Ontology type: schema:ScholarlyArticle Open Access: True
2016-07-06
AUTHORSGuangzhi Xu, Timothy J. Osborn, Adrian J. Matthews
ABSTRACTTropical Cyclones (TCs) are an important source of freshwater for the North American continent. Many studies have tried to estimate this contribution by identifying TC-induced precipitation events, but few have explicitly diagnosed the moisture fluxes across continental boundaries. We design a set of attribution schemes to isolate the column-integrated moisture fluxes that are directly associated with TCs and to quantify the flux onto the North American Continent due to TCs. Averaged over the 2004–2012 hurricane seasons and integrated over the western, southern and eastern coasts of North America, the seven schemes attribute 7–18 % (mean 14%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$14\,\%$$\end{document}) of total net onshore flux to Atlantic TCs. A reduced contribution of 10%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10\,\%$$\end{document} (range 9–11%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$11\,\%$$\end{document}) was found for the 1980–2003 period, though only two schemes could be applied to this earlier period. Over the whole 1980–2012 period, a further 8%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$8\,\%$$\end{document} (range 6–9%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$9\,\%$$\end{document} from two schemes) was attributed to East Pacific TCs, resulting in a total TC contribution of 19%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$19\,\%$$\end{document} (range 17–22%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$22\,\%$$\end{document}) to the ocean-to-land moisture transport onto the North American continent between May and November. Analysis of the attribution uncertainties suggests that incorporating details of individual TC size and shape adds limited value to a fixed radius approach and TC positional errors in the ERA-Interim reanalysis do not affect the results significantly, but biases in peak wind speeds and TC sizes may lead to underestimates of moisture transport. The interannual variability does not appear to be strongly related to the El Niño-Southern Oscillation phenomenon. More... »
PAGES3161-3182
http://scigraph.springernature.com/pub.10.1007/s00382-016-3257-6
DOIhttp://dx.doi.org/10.1007/s00382-016-3257-6
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1033922323
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Earth Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Oceanography",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, UK",
"id": "http://www.grid.ac/institutes/grid.8273.e",
"name": [
"Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, UK"
],
"type": "Organization"
},
"familyName": "Xu",
"givenName": "Guangzhi",
"id": "sg:person.010270277047.21",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010270277047.21"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, UK",
"id": "http://www.grid.ac/institutes/grid.8273.e",
"name": [
"Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, UK"
],
"type": "Organization"
},
"familyName": "Osborn",
"givenName": "Timothy J.",
"id": "sg:person.01137064640.48",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137064640.48"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences and School of Mathematics, University of East Anglia, Norwich, UK",
"id": "http://www.grid.ac/institutes/grid.8273.e",
"name": [
"Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences and School of Mathematics, University of East Anglia, Norwich, UK"
],
"type": "Organization"
},
"familyName": "Matthews",
"givenName": "Adrian J.",
"id": "sg:person.012154242043.74",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012154242043.74"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s00382-015-2844-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027381937",
"https://doi.org/10.1007/s00382-015-2844-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature03906",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003972056",
"https://doi.org/10.1038/nature03906"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00376-007-0700-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035721561",
"https://doi.org/10.1007/s00376-007-0700-y"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00382-013-1924-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040170296",
"https://doi.org/10.1007/s00382-013-1924-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/b:visi.0000029664.99615.94",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052687286",
"https://doi.org/10.1023/b:visi.0000029664.99615.94"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00704-010-0292-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003906159",
"https://doi.org/10.1007/s00704-010-0292-9"
],
"type": "CreativeWork"
}
],
"datePublished": "2016-07-06",
"datePublishedReg": "2016-07-06",
"description": "Tropical Cyclones (TCs) are an important source of freshwater for the North American continent. Many studies have tried to estimate this contribution by identifying TC-induced precipitation events, but few have explicitly diagnosed the moisture fluxes across continental boundaries. We design a set of attribution schemes to isolate the column-integrated moisture fluxes that are directly associated with TCs and to quantify the flux onto the North American Continent due to TCs. Averaged over the 2004\u20132012 hurricane seasons and integrated over the western, southern and eastern coasts of North America, the seven schemes attribute 7\u201318\u00a0% (mean 14%\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$14\\,\\%$$\\end{document}) of total net onshore flux to Atlantic TCs. A reduced contribution of 10%\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$10\\,\\%$$\\end{document} (range 9\u201311%\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$11\\,\\%$$\\end{document}) was found for the 1980\u20132003 period, though only two schemes could be applied to this earlier period. Over the whole 1980\u20132012 period, a further 8%\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$8\\,\\%$$\\end{document} (range 6\u20139%\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$9\\,\\%$$\\end{document} from two schemes) was attributed to East Pacific TCs, resulting in a total TC contribution of 19%\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$19\\,\\%$$\\end{document} (range 17\u201322%\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$22\\,\\%$$\\end{document}) to the ocean-to-land moisture transport onto the North American continent between May and November. Analysis of the attribution uncertainties suggests that incorporating details of individual TC size and shape adds limited value to a fixed radius approach and TC positional errors in the ERA-Interim reanalysis do not affect the results significantly, but biases in peak wind speeds and TC sizes may lead to underestimates of moisture transport. The interannual variability does not appear to be strongly related to the El Ni\u00f1o-Southern Oscillation phenomenon.",
"genre": "article",
"id": "sg:pub.10.1007/s00382-016-3257-6",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1049631",
"issn": [
"0930-7575",
"1432-0894"
],
"name": "Climate Dynamics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "9-10",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "48"
}
],
"keywords": [
"North American continent",
"Atlantic tropical cyclones",
"tropical cyclones",
"moisture transport",
"American continent",
"moisture flux",
"TC size",
"El Ni\u00f1o\u2013Southern Oscillation (ENSO) phenomenon",
"land moisture transport",
"Pacific tropical cyclones",
"ERA-Interim reanalysis",
"peak wind speed",
"onshore flux",
"TC contribution",
"interannual variability",
"precipitation events",
"continental boundaries",
"hurricane season",
"eastern coast",
"freshwater",
"wind speed",
"continent",
"oscillation phenomenon",
"North America",
"cyclones",
"flux",
"important source",
"transport",
"Ocean",
"reanalysis",
"coast",
"early period",
"period",
"variability",
"season",
"underestimate",
"radius approach",
"contribution",
"America",
"biases",
"events",
"boundaries",
"uncertainty",
"source",
"attribution scheme",
"error",
"limited value",
"positional error",
"values",
"speed",
"scheme",
"size",
"phenomenon",
"set",
"detail",
"analysis",
"shape",
"results",
"study",
"approach"
],
"name": "Moisture transport by Atlantic tropical cyclones onto the North American continent",
"pagination": "3161-3182",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1033922323"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00382-016-3257-6"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00382-016-3257-6",
"https://app.dimensions.ai/details/publication/pub.1033922323"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:17",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_715.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00382-016-3257-6"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-016-3257-6'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-016-3257-6'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-016-3257-6'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-016-3257-6'
This table displays all metadata directly associated to this object as RDF triples.
158 TRIPLES
22 PREDICATES
91 URIs
77 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s00382-016-3257-6 | schema:about | anzsrc-for:04 |
2 | ″ | ″ | anzsrc-for:0405 |
3 | ″ | schema:author | N1da9b9e989f842cd940bd93288793722 |
4 | ″ | schema:citation | sg:pub.10.1007/s00376-007-0700-y |
5 | ″ | ″ | sg:pub.10.1007/s00382-013-1924-4 |
6 | ″ | ″ | sg:pub.10.1007/s00382-015-2844-2 |
7 | ″ | ″ | sg:pub.10.1007/s00704-010-0292-9 |
8 | ″ | ″ | sg:pub.10.1023/b:visi.0000029664.99615.94 |
9 | ″ | ″ | sg:pub.10.1038/nature03906 |
10 | ″ | schema:datePublished | 2016-07-06 |
11 | ″ | schema:datePublishedReg | 2016-07-06 |
12 | ″ | schema:description | Tropical Cyclones (TCs) are an important source of freshwater for the North American continent. Many studies have tried to estimate this contribution by identifying TC-induced precipitation events, but few have explicitly diagnosed the moisture fluxes across continental boundaries. We design a set of attribution schemes to isolate the column-integrated moisture fluxes that are directly associated with TCs and to quantify the flux onto the North American Continent due to TCs. Averaged over the 2004–2012 hurricane seasons and integrated over the western, southern and eastern coasts of North America, the seven schemes attribute 7–18 % (mean 14%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$14\,\%$$\end{document}) of total net onshore flux to Atlantic TCs. A reduced contribution of 10%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10\,\%$$\end{document} (range 9–11%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$11\,\%$$\end{document}) was found for the 1980–2003 period, though only two schemes could be applied to this earlier period. Over the whole 1980–2012 period, a further 8%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$8\,\%$$\end{document} (range 6–9%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$9\,\%$$\end{document} from two schemes) was attributed to East Pacific TCs, resulting in a total TC contribution of 19%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$19\,\%$$\end{document} (range 17–22%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$22\,\%$$\end{document}) to the ocean-to-land moisture transport onto the North American continent between May and November. Analysis of the attribution uncertainties suggests that incorporating details of individual TC size and shape adds limited value to a fixed radius approach and TC positional errors in the ERA-Interim reanalysis do not affect the results significantly, but biases in peak wind speeds and TC sizes may lead to underestimates of moisture transport. The interannual variability does not appear to be strongly related to the El Niño-Southern Oscillation phenomenon. |
13 | ″ | schema:genre | article |
14 | ″ | schema:inLanguage | en |
15 | ″ | schema:isAccessibleForFree | true |
16 | ″ | schema:isPartOf | N927595108ca145429fb9a606667da755 |
17 | ″ | ″ | Na0c9448d95ee4da99c1612f6b0b43f8e |
18 | ″ | ″ | sg:journal.1049631 |
19 | ″ | schema:keywords | America |
20 | ″ | ″ | American continent |
21 | ″ | ″ | Atlantic tropical cyclones |
22 | ″ | ″ | ERA-Interim reanalysis |
23 | ″ | ″ | El Niño–Southern Oscillation (ENSO) phenomenon |
24 | ″ | ″ | North America |
25 | ″ | ″ | North American continent |
26 | ″ | ″ | Ocean |
27 | ″ | ″ | Pacific tropical cyclones |
28 | ″ | ″ | TC contribution |
29 | ″ | ″ | TC size |
30 | ″ | ″ | analysis |
31 | ″ | ″ | approach |
32 | ″ | ″ | attribution scheme |
33 | ″ | ″ | biases |
34 | ″ | ″ | boundaries |
35 | ″ | ″ | coast |
36 | ″ | ″ | continent |
37 | ″ | ″ | continental boundaries |
38 | ″ | ″ | contribution |
39 | ″ | ″ | cyclones |
40 | ″ | ″ | detail |
41 | ″ | ″ | early period |
42 | ″ | ″ | eastern coast |
43 | ″ | ″ | error |
44 | ″ | ″ | events |
45 | ″ | ″ | flux |
46 | ″ | ″ | freshwater |
47 | ″ | ″ | hurricane season |
48 | ″ | ″ | important source |
49 | ″ | ″ | interannual variability |
50 | ″ | ″ | land moisture transport |
51 | ″ | ″ | limited value |
52 | ″ | ″ | moisture flux |
53 | ″ | ″ | moisture transport |
54 | ″ | ″ | onshore flux |
55 | ″ | ″ | oscillation phenomenon |
56 | ″ | ″ | peak wind speed |
57 | ″ | ″ | period |
58 | ″ | ″ | phenomenon |
59 | ″ | ″ | positional error |
60 | ″ | ″ | precipitation events |
61 | ″ | ″ | radius approach |
62 | ″ | ″ | reanalysis |
63 | ″ | ″ | results |
64 | ″ | ″ | scheme |
65 | ″ | ″ | season |
66 | ″ | ″ | set |
67 | ″ | ″ | shape |
68 | ″ | ″ | size |
69 | ″ | ″ | source |
70 | ″ | ″ | speed |
71 | ″ | ″ | study |
72 | ″ | ″ | transport |
73 | ″ | ″ | tropical cyclones |
74 | ″ | ″ | uncertainty |
75 | ″ | ″ | underestimate |
76 | ″ | ″ | values |
77 | ″ | ″ | variability |
78 | ″ | ″ | wind speed |
79 | ″ | schema:name | Moisture transport by Atlantic tropical cyclones onto the North American continent |
80 | ″ | schema:pagination | 3161-3182 |
81 | ″ | schema:productId | N852d9bda89e742beadeae1d35164592c |
82 | ″ | ″ | Nf12b563d1ea44f399265b54c1d1204dd |
83 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1033922323 |
84 | ″ | ″ | https://doi.org/10.1007/s00382-016-3257-6 |
85 | ″ | schema:sdDatePublished | 2022-06-01T22:17 |
86 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
87 | ″ | schema:sdPublisher | N6f555e0f76bb4417b1db8c2ca0c556af |
88 | ″ | schema:url | https://doi.org/10.1007/s00382-016-3257-6 |
89 | ″ | sgo:license | sg:explorer/license/ |
90 | ″ | sgo:sdDataset | articles |
91 | ″ | rdf:type | schema:ScholarlyArticle |
92 | N1da9b9e989f842cd940bd93288793722 | rdf:first | sg:person.010270277047.21 |
93 | ″ | rdf:rest | N8ef3197f6f8e43f7adb9266f3ab51c72 |
94 | N6f555e0f76bb4417b1db8c2ca0c556af | schema:name | Springer Nature - SN SciGraph project |
95 | ″ | rdf:type | schema:Organization |
96 | N852d9bda89e742beadeae1d35164592c | schema:name | doi |
97 | ″ | schema:value | 10.1007/s00382-016-3257-6 |
98 | ″ | rdf:type | schema:PropertyValue |
99 | N8ef3197f6f8e43f7adb9266f3ab51c72 | rdf:first | sg:person.01137064640.48 |
100 | ″ | rdf:rest | N90ba2bc224fd4af2898acf00c066ad7d |
101 | N90ba2bc224fd4af2898acf00c066ad7d | rdf:first | sg:person.012154242043.74 |
102 | ″ | rdf:rest | rdf:nil |
103 | N927595108ca145429fb9a606667da755 | schema:issueNumber | 9-10 |
104 | ″ | rdf:type | schema:PublicationIssue |
105 | Na0c9448d95ee4da99c1612f6b0b43f8e | schema:volumeNumber | 48 |
106 | ″ | rdf:type | schema:PublicationVolume |
107 | Nf12b563d1ea44f399265b54c1d1204dd | schema:name | dimensions_id |
108 | ″ | schema:value | pub.1033922323 |
109 | ″ | rdf:type | schema:PropertyValue |
110 | anzsrc-for:04 | schema:inDefinedTermSet | anzsrc-for: |
111 | ″ | schema:name | Earth Sciences |
112 | ″ | rdf:type | schema:DefinedTerm |
113 | anzsrc-for:0405 | schema:inDefinedTermSet | anzsrc-for: |
114 | ″ | schema:name | Oceanography |
115 | ″ | rdf:type | schema:DefinedTerm |
116 | sg:journal.1049631 | schema:issn | 0930-7575 |
117 | ″ | ″ | 1432-0894 |
118 | ″ | schema:name | Climate Dynamics |
119 | ″ | schema:publisher | Springer Nature |
120 | ″ | rdf:type | schema:Periodical |
121 | sg:person.010270277047.21 | schema:affiliation | grid-institutes:grid.8273.e |
122 | ″ | schema:familyName | Xu |
123 | ″ | schema:givenName | Guangzhi |
124 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010270277047.21 |
125 | ″ | rdf:type | schema:Person |
126 | sg:person.01137064640.48 | schema:affiliation | grid-institutes:grid.8273.e |
127 | ″ | schema:familyName | Osborn |
128 | ″ | schema:givenName | Timothy J. |
129 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137064640.48 |
130 | ″ | rdf:type | schema:Person |
131 | sg:person.012154242043.74 | schema:affiliation | grid-institutes:grid.8273.e |
132 | ″ | schema:familyName | Matthews |
133 | ″ | schema:givenName | Adrian J. |
134 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012154242043.74 |
135 | ″ | rdf:type | schema:Person |
136 | sg:pub.10.1007/s00376-007-0700-y | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1035721561 |
137 | ″ | ″ | https://doi.org/10.1007/s00376-007-0700-y |
138 | ″ | rdf:type | schema:CreativeWork |
139 | sg:pub.10.1007/s00382-013-1924-4 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1040170296 |
140 | ″ | ″ | https://doi.org/10.1007/s00382-013-1924-4 |
141 | ″ | rdf:type | schema:CreativeWork |
142 | sg:pub.10.1007/s00382-015-2844-2 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1027381937 |
143 | ″ | ″ | https://doi.org/10.1007/s00382-015-2844-2 |
144 | ″ | rdf:type | schema:CreativeWork |
145 | sg:pub.10.1007/s00704-010-0292-9 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1003906159 |
146 | ″ | ″ | https://doi.org/10.1007/s00704-010-0292-9 |
147 | ″ | rdf:type | schema:CreativeWork |
148 | sg:pub.10.1023/b:visi.0000029664.99615.94 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1052687286 |
149 | ″ | ″ | https://doi.org/10.1023/b:visi.0000029664.99615.94 |
150 | ″ | rdf:type | schema:CreativeWork |
151 | sg:pub.10.1038/nature03906 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1003972056 |
152 | ″ | ″ | https://doi.org/10.1038/nature03906 |
153 | ″ | rdf:type | schema:CreativeWork |
154 | grid-institutes:grid.8273.e | schema:alternateName | Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences and School of Mathematics, University of East Anglia, Norwich, UK |
155 | ″ | ″ | Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, UK |
156 | ″ | schema:name | Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences and School of Mathematics, University of East Anglia, Norwich, UK |
157 | ″ | ″ | Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, UK |
158 | ″ | rdf:type | schema:Organization |