi.org/10.1007/s00382-009-0557-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo2253", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037617723", 
              "https://doi.org/10.1038/ngeo2253"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-011-0122-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040318214", 
              "https://doi.org/10.1007/s10584-011-0122-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-006-0125-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027942190", 
              "https://doi.org/10.1007/s00382-006-0125-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-009-0639-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002078088", 
              "https://doi.org/10.1007/s00382-009-0639-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo866", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050241953", 
              "https://doi.org/10.1038/ngeo866"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08823", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006069800", 
              "https://doi.org/10.1038/nature08823"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10113-013-0499-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015254889", 
              "https://doi.org/10.1007/s10113-013-0499-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-006-9220-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041085134", 
              "https://doi.org/10.1007/s10584-006-9220-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-013-0705-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038008793", 
              "https://doi.org/10.1007/s10584-013-0705-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02300", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006979406", 
              "https://doi.org/10.1038/nature02300"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-007-0306-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002755636", 
              "https://doi.org/10.1007/s00382-007-0306-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-006-9218-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022990559", 
              "https://doi.org/10.1007/s10584-006-9218-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-015-2850-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048245083", 
              "https://doi.org/10.1007/s00382-015-2850-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-006-9210-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021280557", 
              "https://doi.org/10.1007/s10584-006-9210-7"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-07-26", 
        "datePublishedReg": "2016-07-26", 
        "description": "Climate models robustly project a strong overall summer warming across Europe showing a characteristic north-south gradient with enhanced warming and drying in southern Europe. However, the processes that are responsible for this pattern are not fully understood. We here employ an extended surrogate or pseudo-warming approach to disentangle the contribution of different mechanisms to this response pattern. The basic idea of the surrogate technique is to use a regional climate model and apply a large-scale warming to the lateral boundary conditions of a present-day reference simulation, while maintaining the relative humidity (and thus implicitly increasing the specific moisture content). In comparison to previous studies, our approach includes two important extensions: first, different vertical warming profiles are applied in order to separate the effects of a mean warming from lapse-rate effects. Second, a twin-design is used, in which the climate change signals are not only added to present-day conditions, but also subtracted from a scenario experiment. We demonstrate that these extensions provide an elegant way to separate the full climate change signal into contributions from large-scale thermodynamic (TD), lapse-rate (LR), and circulation and other remaining effects (CO). The latter in particular include changes in land-ocean contrast and spatial variations of the SST warming patterns. We find that the TD effect yields a large-scale warming across Europe with no distinct latitudinal gradient. The LR effect, which is quantified for the first time in our study, leads to a stronger warming and some drying in southern Europe. It explains about 50\u2009% of the warming amplification over the Iberian Peninsula, thus demonstrating the important role of lapse-rate changes. The effect is linked to an extending Hadley circulation. The CO effect as inherited from the driving GCM is shown to further amplify the north-south temperature change gradient. In terms of mean summer precipitation the TD effect leads to a significant overall increase in precipitation all across Europe, which is compensated and regionally reversed by the LR and CO effects in particular in southern Europe.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00382-016-3276-3", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1049631", 
            "issn": [
              "0930-7575", 
              "1432-0894"
            ], 
            "name": "Climate Dynamics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9-10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "48"
          }
        ], 
        "keywords": [
          "climate change signal", 
          "large-scale warming", 
          "change signal", 
          "climate models", 
          "southern Europe", 
          "lapse-rate effects", 
          "land-ocean contrast", 
          "SST warming pattern", 
          "European summer climate", 
          "regional climate model", 
          "large-scale thermodynamics", 
          "lapse rate changes", 
          "mean summer precipitation", 
          "distinct latitudinal gradient", 
          "lateral boundary conditions", 
          "present-day conditions", 
          "north-south gradient", 
          "enhanced warming", 
          "warming amplification", 
          "warming pattern", 
          "strong warming", 
          "Hadley circulation", 
          "summer precipitation", 
          "summer climate", 
          "circulation effects", 
          "reference simulation", 
          "warming", 
          "spatial variation", 
          "TD effects", 
          "Iberian Peninsula", 
          "change gradient", 
          "scenario experiment", 
          "latitudinal gradient", 
          "precipitation", 
          "LR effect", 
          "relative humidity", 
          "circulation", 
          "gradient", 
          "surrogate techniques", 
          "overall increase", 
          "GCM", 
          "Peninsula", 
          "climate", 
          "Europe", 
          "summer", 
          "boundary conditions", 
          "patterns", 
          "humidity", 
          "extension", 
          "previous studies", 
          "changes", 
          "contribution", 
          "variation", 
          "significant overall increase", 
          "first time", 
          "conditions", 
          "model", 
          "important role", 
          "profile", 
          "drying", 
          "response patterns", 
          "signals", 
          "simulations", 
          "thermodynamics", 
          "contrast", 
          "process", 
          "different mechanisms", 
          "comparison", 
          "increase", 
          "study", 
          "time", 
          "important extension", 
          "effect", 
          "order", 
          "experiments", 
          "amplification", 
          "LR", 
          "approach", 
          "CO effects", 
          "terms", 
          "mechanism", 
          "role", 
          "technique", 
          "applications", 
          "way", 
          "idea", 
          "basic idea", 
          "theory", 
          "elegant way"
        ], 
        "name": "Separating climate change signals into thermodynamic, lapse-rate and circulation effects: theory and application to the European summer climate", 
        "pagination": "3425-3440", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1051178352"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00382-016-3276-3"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00382-016-3276-3", 
          "https://app.dimensions.ai/details/publication/pub.1051178352"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:31", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_681.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00382-016-3276-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-016-3276-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-016-3276-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-016-3276-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-016-3276-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    292 TRIPLES      22 PREDICATES      141 URIs      106 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00382-016-3276-3 schema:about anzsrc-for:04
    2 anzsrc-for:0405
    3 schema:author N680d9389e8db4396a799371f83ed2489
    4 schema:citation sg:pub.10.1007/s00382-002-0258-4
    5 sg:pub.10.1007/s00382-006-0125-9
    6 sg:pub.10.1007/s00382-007-0306-1
    7 sg:pub.10.1007/s00382-008-0473-8
    8 sg:pub.10.1007/s00382-009-0557-0
    9 sg:pub.10.1007/s00382-009-0639-z
    10 sg:pub.10.1007/s00382-010-0810-6
    11 sg:pub.10.1007/s00382-013-1714-z
    12 sg:pub.10.1007/s00382-013-1731-y
    13 sg:pub.10.1007/s00382-013-1868-8
    14 sg:pub.10.1007/s00382-015-2850-4
    15 sg:pub.10.1007/s00704-007-0370-9
    16 sg:pub.10.1007/s10113-013-0499-2
    17 sg:pub.10.1007/s10584-006-9210-7
    18 sg:pub.10.1007/s10584-006-9212-5
    19 sg:pub.10.1007/s10584-006-9218-z
    20 sg:pub.10.1007/s10584-006-9220-5
    21 sg:pub.10.1007/s10584-011-0122-9
    22 sg:pub.10.1007/s10584-013-0705-8
    23 sg:pub.10.1038/342758a0
    24 sg:pub.10.1038/351382a0
    25 sg:pub.10.1038/nature01092
    26 sg:pub.10.1038/nature02300
    27 sg:pub.10.1038/nature08823
    28 sg:pub.10.1038/ngeo2141
    29 sg:pub.10.1038/ngeo2253
    30 sg:pub.10.1038/ngeo866
    31 schema:datePublished 2016-07-26
    32 schema:datePublishedReg 2016-07-26
    33 schema:description Climate models robustly project a strong overall summer warming across Europe showing a characteristic north-south gradient with enhanced warming and drying in southern Europe. However, the processes that are responsible for this pattern are not fully understood. We here employ an extended surrogate or pseudo-warming approach to disentangle the contribution of different mechanisms to this response pattern. The basic idea of the surrogate technique is to use a regional climate model and apply a large-scale warming to the lateral boundary conditions of a present-day reference simulation, while maintaining the relative humidity (and thus implicitly increasing the specific moisture content). In comparison to previous studies, our approach includes two important extensions: first, different vertical warming profiles are applied in order to separate the effects of a mean warming from lapse-rate effects. Second, a twin-design is used, in which the climate change signals are not only added to present-day conditions, but also subtracted from a scenario experiment. We demonstrate that these extensions provide an elegant way to separate the full climate change signal into contributions from large-scale thermodynamic (TD), lapse-rate (LR), and circulation and other remaining effects (CO). The latter in particular include changes in land-ocean contrast and spatial variations of the SST warming patterns. We find that the TD effect yields a large-scale warming across Europe with no distinct latitudinal gradient. The LR effect, which is quantified for the first time in our study, leads to a stronger warming and some drying in southern Europe. It explains about 50 % of the warming amplification over the Iberian Peninsula, thus demonstrating the important role of lapse-rate changes. The effect is linked to an extending Hadley circulation. The CO effect as inherited from the driving GCM is shown to further amplify the north-south temperature change gradient. In terms of mean summer precipitation the TD effect leads to a significant overall increase in precipitation all across Europe, which is compensated and regionally reversed by the LR and CO effects in particular in southern Europe.
    34 schema:genre article
    35 schema:inLanguage en
    36 schema:isAccessibleForFree true
    37 schema:isPartOf N53a72bded7e745c1a0889b60af216a15
    38 N8bbf27b17f2d434a8a94984a008735e9
    39 sg:journal.1049631
    40 schema:keywords CO effects
    41 Europe
    42 European summer climate
    43 GCM
    44 Hadley circulation
    45 Iberian Peninsula
    46 LR
    47 LR effect
    48 Peninsula
    49 SST warming pattern
    50 TD effects
    51 amplification
    52 applications
    53 approach
    54 basic idea
    55 boundary conditions
    56 change gradient
    57 change signal
    58 changes
    59 circulation
    60 circulation effects
    61 climate
    62 climate change signal
    63 climate models
    64 comparison
    65 conditions
    66 contrast
    67 contribution
    68 different mechanisms
    69 distinct latitudinal gradient
    70 drying
    71 effect
    72 elegant way
    73 enhanced warming
    74 experiments
    75 extension
    76 first time
    77 gradient
    78 humidity
    79 idea
    80 important extension
    81 important role
    82 increase
    83 land-ocean contrast
    84 lapse rate changes
    85 lapse-rate effects
    86 large-scale thermodynamics
    87 large-scale warming
    88 lateral boundary conditions
    89 latitudinal gradient
    90 mean summer precipitation
    91 mechanism
    92 model
    93 north-south gradient
    94 order
    95 overall increase
    96 patterns
    97 precipitation
    98 present-day conditions
    99 previous studies
    100 process
    101 profile
    102 reference simulation
    103 regional climate model
    104 relative humidity
    105 response patterns
    106 role
    107 scenario experiment
    108 signals
    109 significant overall increase
    110 simulations
    111 southern Europe
    112 spatial variation
    113 strong warming
    114 study
    115 summer
    116 summer climate
    117 summer precipitation
    118 surrogate techniques
    119 technique
    120 terms
    121 theory
    122 thermodynamics
    123 time
    124 variation
    125 warming
    126 warming amplification
    127 warming pattern
    128 way
    129 schema:name Separating climate change signals into thermodynamic, lapse-rate and circulation effects: theory and application to the European summer climate
    130 schema:pagination 3425-3440
    131 schema:productId N227656558e104b3299564576c9a954ce
    132 Nf9464698f0a149b9a6d8619db8cff963
    133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051178352
    134 https://doi.org/10.1007/s00382-016-3276-3
    135 schema:sdDatePublished 2022-05-20T07:31
    136 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    137 schema:sdPublisher N7da833e8baf64f018908e14f4cc61512
    138 schema:url https://doi.org/10.1007/s00382-016-3276-3
    139 sgo:license sg:explorer/license/
    140 sgo:sdDataset articles
    141 rdf:type schema:ScholarlyArticle
    142 N227656558e104b3299564576c9a954ce schema:name dimensions_id
    143 schema:value pub.1051178352
    144 rdf:type schema:PropertyValue
    145 N53a72bded7e745c1a0889b60af216a15 schema:issueNumber 9-10
    146 rdf:type schema:PublicationIssue
    147 N5a65aa3fe52d44108920c4faa933dbb9 rdf:first sg:person.016227103133.48
    148 rdf:rest Nc752052425cd45ec8464a7269f30c533
    149 N680d9389e8db4396a799371f83ed2489 rdf:first sg:person.014346472604.67
    150 rdf:rest N8ed0d753911d4026a837509f0954c457
    151 N71e99565abf84a1e8a161030d40eba9b rdf:first sg:person.016571603451.04
    152 rdf:rest Nd60a31c8edf446a1b561193752375bc1
    153 N7da833e8baf64f018908e14f4cc61512 schema:name Springer Nature - SN SciGraph project
    154 rdf:type schema:Organization
    155 N8bbf27b17f2d434a8a94984a008735e9 schema:volumeNumber 48
    156 rdf:type schema:PublicationVolume
    157 N8ed0d753911d4026a837509f0954c457 rdf:first sg:person.0714442510.48
    158 rdf:rest N71e99565abf84a1e8a161030d40eba9b
    159 Nc752052425cd45ec8464a7269f30c533 rdf:first sg:person.0635043627.22
    160 rdf:rest rdf:nil
    161 Nd60a31c8edf446a1b561193752375bc1 rdf:first sg:person.07536521741.86
    162 rdf:rest N5a65aa3fe52d44108920c4faa933dbb9
    163 Nf9464698f0a149b9a6d8619db8cff963 schema:name doi
    164 schema:value 10.1007/s00382-016-3276-3
    165 rdf:type schema:PropertyValue
    166 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    167 schema:name Earth Sciences
    168 rdf:type schema:DefinedTerm
    169 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
    170 schema:name Oceanography
    171 rdf:type schema:DefinedTerm
    172 sg:journal.1049631 schema:issn 0930-7575
    173 1432-0894
    174 schema:name Climate Dynamics
    175 schema:publisher Springer Nature
    176 rdf:type schema:Periodical
    177 sg:person.014346472604.67 schema:affiliation grid-institutes:grid.5801.c
    178 schema:familyName Kröner
    179 schema:givenName Nico
    180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014346472604.67
    181 rdf:type schema:Person
    182 sg:person.016227103133.48 schema:affiliation grid-institutes:grid.5801.c
    183 schema:familyName Zubler
    184 schema:givenName Elias
    185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016227103133.48
    186 rdf:type schema:Person
    187 sg:person.016571603451.04 schema:affiliation grid-institutes:grid.5801.c
    188 schema:familyName Fischer
    189 schema:givenName Erich
    190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016571603451.04
    191 rdf:type schema:Person
    192 sg:person.0635043627.22 schema:affiliation grid-institutes:grid.5801.c
    193 schema:familyName Schär
    194 schema:givenName Christoph
    195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635043627.22
    196 rdf:type schema:Person
    197 sg:person.0714442510.48 schema:affiliation grid-institutes:grid.5801.c
    198 schema:familyName Kotlarski
    199 schema:givenName Sven
    200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714442510.48
    201 rdf:type schema:Person
    202 sg:person.07536521741.86 schema:affiliation grid-institutes:grid.5801.c
    203 schema:familyName Lüthi
    204 schema:givenName Daniel
    205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07536521741.86
    206 rdf:type schema:Person
    207 sg:pub.10.1007/s00382-002-0258-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019772315
    208 https://doi.org/10.1007/s00382-002-0258-4
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1007/s00382-006-0125-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027942190
    211 https://doi.org/10.1007/s00382-006-0125-9
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1007/s00382-007-0306-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002755636
    214 https://doi.org/10.1007/s00382-007-0306-1
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1007/s00382-008-0473-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042898397
    217 https://doi.org/10.1007/s00382-008-0473-8
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1007/s00382-009-0557-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009613488
    220 https://doi.org/10.1007/s00382-009-0557-0
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1007/s00382-009-0639-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1002078088
    223 https://doi.org/10.1007/s00382-009-0639-z
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1007/s00382-010-0810-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001203373
    226 https://doi.org/10.1007/s00382-010-0810-6
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1007/s00382-013-1714-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1016223072
    229 https://doi.org/10.1007/s00382-013-1714-z
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1007/s00382-013-1731-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1003954550
    232 https://doi.org/10.1007/s00382-013-1731-y
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1007/s00382-013-1868-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029250595
    235 https://doi.org/10.1007/s00382-013-1868-8
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1007/s00382-015-2850-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048245083
    238 https://doi.org/10.1007/s00382-015-2850-4
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1007/s00704-007-0370-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042927570
    241 https://doi.org/10.1007/s00704-007-0370-9
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1007/s10113-013-0499-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015254889
    244 https://doi.org/10.1007/s10113-013-0499-2
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1007/s10584-006-9210-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021280557
    247 https://doi.org/10.1007/s10584-006-9210-7
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1007/s10584-006-9212-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025163396
    250 https://doi.org/10.1007/s10584-006-9212-5
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1007/s10584-006-9218-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1022990559
    253 https://doi.org/10.1007/s10584-006-9218-z
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1007/s10584-006-9220-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041085134
    256 https://doi.org/10.1007/s10584-006-9220-5
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1007/s10584-011-0122-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040318214
    259 https://doi.org/10.1007/s10584-011-0122-9
    260 rdf:type schema:CreativeWork
    261 sg:pub.10.1007/s10584-013-0705-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038008793
    262 https://doi.org/10.1007/s10584-013-0705-8
    263 rdf:type schema:CreativeWork
    264 sg:pub.10.1038/342758a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043068561
    265 https://doi.org/10.1038/342758a0
    266 rdf:type schema:CreativeWork
    267 sg:pub.10.1038/351382a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007515383
    268 https://doi.org/10.1038/351382a0
    269 rdf:type schema:CreativeWork
    270 sg:pub.10.1038/nature01092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046916950
    271 https://doi.org/10.1038/nature01092
    272 rdf:type schema:CreativeWork
    273 sg:pub.10.1038/nature02300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006979406
    274 https://doi.org/10.1038/nature02300
    275 rdf:type schema:CreativeWork
    276 sg:pub.10.1038/nature08823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006069800
    277 https://doi.org/10.1038/nature08823
    278 rdf:type schema:CreativeWork
    279 sg:pub.10.1038/ngeo2141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006668095
    280 https://doi.org/10.1038/ngeo2141
    281 rdf:type schema:CreativeWork
    282 sg:pub.10.1038/ngeo2253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037617723
    283 https://doi.org/10.1038/ngeo2253
    284 rdf:type schema:CreativeWork
    285 sg:pub.10.1038/ngeo866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050241953
    286 https://doi.org/10.1038/ngeo866
    287 rdf:type schema:CreativeWork
    288 grid-institutes:grid.5801.c schema:alternateName Center for Climate Systems Modeling (C2SM), ETH Zurich, Zurich, Switzerland
    289 Institute for Atmospheric and Climate Science, ETH Zurich, Universitätstrasse 16, 8092, Zurich, Switzerland
    290 schema:name Center for Climate Systems Modeling (C2SM), ETH Zurich, Zurich, Switzerland
    291 Institute for Atmospheric and Climate Science, ETH Zurich, Universitätstrasse 16, 8092, Zurich, Switzerland
    292 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...