Seasonal spatial patterns of projected anthropogenic warming in complex terrain: a modeling study of the western US View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-06-04

AUTHORS

David E. Rupp, Sihan Li, Philip W. Mote, Karen M. Shell, Neil Massey, Sarah N. Sparrow, David C. H. Wallom, Myles R. Allen

ABSTRACT

Changes in near surface air temperature (ΔT) in response to anthropogenic greenhouse gas forcing are expected to show spatial heterogeneity because energy and moisture fluxes are modulated by features of the landscape that are also heterogeneous at these spatial scales. Detecting statistically meaningful heterogeneity requires a combination of high spatial resolution and a large number of simulations. To investigate spatial variability of projected ΔT, we generated regional, high-resolution (25-km horizontal), large ensemble (100 members per year), climate simulations of western United States (US) for the periods 1985–2014 and 2030–2059, the latter with atmospheric constituent concentrations from the Representative Concentration Pathway 4.5. Using the large ensemble, 95 % confidence interval sizes for grid-cell-scale temperature responses were on the order of 0.1 °C, compared to 1 °C from a single ensemble member only. In both winter and spring, the snow-albedo feedback statistically explains roughly half of the spatial variability in ΔT. Simulated decreases in albedo exceed 0.1 in places, with rates of change in T per 0.1 decrease in albedo ranging from 0.3 to 1.4 °C. In summer, ΔT pattern in the northwest US is correlated with the pattern of decreasing precipitation. In all seasons, changing lapse rates in the low-to-middle troposphere may account for up to 0.2 °C differences in warming across the western US. Near the coast, a major control of spatial variation is the differential warming between sea and land. More... »

PAGES

2191-2213

References to SciGraph publications

  • 2010-05-05. Regional climate model projections for the State of Washington in CLIMATIC CHANGE
  • 2011-08-09. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300 in CLIMATIC CHANGE
  • 2010-04-11. The potential to narrow uncertainty in projections of regional precipitation change in CLIMATE DYNAMICS
  • 2007-03-17. A summary of the PRUDENCE model projections of changes in European climate by the end of this century in CLIMATIC CHANGE
  • 2009-11-14. A Europe–South America network for climate change assessment and impact studies in CLIMATIC CHANGE
  • 2010-08-31. Can ensembles of regional climate model simulations improve results from sensitivity studies? in CLIMATE DYNAMICS
  • 1999-03. The impact of new land surface physics on the GCM simulation of climate and climate sensitivity in CLIMATE DYNAMICS
  • 2004-01. Mid-Century Ensemble Regional Climate Change Scenarios for the Western United States in CLIMATIC CHANGE
  • 2013-07-27. Climate change projections of the North American Regional Climate Change Assessment Program (NARCCAP) in CLIMATIC CHANGE
  • 2010-12-31. Uncertainty in climate change projections: the role of internal variability in CLIMATE DYNAMICS
  • 2013-05-05. Present climate and climate change over North America as simulated by the fifth-generation Canadian regional climate model in CLIMATE DYNAMICS
  • 2015-04-23. Elevation-dependent warming in mountain regions of the world in NATURE CLIMATE CHANGE
  • 2007-09-11. Mechanisms for the land/sea warming contrast exhibited by simulations of climate change in CLIMATE DYNAMICS
  • 2011-08-23. Elevation gradients of European climate change in the regional climate model COSMO-CLM in CLIMATIC CHANGE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00382-016-3200-x

    DOI

    http://dx.doi.org/10.1007/s00382-016-3200-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1035452465


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Geography and Environmental Geoscience", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Oregon Climate Change Research Institute, College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, 97331, Corvallis, OR, USA", 
              "id": "http://www.grid.ac/institutes/grid.4391.f", 
              "name": [
                "Oregon Climate Change Research Institute, College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, 97331, Corvallis, OR, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rupp", 
            "givenName": "David E.", 
            "id": "sg:person.0773567045.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773567045.82"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Oregon Climate Change Research Institute, College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, 97331, Corvallis, OR, USA", 
              "id": "http://www.grid.ac/institutes/grid.4391.f", 
              "name": [
                "Oregon Climate Change Research Institute, College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, 97331, Corvallis, OR, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Sihan", 
            "id": "sg:person.015265446137.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015265446137.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Oregon Climate Change Research Institute, College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, 97331, Corvallis, OR, USA", 
              "id": "http://www.grid.ac/institutes/grid.4391.f", 
              "name": [
                "Oregon Climate Change Research Institute, College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, 97331, Corvallis, OR, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mote", 
            "givenName": "Philip W.", 
            "id": "sg:person.01126477464.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126477464.84"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA", 
              "id": "http://www.grid.ac/institutes/grid.4391.f", 
              "name": [
                "College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shell", 
            "givenName": "Karen M.", 
            "id": "sg:person.01256143424.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256143424.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK", 
              "id": "http://www.grid.ac/institutes/grid.4991.5", 
              "name": [
                "Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Massey", 
            "givenName": "Neil", 
            "id": "sg:person.011202345633.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011202345633.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Oxford e-Research Centre, University of Oxford, Oxford, UK", 
              "id": "http://www.grid.ac/institutes/grid.4991.5", 
              "name": [
                "Oxford e-Research Centre, University of Oxford, Oxford, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sparrow", 
            "givenName": "Sarah N.", 
            "id": "sg:person.013147101037.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013147101037.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Oxford e-Research Centre, University of Oxford, Oxford, UK", 
              "id": "http://www.grid.ac/institutes/grid.4991.5", 
              "name": [
                "Oxford e-Research Centre, University of Oxford, Oxford, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wallom", 
            "givenName": "David C. H.", 
            "id": "sg:person.015131374022.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015131374022.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Oxford, UK", 
              "id": "http://www.grid.ac/institutes/grid.4991.5", 
              "name": [
                "Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK", 
                "Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Oxford, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Allen", 
            "givenName": "Myles R.", 
            "id": "sg:person.0600474550.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600474550.17"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00382-010-0977-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021861148", 
              "https://doi.org/10.1007/s00382-010-0977-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-007-0306-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002755636", 
              "https://doi.org/10.1007/s00382-007-0306-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-013-0831-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034650471", 
              "https://doi.org/10.1007/s10584-013-0831-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-013-1737-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017805535", 
              "https://doi.org/10.1007/s00382-013-1737-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-009-9734-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022681368", 
              "https://doi.org/10.1007/s10584-009-9734-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-010-0810-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001203373", 
              "https://doi.org/10.1007/s00382-010-0810-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003820050276", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018345935", 
              "https://doi.org/10.1007/s003820050276"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-011-0156-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045851916", 
              "https://doi.org/10.1007/s10584-011-0156-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-006-9210-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021280557", 
              "https://doi.org/10.1007/s10584-006-9210-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:clim.0000013692.50640.55", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029484467", 
              "https://doi.org/10.1023/b:clim.0000013692.50640.55"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-010-9849-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052139400", 
              "https://doi.org/10.1007/s10584-010-9849-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate2563", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031223967", 
              "https://doi.org/10.1038/nclimate2563"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-011-0195-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046048771", 
              "https://doi.org/10.1007/s10584-011-0195-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-010-0900-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009555877", 
              "https://doi.org/10.1007/s00382-010-0900-5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-06-04", 
        "datePublishedReg": "2016-06-04", 
        "description": "Changes in near surface air temperature (\u0394T) in response to anthropogenic greenhouse gas forcing are expected to show spatial heterogeneity because energy and moisture fluxes are modulated by features of the landscape that are also heterogeneous at these spatial scales. Detecting statistically meaningful heterogeneity requires a combination of high spatial resolution and a large number of simulations. To investigate spatial variability of projected \u0394T, we generated regional, high-resolution (25-km horizontal), large ensemble (100 members per year), climate simulations of western United States (US) for the periods 1985\u20132014 and 2030\u20132059, the latter with atmospheric constituent concentrations from the Representative Concentration Pathway 4.5. Using the large ensemble, 95\u00a0% confidence interval sizes for grid-cell-scale temperature responses were on the order of 0.1\u00a0\u00b0C, compared to 1\u00a0\u00b0C from a single ensemble member only. In both winter and spring, the snow-albedo feedback statistically explains roughly half of the spatial variability in \u0394T. Simulated decreases in albedo exceed 0.1 in places, with rates of change in T per 0.1 decrease in albedo ranging from 0.3 to 1.4\u00a0\u00b0C. In summer, \u0394T pattern in the northwest US is correlated with the pattern of decreasing precipitation. In all seasons, changing lapse rates in the low-to-middle troposphere may account for up to 0.2\u00a0\u00b0C differences in warming across the western US. Near the coast, a major control of spatial variation is the differential warming between sea and land.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00382-016-3200-x", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3057366", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3080278", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8789530", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2994318", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3030547", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2761096", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3052379", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1049631", 
            "issn": [
              "0930-7575", 
              "1432-0894"
            ], 
            "name": "Climate Dynamics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7-8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "48"
          }
        ], 
        "keywords": [
          "western United States", 
          "spatial variability", 
          "large ensemble", 
          "snow-albedo feedback", 
          "near surface air temperature", 
          "Representative Concentration Pathway (RCP) 4.5", 
          "surface air temperature", 
          "single ensemble member", 
          "atmospheric constituent concentrations", 
          "anthropogenic greenhouse gas", 
          "seasonal spatial patterns", 
          "confidence interval sizes", 
          "Northwest United States", 
          "climate simulations", 
          "differential warming", 
          "anthropogenic warming", 
          "moisture flux", 
          "major control", 
          "ensemble members", 
          "middle troposphere", 
          "lapse rate", 
          "complex terrain", 
          "air temperature", 
          "spatial variation", 
          "constituent concentrations", 
          "high spatial resolution", 
          "greenhouse gas", 
          "spatial patterns", 
          "spatial scales", 
          "temperature response", 
          "spatial heterogeneity", 
          "modeling studies", 
          "warming", 
          "albedo", 
          "spatial resolution", 
          "variability", 
          "rate of change", 
          "ensemble", 
          "United States", 
          "Sea", 
          "troposphere", 
          "coast", 
          "precipitation", 
          "terrain", 
          "winter", 
          "summer", 
          "spring", 
          "flux", 
          "land", 
          "season", 
          "\u0394T", 
          "patterns", 
          "heterogeneity", 
          "landscape", 
          "changes", 
          "variation", 
          "simulations", 
          "scale", 
          "temperature", 
          "gas", 
          "resolution", 
          "meaningful heterogeneity", 
          "feedback", 
          "decrease", 
          "place", 
          "concentration", 
          "features", 
          "rate", 
          "large number", 
          "half", 
          "response", 
          "order", 
          "combination", 
          "differences", 
          "study", 
          "state", 
          "size", 
          "interval size", 
          "members", 
          "energy", 
          "number", 
          "control", 
          "Concentration Pathway 4.5", 
          "Pathway 4.5", 
          "scale temperature responses", 
          "\u0394T pattern"
        ], 
        "name": "Seasonal spatial patterns of projected anthropogenic warming in complex terrain: a modeling study of the western US", 
        "pagination": "2191-2213", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1035452465"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00382-016-3200-x"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00382-016-3200-x", 
          "https://app.dimensions.ai/details/publication/pub.1035452465"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:35", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_695.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00382-016-3200-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-016-3200-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-016-3200-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-016-3200-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-016-3200-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    272 TRIPLES      22 PREDICATES      125 URIs      103 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00382-016-3200-x schema:about anzsrc-for:04
    2 anzsrc-for:0406
    3 schema:author N074c99c426f04dffbe0bddda0dc459da
    4 schema:citation sg:pub.10.1007/s00382-007-0306-1
    5 sg:pub.10.1007/s00382-010-0810-6
    6 sg:pub.10.1007/s00382-010-0900-5
    7 sg:pub.10.1007/s00382-010-0977-x
    8 sg:pub.10.1007/s00382-013-1737-5
    9 sg:pub.10.1007/s003820050276
    10 sg:pub.10.1007/s10584-006-9210-7
    11 sg:pub.10.1007/s10584-009-9734-8
    12 sg:pub.10.1007/s10584-010-9849-y
    13 sg:pub.10.1007/s10584-011-0156-z
    14 sg:pub.10.1007/s10584-011-0195-5
    15 sg:pub.10.1007/s10584-013-0831-3
    16 sg:pub.10.1023/b:clim.0000013692.50640.55
    17 sg:pub.10.1038/nclimate2563
    18 schema:datePublished 2016-06-04
    19 schema:datePublishedReg 2016-06-04
    20 schema:description Changes in near surface air temperature (ΔT) in response to anthropogenic greenhouse gas forcing are expected to show spatial heterogeneity because energy and moisture fluxes are modulated by features of the landscape that are also heterogeneous at these spatial scales. Detecting statistically meaningful heterogeneity requires a combination of high spatial resolution and a large number of simulations. To investigate spatial variability of projected ΔT, we generated regional, high-resolution (25-km horizontal), large ensemble (100 members per year), climate simulations of western United States (US) for the periods 1985–2014 and 2030–2059, the latter with atmospheric constituent concentrations from the Representative Concentration Pathway 4.5. Using the large ensemble, 95 % confidence interval sizes for grid-cell-scale temperature responses were on the order of 0.1 °C, compared to 1 °C from a single ensemble member only. In both winter and spring, the snow-albedo feedback statistically explains roughly half of the spatial variability in ΔT. Simulated decreases in albedo exceed 0.1 in places, with rates of change in T per 0.1 decrease in albedo ranging from 0.3 to 1.4 °C. In summer, ΔT pattern in the northwest US is correlated with the pattern of decreasing precipitation. In all seasons, changing lapse rates in the low-to-middle troposphere may account for up to 0.2 °C differences in warming across the western US. Near the coast, a major control of spatial variation is the differential warming between sea and land.
    21 schema:genre article
    22 schema:inLanguage en
    23 schema:isAccessibleForFree false
    24 schema:isPartOf N887e5b71bdaf4694a1ae0fc1feed3bd4
    25 Nd69a560621b8468f9f022e94ca1c9132
    26 sg:journal.1049631
    27 schema:keywords Concentration Pathway 4.5
    28 Northwest United States
    29 Pathway 4.5
    30 Representative Concentration Pathway (RCP) 4.5
    31 Sea
    32 United States
    33 air temperature
    34 albedo
    35 anthropogenic greenhouse gas
    36 anthropogenic warming
    37 atmospheric constituent concentrations
    38 changes
    39 climate simulations
    40 coast
    41 combination
    42 complex terrain
    43 concentration
    44 confidence interval sizes
    45 constituent concentrations
    46 control
    47 decrease
    48 differences
    49 differential warming
    50 energy
    51 ensemble
    52 ensemble members
    53 features
    54 feedback
    55 flux
    56 gas
    57 greenhouse gas
    58 half
    59 heterogeneity
    60 high spatial resolution
    61 interval size
    62 land
    63 landscape
    64 lapse rate
    65 large ensemble
    66 large number
    67 major control
    68 meaningful heterogeneity
    69 members
    70 middle troposphere
    71 modeling studies
    72 moisture flux
    73 near surface air temperature
    74 number
    75 order
    76 patterns
    77 place
    78 precipitation
    79 rate
    80 rate of change
    81 resolution
    82 response
    83 scale
    84 scale temperature responses
    85 season
    86 seasonal spatial patterns
    87 simulations
    88 single ensemble member
    89 size
    90 snow-albedo feedback
    91 spatial heterogeneity
    92 spatial patterns
    93 spatial resolution
    94 spatial scales
    95 spatial variability
    96 spatial variation
    97 spring
    98 state
    99 study
    100 summer
    101 surface air temperature
    102 temperature
    103 temperature response
    104 terrain
    105 troposphere
    106 variability
    107 variation
    108 warming
    109 western United States
    110 winter
    111 ΔT
    112 ΔT pattern
    113 schema:name Seasonal spatial patterns of projected anthropogenic warming in complex terrain: a modeling study of the western US
    114 schema:pagination 2191-2213
    115 schema:productId N1c85ed5ad98c441c928071f7360e1482
    116 N88b87cc6b34e4984a810b9c4ca9a1f1e
    117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035452465
    118 https://doi.org/10.1007/s00382-016-3200-x
    119 schema:sdDatePublished 2021-12-01T19:35
    120 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    121 schema:sdPublisher N8821198a5eb84243bbdbd59923594714
    122 schema:url https://doi.org/10.1007/s00382-016-3200-x
    123 sgo:license sg:explorer/license/
    124 sgo:sdDataset articles
    125 rdf:type schema:ScholarlyArticle
    126 N03d7f908b76f4bb0895493ae2382a9a3 rdf:first sg:person.015265446137.33
    127 rdf:rest N332efb90c8804207bb00d293379a32db
    128 N074c99c426f04dffbe0bddda0dc459da rdf:first sg:person.0773567045.82
    129 rdf:rest N03d7f908b76f4bb0895493ae2382a9a3
    130 N1c85ed5ad98c441c928071f7360e1482 schema:name doi
    131 schema:value 10.1007/s00382-016-3200-x
    132 rdf:type schema:PropertyValue
    133 N332efb90c8804207bb00d293379a32db rdf:first sg:person.01126477464.84
    134 rdf:rest N5a31e981f69846b389d44dde4d4c74ca
    135 N52b52453c4f445fa9e5182d3545d8d68 rdf:first sg:person.0600474550.17
    136 rdf:rest rdf:nil
    137 N5a31e981f69846b389d44dde4d4c74ca rdf:first sg:person.01256143424.27
    138 rdf:rest Ne9916f4a7f6a48b3bdf9fcb2171fde52
    139 N8821198a5eb84243bbdbd59923594714 schema:name Springer Nature - SN SciGraph project
    140 rdf:type schema:Organization
    141 N887e5b71bdaf4694a1ae0fc1feed3bd4 schema:issueNumber 7-8
    142 rdf:type schema:PublicationIssue
    143 N88b87cc6b34e4984a810b9c4ca9a1f1e schema:name dimensions_id
    144 schema:value pub.1035452465
    145 rdf:type schema:PropertyValue
    146 Nb62f1d4910304babbf2c3e2346754597 rdf:first sg:person.013147101037.33
    147 rdf:rest Ne113f672cab74e98b3a286d594484565
    148 Nd69a560621b8468f9f022e94ca1c9132 schema:volumeNumber 48
    149 rdf:type schema:PublicationVolume
    150 Ne113f672cab74e98b3a286d594484565 rdf:first sg:person.015131374022.11
    151 rdf:rest N52b52453c4f445fa9e5182d3545d8d68
    152 Ne9916f4a7f6a48b3bdf9fcb2171fde52 rdf:first sg:person.011202345633.67
    153 rdf:rest Nb62f1d4910304babbf2c3e2346754597
    154 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    155 schema:name Earth Sciences
    156 rdf:type schema:DefinedTerm
    157 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
    158 schema:name Physical Geography and Environmental Geoscience
    159 rdf:type schema:DefinedTerm
    160 sg:grant.2761096 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-016-3200-x
    161 rdf:type schema:MonetaryGrant
    162 sg:grant.2994318 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-016-3200-x
    163 rdf:type schema:MonetaryGrant
    164 sg:grant.3030547 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-016-3200-x
    165 rdf:type schema:MonetaryGrant
    166 sg:grant.3052379 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-016-3200-x
    167 rdf:type schema:MonetaryGrant
    168 sg:grant.3057366 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-016-3200-x
    169 rdf:type schema:MonetaryGrant
    170 sg:grant.3080278 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-016-3200-x
    171 rdf:type schema:MonetaryGrant
    172 sg:grant.8789530 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-016-3200-x
    173 rdf:type schema:MonetaryGrant
    174 sg:journal.1049631 schema:issn 0930-7575
    175 1432-0894
    176 schema:name Climate Dynamics
    177 schema:publisher Springer Nature
    178 rdf:type schema:Periodical
    179 sg:person.011202345633.67 schema:affiliation grid-institutes:grid.4991.5
    180 schema:familyName Massey
    181 schema:givenName Neil
    182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011202345633.67
    183 rdf:type schema:Person
    184 sg:person.01126477464.84 schema:affiliation grid-institutes:grid.4391.f
    185 schema:familyName Mote
    186 schema:givenName Philip W.
    187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126477464.84
    188 rdf:type schema:Person
    189 sg:person.01256143424.27 schema:affiliation grid-institutes:grid.4391.f
    190 schema:familyName Shell
    191 schema:givenName Karen M.
    192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256143424.27
    193 rdf:type schema:Person
    194 sg:person.013147101037.33 schema:affiliation grid-institutes:grid.4991.5
    195 schema:familyName Sparrow
    196 schema:givenName Sarah N.
    197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013147101037.33
    198 rdf:type schema:Person
    199 sg:person.015131374022.11 schema:affiliation grid-institutes:grid.4991.5
    200 schema:familyName Wallom
    201 schema:givenName David C. H.
    202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015131374022.11
    203 rdf:type schema:Person
    204 sg:person.015265446137.33 schema:affiliation grid-institutes:grid.4391.f
    205 schema:familyName Li
    206 schema:givenName Sihan
    207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015265446137.33
    208 rdf:type schema:Person
    209 sg:person.0600474550.17 schema:affiliation grid-institutes:grid.4991.5
    210 schema:familyName Allen
    211 schema:givenName Myles R.
    212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600474550.17
    213 rdf:type schema:Person
    214 sg:person.0773567045.82 schema:affiliation grid-institutes:grid.4391.f
    215 schema:familyName Rupp
    216 schema:givenName David E.
    217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773567045.82
    218 rdf:type schema:Person
    219 sg:pub.10.1007/s00382-007-0306-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002755636
    220 https://doi.org/10.1007/s00382-007-0306-1
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1007/s00382-010-0810-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001203373
    223 https://doi.org/10.1007/s00382-010-0810-6
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1007/s00382-010-0900-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009555877
    226 https://doi.org/10.1007/s00382-010-0900-5
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1007/s00382-010-0977-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021861148
    229 https://doi.org/10.1007/s00382-010-0977-x
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1007/s00382-013-1737-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017805535
    232 https://doi.org/10.1007/s00382-013-1737-5
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1007/s003820050276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018345935
    235 https://doi.org/10.1007/s003820050276
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1007/s10584-006-9210-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021280557
    238 https://doi.org/10.1007/s10584-006-9210-7
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1007/s10584-009-9734-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022681368
    241 https://doi.org/10.1007/s10584-009-9734-8
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1007/s10584-010-9849-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1052139400
    244 https://doi.org/10.1007/s10584-010-9849-y
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1007/s10584-011-0156-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1045851916
    247 https://doi.org/10.1007/s10584-011-0156-z
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1007/s10584-011-0195-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046048771
    250 https://doi.org/10.1007/s10584-011-0195-5
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1007/s10584-013-0831-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034650471
    253 https://doi.org/10.1007/s10584-013-0831-3
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1023/b:clim.0000013692.50640.55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029484467
    256 https://doi.org/10.1023/b:clim.0000013692.50640.55
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1038/nclimate2563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031223967
    259 https://doi.org/10.1038/nclimate2563
    260 rdf:type schema:CreativeWork
    261 grid-institutes:grid.4391.f schema:alternateName College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
    262 Oregon Climate Change Research Institute, College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, 97331, Corvallis, OR, USA
    263 schema:name College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
    264 Oregon Climate Change Research Institute, College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, 97331, Corvallis, OR, USA
    265 rdf:type schema:Organization
    266 grid-institutes:grid.4991.5 schema:alternateName Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Oxford, UK
    267 Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
    268 Oxford e-Research Centre, University of Oxford, Oxford, UK
    269 schema:name Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Oxford, UK
    270 Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
    271 Oxford e-Research Centre, University of Oxford, Oxford, UK
    272 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...